Français Anglais
Accueil Annuaire Plan du site
Accueil > Evenements > Séminaires
Séminaire d'équipe(s) Algo
A new algorithm for the Orthogonal Packing Problem
Petru Valicov

25 May 2012, 15h00 - 25 May 2012, 16h00
Salle/Bat : 445/PCRI-N
Contact :

Activités de recherche :

Résumé :
Let $V$ be a set of rectangular items and $C$ a rectangular container. The two-dimensional Orthogonal Packing Problem (OPP-2) consists in deciding whether the set $V$ can be packed in $C$ without overlapping and without rotating the items. If the set $V$ can be packed in $C$, then $V$ is called a feasible set. This problem is NP-complete and can be seen as a sub-problem of the well known two-dimensional Orthogonal Knapsack Problem. Fekete and Schepers introduced a powerful characterization of feasible packings, based on interval graphs. Using this characterization they designed an efficient algorithm to solve OPP by enumerating the interval graphs with a certain number of constraints. In this work, we present a new algorithm for solving OPP-2 based on a more compact representation of interval graphs. One of the main advantages is having a reduced number of "symmetrical" solutions. This is a joint work with C. Joncour and A. Pêcher.

Pour en savoir plus : www.labri.fr/perso/valicov/
Séminaires
Pierre Andrieu - Agrégation de classements pour le
Thursday 21 October 2021 - 00h00
Salle : 435 - PCRI-N
.............................................

A counting argument for graph colouring
Théorie des graphes
Friday 08 October 2021 - 11h00
Salle : 445 - PCRI-N
Francois Pirot .............................................

Demographic reconstruction from paleogenomes of th
Thursday 25 February 2021 - 14h00
Salle : 435 - PCRI-N
Nina Marchi .............................................

A Graph-based Similarity Approach to Classify Recu
Thursday 18 February 2021 - 14h00
Salle : 435 - PCRI-N
Coline Gianfrotta .............................................

"Answer Set Programming for computing constraints-
Thursday 04 February 2021 - 14h00
Salle : 435 - PCRI-N
Maxime Mahout .............................................