Français Anglais
Accueil Annuaire Plan du site
Accueil > Evenements > Séminaires
Séminaire d'équipe(s) GALaC
Solving Matching Problems Efficiently in Bipartite Graphs
Selma Djelloul

31 January 2015, 14h30 - 31 January 2015, 15h30
Salle/Bat : 475/PCRI-N
Contact :

Activités de recherche : Théorie des graphes

Résumé :
We investigate the problem maxDMM of computing a largest set
of pairwise disjoint maximum matchings in undirected graphs
We solve maxDMM for bipartite graphs, by providing
an $O(n^{1.5}sqrt{m/log n} + mnlog n)$-time algorithm, where
$n$, $m$ denote respectively the number of vertices and the number of edges.
Bisplit graphs are bipartite graphs with the nested neighborhood property.
For bisplit graphs,
(1) we solve maxDMM in time $O(mnlog n)$, and
(2) we design an $O(n^2log n)$-time algorithm to count all
maximum matchings. This latter time is the same time in which runs the best
known algorithm computing the number of maximum matchings in
bisplit graphs but we claim that our algorithm is much simpler.
The key idea underlying both results is that bisplit graphs have
an $O(n)$-time enumeration of their minimal vertex covers.

Pour en savoir plus :
Séminaires
A Two-level Auction for Resource Allocation in Mul
Réseaux sans fil et mobiles
Friday 09 March 2018 - 14h30
Salle : 445 - PCRI-N
Mira Morcos .............................................

Binary pattern of length greater than 14 are abeli
Combinatoire
Friday 09 February 2018 - 14h30
Salle : 445 - PCRI-N
Matthieu Rosenfeld .............................................

Approximate Bayesian Computation and Random Forest
Thursday 08 February 2018 - 00h00
Salle : 455 - PCRI-N
Valentin Thouzeau .............................................

A concurrent lock-free algorithm for computing a f
Combinatoire
Friday 12 January 2018 - 14h30
Salle : 445 - PCRI-N
James Mitchell .............................................

Acyclic Partitioning of Large Directed Acyclic Gra
Calcul à haute performance
Tuesday 09 January 2018 - 10h30
Salle : 465 - PCRI-N
Julien Herrmann .............................................