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Abstract Large scale inference problems of practical interest can often be addressed with
help of Markov random fields. This requires to solve in principle two related problems: the
first one is to find offline the parameters of the MRF from empirical data (inverse problem);
the second one (direct problem) is to set up the inference algorithm to make it as precise,
robust and efficient as possible. In this work we address both the direct and inverse problem
with mean-field methods of statistical physics, going beyond the Bethe approximation and
associated belief propagation algorithm. We elaborate on the idea that loop corrections to
belief propagation can be dealt with in a systematic way on pairwise Markov random fields,
by using the elements of a cycle basis to define regions in a generalized belief propagation
setting. For the direct problem, the region graph is specified in such a way as to avoid feed-back
loops as much as possible by selecting a minimal cycle basis. Following this line we are led
to propose a two-level algorithm, where a belief propagation algorithm is run alternatively at
the level of each cycle and at the inter-region level. Next we observe that the inverse problem
can be addressed region by region independently, with one small inverse problem per region
to be solved. It turns out that each elementary inverse problem on the loop geometry can be
solved efficiently. In particular in the random Ising context we propose two complementary
methods based respectively on fixed point equations and on a one-parameter log likelihood
function minimization. Numerical experiments confirm the effectiveness of this approach
both for the direct and inverse MRF inference. Heterogeneous problems of size up to 10° are
addressed in a reasonable computational time, notably with better convergence properties
than ordinary belief propagation.
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1 Introduction

Markov random fields (MRF) [23] are widely used probabilistic models, able to represent
multivariate structured data in order to perform inference tasks. They are at the confluence
of probability, statistical physics and machine learning [48]. From the formal probabilistic
viewpoint they express the conditional independence properties of a collection of n random
variables x = {x1, ..., x,}, in the form of a factorized probability measure, where each
factor involves a subset of x. In statistical mechanics the Gibbs measure takes the form of
an MREF, to express the thermodynamic equilibrium probability of a system of n interacting
degrees of freedom. The practical use of MRF appears also in various applied fields, like
image processing, bioinformatics, spatial statistics or information and coding theory. Recent
breathtaking successes in artificial intelligence have been obtained by learning deep neural
networks whose building blocks are so-called restricted Boltzmann machines i.e. bipartite
networks of interacting Ising spins. By stacking them into deep architectures some high level
features can be learned recursively [24] using schematically Monte-Carlo based learning
algorithms in combination with the Bragg—Williams mean-field method within a Gibbs-
sampling loop. The use of more advanced mean-field methods like the cavity approach could
possibly be helpful in this context [8]. The main difficulty resides in the fact that these MRF
are of practical use in a domain of parameters which clearly corresponds to an ordered phase
with strong couplings, which is usually not the most favorable one for applying mean-field
methods. Putting aside this potential difficulty, let us simply state the two main generic
problems that have to be commonly dealt with when using MRF in practical applications:
Direct inference problems

e Computation of marginal probabilities, also called marginalization problem:

pilxi) = > P(xi),

x\x;

which involves in general an exponential cost with respect to N to be done exactly;
e Computing the mode, also referred to as the maximum a posteriori probability (MAP)

x* = argmax , P(x),
which is generally an NP hard problem [4,42].

This two problems are of different nature and involve generally distinct techniques which
can share sometimes some similarities. The former can be addressed e.g. by Monte-Carlo
sampling or by mean-field methods which boils down to some approximation of the entropy
contribution to the free energy; the latter is a combinatorial optimization problem which
corresponds to the search for the ground state of a system at zero temperature. In this paper
we are primarily interested in tackling the first one.

Inverse problem Learning the parameters of the model, given for example by sufficient
statistics when the MRF is in the exponential family. For instance the inverse Ising problem [3,
13,16,25,28,32,52,55] consists of finding the set of couplings {J;;} and external fields {A;}
of an Ising model

1
P(s)= mexp ;Jijsisj + lzhisi )
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which maximize the associated log likelihood (LL), given data in form of sequences s© k=
1...M or of empirical marginals E (si), E (sis;). Generally the partition function Z( h, J)
requires an exponential cost with respect to N to be computed exactly.

In order to be useful, any approach based on MRF modeling relies therefore strongly on
efficient approximate algorithms, since both direct and inverse problems have potentially an
exponential cost in the system size. Belief propagation (BP) and its generalization GBP [56]
have opened the possibility for using MRF in large scale problems even though many restric-
tions stand in the way of a systematic use, either from convergence problems or from precision
issues.

