Français Anglais
Accueil Annuaire Plan du site
Home > Research results > Dissertations & habilitations
Research results
Ph.D de

Ph.D
Group : Networking & Stochastic and Combinatorial Optimization

Fonctions sous modulaires stochastiques

Starts on 01/10/2008
Advisor : LISSER, Abdel

Funding : salarie
Affiliation : Université Paris-Saclay
Laboratory : LRI

Defended on 27/09/2013, committee :
Directeurs de thèse
M. Abdel Lisser, Professeur, Université Paris Sud.
Rapporteurs
M. Jean-Baptiste HIRIART-URRUTY, Professeur, Université de Toulouse.
M. Alexei GAIVORONSKI, Professeur, Université de Trondheim (Norvège).
Examinateurs
M. Marc BABOULIN, Professeur, Université Paris Sud.
M. Patrice PERNY, Professeur, Université Paris 6.

Research activities :

Abstract :
The global purpose of this thesis is to study the conditions to extend analytical and algebraical properties commonly observed in the resolution of deterministic combinatorial problems to the corresponding stochastic formulations of these problems. Two distinct situations are treated : discrete combinatorial stochastic problems and continuous stochastic problems.

Discrete situation is examined with the Two Stage formulation of the Maximum Weight Covering Forest. The well known corresponding deterministic formulation shows the connexions between the rank function of a matroid, the greedy algorithm , and the dual formulation. The discrete stochastic formulation of the Maximal Covering Forest is turned into a deterministic equivalent formulation, but, due to the number of scenarios, the associated dual is not complete. The work of this thesis leads to understand in which cases the dual formulation still has the same value as the primal integer formulation. Usually, classical combinatorial approaches aim to find particular configurations in the graph, as circuits, in order to handle possible reconfigurations. For example, slight modifications of the weights of the edges might change considerably the configuration of the Maximum Weight Covering Forest. This can be seen as an obstacle to handle pure combinatorial proofs. However, some global relevant quantities, like the global weight of the selected edges during the greedy algorithm, have a continuous variation in function of slight modifications. We introduce some functions in order to outline these continuous variations. And we state in which cases Primal integral problems have the same objective values as dual formulations. When it is not the case, we propose an approximation method and we examine the NP completeness of this problem.\

Continuous stochastic problems are presented with the stochastic Knapsack with chance constraint. Chance constraint and dual Lagrangian formulation are adapted in the case where the expected probability of not exceeding the knapsack capacity is close to $1$. The introduced model consists in items whose costs and rewards follow normal distributions. In our case, we try to apply direct gradient methods without reformulating the problem into geometrical terms. We detail convergence conditions of gradient based methods directly on the initial formulation. This part is illustrated with numerical tests on combinatorial instances and Branch and Bound evaluations on relaxed formulations.

Ph.D. dissertations & Faculty habilitations
CAUSAL LEARNING FOR DIAGNOSTIC SUPPORT


CAUSAL UNCERTAINTY QUANTIFICATION UNDER PARTIAL KNOWLEDGE AND LOW DATA REGIMES


MICRO VISUALIZATIONS: DESIGN AND ANALYSIS OF VISUALIZATIONS FOR SMALL DISPLAY SPACES
The topic of this habilitation is the study of very small data visualizations, micro visualizations, in display contexts that can only dedicate minimal rendering space for data representations. For several years, together with my collaborators, I have been studying human perception, interaction, and analysis with micro visualizations in multiple contexts. In this document I bring together three of my research streams related to micro visualizations: data glyphs, where my joint research focused on studying the perception of small-multiple micro visualizations, word-scale visualizations, where my joint research focused on small visualizations embedded in text-documents, and small mobile data visualizations for smartwatches or fitness trackers. I consider these types of small visualizations together under the umbrella term ``micro visualizations.'' Micro visualizations are useful in multiple visualization contexts and I have been working towards a better understanding of the complexities involved in designing and using micro visualizations. Here, I define the term micro visualization, summarize my own and other past research and design guidelines and outline several design spaces for different types of micro visualizations based on some of the work I was involved in since my PhD.