Français Anglais
Accueil Annuaire Plan du site
Accueil > Evenements > Séminaires
Séminaire d'équipe(s) ROCS
Copositive relaxation beats Lagrangian dual bounds in quadratically and linearly constrained QPs
Professeur Manuel Bomze

08 November 2013, 10h30 - 08 November 2013, 11h30
Salle/Bat : 465/PCRI-N
Contact :

Activités de recherche : Optimisation semidéfinie positive

Résumé :
For all-quadratic problems (without any linear constraints), it is well known that the semidefinite relaxation coincides basically with the Lagrangian dual problem. Here we study a more general case where the constraints can be either quadratic or linear. To be more precise, we include explicit sign constraints on the problem variables, and study both the full Lagrangian dual as well as the Semi-Lagrangian relaxation. We show that the stronger Semi-Lagrangian dual bounds coincide with the ones resulting from copositive relaxation. This way, we arrive at a full hierarchy of tractable conic bounds stronger than the usual Lagrangian dual (and thus than the SDP) bounds. We also specify sufficient conditions for tightness of the Semi-Lagrangian (i.e. copositive) relaxation and show that copositivity of the slack matrix guarantees global optimality for KKT points of this problem.
A symmetric matrix is called copositive, if it generates a quadratic form taking no negative values over the positive orthant. Contrasting to positive-semidefiniteness, checking copositivity is NP-hard. In a copositive optimization problem, we have to minimize a linear function of a symmetric matrix over the copositive cone subject to linear constraints. This convex program has no non-global local solutions. On the other hand, there are several hard non-convex programs which can be formulated as copositive programs. This optimization technique shifts complexity from global optimization towards sheer feasibility questions. Approximation hierarchies offer a way to obtain approximate solutions by tractable conic (e.g., semidefinite) optimization techniques.

Pour en savoir plus : http://homepage.univie.ac.at/immanuel.bomze/index.htmlwww.
Séminaires
Resilient PDE solving approaches for exascale comp
Calcul à haute performance
Tuesday 29 May 2018 - 10h30
Salle : 465 - PCRI-N
Paul Mycek .............................................

Binary pattern of length greater than 14 are abeli
Combinatoire
Friday 25 May 2018 - 14h30
Salle : 445 - PCRI-N
Matthieu Rosenfeld .............................................

TBA
Algorithmique distribuée
Wednesday 02 May 2018 - 10h30
Salle : 465 - PCRI-N
Evangelos Bampas .............................................

Mariage stable auto-stabilisant et distribué
Théorie des graphes
Friday 13 April 2018 - 14h30
Salle : 445 - PCRI-N
Marie Laveau .............................................

Modélisation et implémentation du produit de matri
Calcul à haute performance
Wednesday 11 April 2018 - 10h30
Salle : 465 - PCRI-N
Thomas Lambert .............................................