Concerning the direct problem, the situation is quite different when considering the mar-
ginalization problem or the MAP problem. Belief propagation algorithms defined for the
marginalization problem have a zero temperature counterpart, the max-product or min-sum
algorithm which can be used to solve MAP problems. In this context, methods based on
refined message passing techniques have been developed rather successfully for addressing
some of the shortcomings of belief propagation. First, a tree-reweighted algorithm with guar-
anteed convergence, corresponding to solving a problem dual to the linear programming (LP)
relaxation of the MAP has been proposed in [19,49], yielding exact solutions on submodular
functions [20]. Then for tightening LP relaxations, many strategies similar in spirit with GBP,
able to scale with large size systems have been proposed. A region pursuit strategy has been
set up in [44] in combination with a dual LP message passing solver [10], in order to take into
account consistency constraints of marginals from higher order clusters of variables. This
being limited in practice to small clusters, a strategy able to incorporate frustrated cycles of
arbitrary sizes, supposedly responsible for large integral gaps, has been proposed in different
contexts [21,43,45].

For the marginalization problem the situation is less favorable. Firstly the use of GBP is
hampered by notoriously difficult convergence problems, which have led some authors [12,
57] to consider double loop algorithms, at the price of some computational costs [36]. In
addition the choice to be made for region definition is rather open in general, except that a
bad choice may lead to poor precision and lack of convergence [51], and too large regions
are excluded, as computational cost grows exponentially in the size of the largest regions.
In particular, feeding GBP with more regions do not guarantee a monotonic increase in
precision on the contrary to what the region pursuit in the MAP context is doing. Indeed,
with the dual LP setting, the duality bound allows one to directly check whether a new
constrained region may improve a solution or not, while there is no such option for GBP. For
regular graphs, regions are straightforwardly identified for example with square plaquettes or
cells of 2-D and 3-D lattices, as in the Kikuchi cluster variational methods [18,36] (CVM).
But for general graphs, a systematic choice of regions is more difficult to define and also
some complexity issues may occur if the size of regions is not controlled. As suggested
in [53] a good choice for the regions to run GBP might be provided by a cycle basis and
possibly a weakly fundamental [9] cycle basis. An alternative line of research which has also
been followed over recent years consists of estimating loop corrections to the Bethe—Peierls
approximation in order to improve its accuracy, by addressing directly the errors caused
by the presence of loops on multiply connected factor graphs [2,7,29,30,34,37,54]. Note
that the frustrated cycle constraints mentioned previously in the MAP context and the loop
corrections considered now correspond to two distinct considerations: the first are additional
constraints to impose on a collection of pairwise beliefs in order that they can originate from
a true probability distribution; the second aims at refining the approximation made on the
variational entropy.
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534 C. Furtlehner, A. Decelle

In the present work, we investigate further along this direction by generalizing in some
way previous considerations [7,22] concerning the random Ising model in the absence of
local fields. Firstly we analyze in this context convergence problems emerging from canonical
definitions of the region graph. This leads us to propose a specific construction of the factor
graph, which to some extent solves the convergence issue, as is observed experimentally.
Secondly, we exploit a property of the minimizer of the Kikuchi free energy functional
associated with certain cycle bases, such that the message to be sent from one region to
another can be computed efficiently with help of an internal BP routine to be performed
within each (cycle) region, allowing for arbitrary loop sizes to be considered. For binary
variables in particular, it is worth exploiting the fact that BP has one single fixed point on a
circle [50], and that the loop correction can be computed explicitly on this geometry. These
views apply as well to the inverse problem, which consists of learning the model. We show
that the aforementioned property of the Kikuchi free energy minimizer can also be exploited,
for the inverse Ising problem in particular, in order to learn efficiently the parameters of the
model.

The paper is organized as follows: in Sect. 2 we give a brief introduction of CVM and
related GBP algorithms. In Sect. 3 we specify GBP and the Kikuchi approximation using
regions defined with a cycle basis, analyze the Lagrange multiplier structure and propose
a mixed region graph, which discards all unnecessary constraints. Section 3.5 details how
this framework can be adapted to the maximum a posteriori probability estimation (MAP)
context. The problem of choosing a relevant cycle basis is discussed in Sect. 4. Then Sect. 5 is
devoted to an efficient computation of messages exchanged between cycle and links regions
which completes our generalized cycle based belief propagation (GCBP) formulation for
direct inference. Some properties of the free energy functional are also discussed at the end
of this section. In Sect. 6 we reverse the equations of Sect. 5 to address the inverse Ising
problem. Finally some numerical tests are presented in Sect. 7 both for the direct and inverse
inference problem.

