Français Anglais
Accueil Annuaire Plan du site
Accueil > Evenements > Séminaires
Séminaire d'équipe(s) Algorithms and Complexity
A new algorithm for the Orthogonal Packing Problem
Petru Valicov

25 May 2012, 15:00 - 25 May 2012, 16:00
Salle/Bat : 445/PCRI-N
Contact :

Activités de recherche :

Résumé :
Let $V$ be a set of rectangular items and $C$ a rectangular container. The two-dimensional Orthogonal Packing Problem (OPP-2) consists in deciding whether the set $V$ can be packed in $C$ without overlapping and without rotating the items. If the set $V$ can be packed in $C$, then $V$ is called a feasible set. This problem is NP-complete and can be seen as a sub-problem of the well known two-dimensional Orthogonal Knapsack Problem. Fekete and Schepers introduced a powerful characterization of feasible packings, based on interval graphs. Using this characterization they designed an efficient algorithm to solve OPP by enumerating the interval graphs with a certain number of constraints. In this work, we present a new algorithm for solving OPP-2 based on a more compact representation of interval graphs. One of the main advantages is having a reduced number of "symmetrical" solutions. This is a joint work with C. Joncour and A. Pêcher.

Pour en savoir plus : www.labri.fr/perso/valicov/
Séminaires
Programming computing media (reporté)
Combinatorics
Friday 18 September 2020 - 14:30
Salle : 445 - PCRI-N
Frédéric Gruau .............................................

forum-dev Continuous Integration
Friday 05 June 2020 - 10:00
Salle : 0 - 650
Erik Bray .............................................

Large-scale Spectral Clustering for GPU-based Plat
High-performance computing
Tuesday 24 March 2020 - 10:30
Salle : 465 - PCRI-N
Guanlin He .............................................

Recherche Opérationnelle à Google
Stochastic Combinatorial Optimization
Thursday 12 March 2020 - 14:30
Salle : 445 - PCRI-N
Laurent Perron .............................................

Forum dev-LRI
Wednesday 05 February 2020 - 14:00
Salle : 455 - PCRI-N
Erik Bray .............................................