Français Anglais
Accueil Annuaire Plan du site
Accueil > Evenements > Séminaires
Séminaire d'équipe(s) GraphComb
A Mathematical Programming Approach for Solving the General Art Gallery Problem
Mahdi Moeini

15 March 2013, 10h30 - 15 March 2013, 11h30
Salle/Bat : 455/PCRI-N
Contact : mahdimoeini@yahoo.com

Activités de recherche :

Résumé :
In the first half of the talk, I will give a short description of the Difference of Convex functions programming (DC programming), DC algorithms, and their applications.
The second part of the talk concerns the General Art Gallery (AGP) problem. Suppose that an art gallery is given and it is in the shape of a polygon. The classical Art Gallery Problem seeks for determining the minimum number of guards that are sufficient to oversee the whole polygon. It has been proven that this problem is NP-hard, even for very special cases. In this talk, we will see a novel solution approach based on mathematical programming techniques. The approach is based on a Primal-Dual procedure and a DC algorithm. Some numerical experiments have been carried out on different kinds of polygons and the obtained results will be presented.

Pour en savoir plus : https://sites.google.com/site/mahdimoeini2013/
Séminaires
Resilient PDE solving approaches for exascale comp
Calcul à haute performance
Tuesday 29 May 2018 - 10h30
Salle : 465 - PCRI-N
Paul Mycek .............................................

Binary pattern of length greater than 14 are abeli
Combinatoire
Friday 25 May 2018 - 14h30
Salle : 445 - PCRI-N
Matthieu Rosenfeld .............................................

TBA
Algorithmique distribuée
Wednesday 02 May 2018 - 10h30
Salle : 465 - PCRI-N
Evangelos Bampas .............................................

Mariage stable auto-stabilisant et distribué
Théorie des graphes
Friday 13 April 2018 - 14h30
Salle : 445 - PCRI-N
Marie Laveau .............................................

Modélisation et implémentation du produit de matri
Calcul à haute performance
Wednesday 11 April 2018 - 10h30
Salle : 465 - PCRI-N
Thomas Lambert .............................................