2 Cluster Variational Method and Generalized BP

In this Section we give all the necessary material concerning the relation between BP, gener-
alized BP and mean-field approximations in statistical physics. Further details and references
can be found e.g. in [36].

2.1 Belief Propagation and the Bethe Approximation

As far as large scale inference is concerned, Pearl’s belief propagation [35] and related
algorithms constitute central tools in MRF-based inference approaches. The BP algorithm is
an iterative algorithm designed to solve a set of fixed point equations. Given an MRF, namely
a joint distribution over a set x = {x, x2...,xy} of variables endowed with a factorized
form

p(x) =[] vaCxa) [ ] i (x)

aeF ieV

with x, = {x;,i € a}, a € F aset of factors, the marginal probabilities associated with each
variable and each factor are searched for in the form
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Fig. 1 Factor graph and message
propagation

1
b(si) = i) [ [ masi (xi),

b(xq) = Ziawa(xa) lzlni%a (x),

where the messages m,_,; and n;_, , relating factor to variables and variables to factors satisfy
the following set of self-consistent equations

masiCi) = D Ya(xa) ] njmalx)), 2.1)
Xa\X; Jjea\i
nja(x)) = ;) [] mosjxp). 22)
baj\a

This algorithm as sketched on Fig. 1 is exact on a tree, but only approximate on multiply
connected factor graphs. When it converges, it does so empirically in O (N log(N)) steps on
a sparse random graphs, yielding often rather good approximate marginals.

In [56] was first established the connection between the BP algorithm of Pearl with a
standard mean-field method—the Bethe approximation [1]—used in statistical physics. As
is well known in statistical physics, the Gibbs distribution associated with the energy function
E(x) and inverse temperature S, is obtained as a minimizer of the free energy functional of
a trial distribution b( x)

BF[b] = BE[b] — S[b] = f Zb(x)E(x) + Zb(x)log(b( X))
b(x)
og( be)+zx: (x) log PGibbs ( X)

—1og(Zaibbs) + DKL (D pGibbs)

as is explicitly seen in the last equality from the non-negativity property of the Kullback
Leibler divergence Dy . The mean energy term E[b] can be expressed exactly in terms
of marginal distributions obtained from b, like e.g. single and pairwise marginals if E( x)
decomposes over pairwise terms. On the other hand, the entropy term S[b] is in general
intractable and mean field methods in statistical physics correspond to different ways of
approximating this term. The Bethe approximation for instance corresponds to

ba( Xa)
[Tica bi(xi)

def

SIb] & Spethe = — »_ bi(xi) log(bi(xi)) — D ba(x4) log

12
=D 5+ ASa,
i a
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536 C. Furtlehner, A. Decelle

i.e. a sum of individual entropy of each variable, corrected by the mutual information among
the group of variables indexed by a. The connection with BP is precisely that a BP fixed
point of (2.1, 2.2) corresponds to a stationary point of the approximate Bethe free energy
complemented with compatibility constraints among marginal probabilities

BFBethelb] = BE[b] — Spemelb] + D hai(xi) [ bi(xi) = D ba(xa)

acF.,ica Xa \Xi
Xi

with help of Lagrange multipliers A,; (x;). The BP algorithm actually corresponds to per-
forming the dual optimization with log messages in (2.1, 2.2) corresponding to an invertible
linear transformation of the Lagrange multipliers,

Aai (X)) = log (ni—a(xXi)) , (2.3)

1
— 2 i (x0) = ai (), 2.4)

b>i

log (mg—i(x;)) = 4

with d; the number of factors containing i. Moreover, as shown in [11] a stable fixed point
corresponds to a local minimum of the free energy functional.

