Français Anglais
Accueil Annuaire Plan du site
Home > Research results > Dissertations & habilitations
Research results
Ph.D de

Ph.D
Group : Learning and Optimization

Recurrent Neural Networks and Reinforcement Learning

Starts on 01/10/2016
Advisor : OLLIVIER, Yann

Funding : Contrat doctoral spécifique normalien ou polytechnicien
Affiliation : Université Paris-Sud
Laboratory : LRI - AO

Defended on 07/10/2019, committee :
Directeur de thèse :
- OLLIVIER Yann, CNRS

Rapporteurs :
- M. Joan BRUNA, Université de New York
- M. Pascal VINCENT, Université de Montréal

Examinateurs :
- Mme Anne VILNAT, Université Paris-Sud
- M. Francis BACH, École Normale Supérieure
- M. Jean-Philippe VERT, Mines ParisTech

Research activities :

Abstract :
An intelligent agent immerged in its environment must be able to both
understand and interact with the world. Understanding the environment requires
processing sequences of sensorial inputs. Interacting with the environment
typically involves issuing actions, and adapting those actions to strive
towards a given goal, or to maximize a notion of reward. This view of a two
parts agent-environment interaction motivates the two parts of this thesis: recurrent
neural networks are powerful tools to make sense of complex and diverse
sequences of inputs, such as those resulting from an agent-environment
interaction; reinforcement learning is the field of choice to direct the
behavior of an agent towards a goal. This thesis aim is to provide theoretical
and practical insights in those two domains. In the field of recurrent
networks, this thesis contribution is twofold: we introduce two new,
theoretically grounded and scalable learning algorithms that can be used online.
Besides, we advance understanding of gated recurrent networks, by examining their
invariance properties. In the field of reinforcement learning, our main
contribution is to provide guidelines to design time discretization robust
algorithms. All these contributions are theoretically grounded, and backed up
by experimental results.

Ph.D. dissertations & Faculty habilitations
DECODING THE PLATFORM SOCIETY: ORGANIZATIONS, MARKETS AND NETWORKS IN THE DIGITAL ECONOMY
The original manuscript conceptualizes the recent rise of digital platforms along three main dimensions: their nature of coordination devices fueled by data, the ensuing transformations of labor, and the accompanying promises of societal innovation. The overall ambition is to unpack the coordination role of the platform and where it stands in the horizon of the classical firm – market duality. It is also to precisely understand how it uses data to do so, where it drives labor, and how it accommodates socially innovative projects. I extend this analysis to show continuity between today’s society dominated by platforms and the “organizational society”, claiming that platforms are organized structures that distribute resources, produce asymmetries of wealth and power, and push social innovation to the periphery of the system. I discuss the policy implications of these tendencies and propose avenues for follow-up research.

DISTRIBUTED COMPUTING WITH LIMITED RESOURCES


VALORISATION DES DONNéES POUR LA RECHERCHE D'EMPLO