Français Anglais
Accueil Annuaire Plan du site
Accueil > Evenements > Séminaires
Séminaire d'équipe(s) Graphs, ALgorithms and Combinatorics
Self-Stabilization and Byzantine Tolerance for Maximal Matching
Laurence Pilard

22 February 2019, 14:30
Salle/Bat : 445/PCRI-N
Contact :

Activités de recherche : Networking

Résumé :
We analyse the impact of transient and Byzantine faults on the construction of a maximal matching in a general network. In particular, we consider the self-stabilizing algorithm called AnonyMatch presented by Cohen et al. in PPL'2016 for computing such a matching. Since self-stabilization is transient fault tolerant, we prove that this algorithm still works under the more difficult context of arbitrary Byzantine faults. Byzantine nodes can prevent nodes close to them from taking part in the matching for an arbitrarily long time. We give some bound on their impact depending on the distance between a non-Byzantine node and the closest Byzantine, called the containment radius. We present the first algorithm tolerating both transient and Byzantine faults under the fair distributed daemon while keeping the best known containment radius.

Pour en savoir plus :
Séminaires
graph algorithms to help molecular construction
Graph Theory
Friday 07 June 2019 - 14:30
Salle : 445 - PCRI-N
Stefi Nouleho .............................................

Sur le nombre des (d,k)-polytopes
Combinatorics
Friday 24 May 2019 - 14:30
Salle : 455 - PCRI-N
Rado Rakotonarivo .............................................

Predicting the structure of RNA-binding protein re
Thursday 23 May 2019 - 00:00
Salle : 465 - PCRI-N
François Major .............................................

Enhancing Asynchronous Iterative Linear Solvers Th
High-performance computing
Tuesday 21 May 2019 - 10:30
Salle : 465 - PCRI-N
Masha Sosonkina .............................................

Simulation of the M13 infection in E.coli
Distributed algorithms
Friday 10 May 2019 - 14:00
Salle : 465 - PCRI-N
Da-Jung Cho .............................................