Français Anglais
Accueil Annuaire Plan du site
Accueil > Evenements > Séminaires
Séminaire d'équipe(s) GALaC
Solving Matching Problems Efficiently in Bipartite Graphs
Selma Djelloul

31 January 2015, 14h30 - 31 January 2015, 15h30
Salle/Bat : 475/PCRI-N
Contact :

Activités de recherche : Théorie des graphes

Résumé :
We investigate the problem maxDMM of computing a largest set
of pairwise disjoint maximum matchings in undirected graphs
We solve maxDMM for bipartite graphs, by providing
an $O(n^{1.5}sqrt{m/log n} + mnlog n)$-time algorithm, where
$n$, $m$ denote respectively the number of vertices and the number of edges.
Bisplit graphs are bipartite graphs with the nested neighborhood property.
For bisplit graphs,
(1) we solve maxDMM in time $O(mnlog n)$, and
(2) we design an $O(n^2log n)$-time algorithm to count all
maximum matchings. This latter time is the same time in which runs the best
known algorithm computing the number of maximum matchings in
bisplit graphs but we claim that our algorithm is much simpler.
The key idea underlying both results is that bisplit graphs have
an $O(n)$-time enumeration of their minimal vertex covers.

Pour en savoir plus :
Séminaires
Langage d'icônes et visualisation d'ensembles : mé
Thursday 24 October 2019 - 14h30
Salle : 475 - PCRI-N
Jean-Baptiste Lamy .............................................

Matchings and related structures with Specified Co
Théorie des graphes
Thursday 17 October 2019 - 14h30
Salle : 445 - PCRI-N
Yannis Manoussakis .............................................

Conservation of structural long-range modules in R
Thursday 17 October 2019 - 14h30
Salle : 475 - PCRI-N
Vladimir Reinharz .............................................

Overcoming interference in the beeping communicati
Algorithmique distribuée
Friday 11 October 2019 - 14h30
Salle : 445 - PCRI-N
Fabien Dufoulon .............................................

Local checkability: a notion that started in the c
Algorithmique distribuée
Tuesday 08 October 2019 - 11h00
Salle : 465 - PCRI-N
Prof. Kutten Shay .............................................