Français Anglais
Accueil Annuaire Plan du site
Accueil > Production scientifique > Thèses et habilitations
Production scientifique
Doctorat de

Equipe : Vérification d'Algorithmes, Langages et Systèmes

Model-Based Testing of Operating System-level Security Mechanisms

Début le 01/10/2012
Direction : WOLFF, Burkhart

Ecole doctorale : ED STIC 580
Etablissement d'inscription : Université Paris-Saclay

Lieu de déroulement : LRI

Soutenue le 30/03/2016 devant le jury composé de :

Activités de recherche :
   - Formalisation de langages (de spécification et de programmation) dans les assistants de preuve
   - Test formel basé sur les modèles

Résumé :
Formal methods can be understood as the art of applying mathematical reasoning
to the modeling, analysis and verification of computer systems. Three main
verification approaches can be distinguished: verification based on deductive proofs,
model checking and model-based testing.

Model-based testing, in particular in its radical form of theorem proving-based testing
bridges seamlessly the gap between the theory, the formal model, and the implementation
of a system. Actually,
theorem proving based testing techniques offer a possibility to directly interact
with "real" systems: via different
formal properties, tests can be derived and executed on the system under test.
Suitably supported, the entire process can fully automated.

The purpose of this thesis is to create a model-based sequence testing environment
for both sequential and concurrent programs. First a generic testing theory based
on monads is presented, which is independent of any concrete program or computer
system. It turns out that it is still expressive enough to cover all common system
behaviours and testing concepts. In particular, we consider here: sequential executions,
concurrent executions, synchronised executions, executions with abort.
On the conceptual side, it brings notions like test refinements,
abstract test cases, concrete test cases,
test oracles, test scenarios, test data, test drivers, conformance relations and
coverage criteria into one theoretical and practical framework.

In this framework, both behavioural refinement rules and symbolic execution
rules are developed for the generic case and then refined and used for specific
complex systems. As an application, we will instantiate our framework by an existing
sequential model of a microprocessor called VAMP developed during the Verisoft-Project.
For the concurrent case, we will use our framework to model and test the IPC API of a
real industrial operating system called PikeOS.

Our framework is implemented in Isabelle/HOL. Thus, our approach directly benefits
from the existing models, tools, and formal proofs in this system.