2.2 The Kikuchi Approximation and Associated Message Passing Algorithms

In fact as observed in [18,31], the Bethe approximation is only the first stage of a systematic
entropy cumulant expansion over a poset {«} of clusters

S = ZASQ,
o

where A S, is the entropy correction delivered by the cluster o with respect to the entropy of
all its subclusters. The decomposition is actually valid at the level of each cluster, such that
with help of some Mobius inversion formulae, the corrections

ASp =D (@, p) Su
alp

and subsequently the full entropy can be expressed as a weighted sum
S= kaSa
o

of individual cluster entropies

Su=— D ba(xa)logha(xa),

Xor

where k, € Z are a set of counting numbers. For example on the 2D square lattice, one
popular Kikuchi approximation amounts to retain as cluster the set of nodes v € V, of links
£ € & and of square plaquettes ¢ € C such that on a periodic lattice the corresponding

approximate entropy reads
I D 3
c Vi v

In the CVM, the choice of constraints may be arbitrary, as long as the clusters hierarchy is
closed under intersection.
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Once identified, the connection between the Bethe approximation and BP led Yedidia
et al. to propose in [56] a generalization to BP as an algorithmic counterpart to CVM. In
fact they introduced a notion of region, relaxing the notion of cluster used in CVM. In their
formulation, any region R containing a factor a should contain all variable nodes attached
to a in order to be valid. The approximate free energy functional associated with a set of
regions is given by

Fb)y =D krFrbr)+ D, D rrr(xp) | bri(xp) — D br(xg) |,

ReR R'CR Xpr XR\ Xpr

where b (xgr) and kg are respectively the marginal probability and counting number associ-
ated with region R. The A g’ are again Lagrange multipliers enforcing the constraints among
regions beliefs. The only constraint for the counting numbers is that for any variable i or
node a

ZKR = ZKR =1.

R>i R>a

This ensures the exactness of the mean energy contribution E () to the free energy in general
as well as the entropy term for uniform distributions in particular. By comparison, there is
no freedom in the CVM on the choice of the counting numbers once the set of cluster is
given. Additional desirable constraints on the counting numbers are (i) the maxent-normal
constraint and (ii) a global unit sum rule for counting numbers,

> kr=1 (2.5)

ReR

Condition (i) means that the approximate region based entropy reaches its maximum for the
uniform distribution. Condition (ii) insures exactness of the entropy estimate for perfectly
correlated distributions. As for belief propagation, a set of compatibility constraints among
beliefs are introduced with help of Lagrange multipliers and generalized belief propagation
again amounts to solving the dual problem after a suitable linear transformation of Lagrange
multipliers hereby defining the messages. Once a fixed point is found a reparameterization
property of the joint measure holds:

P(x) o [] br(xr)®.

ReR

When the region graph has no cycle, this factorization involves the true marginals probabilities
of each region and is exact.

There is some degree of freedom both in the initial choice of Lagrange multipliers and
messages leading to different algorithms without changing the free energy and associated
variational solutions. A canonical choice is to connect regions only to their direct ancestor or
direct child regions leading to the parent-to-child algorithm. With this choice the constraints
are however redundant, some linear dependencies are present and this can potentially affect
the convergence of the algorithm by adding unnecessary loops in the factor graph. This
problem has been addressed in [33] where for a given region set a construction for a minimal
factor graph is proposed.
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538 C. Furtlehner, A. Decelle

2.3 Main Contributions

GBP is a framework corresponding to a wide class of algorithms, which upon a good choice
of regions can lead to much accurate results than basic BP. Its systematic use is however
made delicate by the following unsolved issues as far as large scale inference is concerned
for the marginalization problem:

e There is no automatic and efficient procedure of choosing the regions able to scale with
large scale problems for non-regular factor graphs, despite proposals like the region
pursuit algorithm [51] whose potential use seems however limited to small size systems.

e Without special care the computational cost grows exponentially with respect to region
size.

e There are difficult convergence problems associated with GBP which have led some to
consider double loop algorithms [12,57] at the price of additional computational burden.

Concerning inverse problems, we are not aware of any method in the family of region based
approximation of the log likelihood, going beyond the Bethe approximation at the exception
of the exact method proposed in [3], which is however limited to small systems size from the
practical point of view.

The idea of constructing the region graph from a cycle basis is not new, it is already present
as a special case of CVM in [18] and was first formally proposed in [53] and refined in [9],
regarding the choice for the cycle basis, without however explicitly addressing large scale
issues listed above. Our contributions in this context is to settle a certain number of technical
problems regarding this construction in order to address the above restrictions such that large
scale problems can be treated by means of two algorithms GCBP and KIC respectively for
direct and inverse pairwise MRF inference. More specifically,

e We address convergence problems by proposing a specific construction of the factor
graph in Sect. 3.4 based on some decomposition of single variable counting numbers
unraveled in Sect. 3.2;

e Our construction leads to a linear cost with respect to region size i.e. large cycles, instead
of exponential in general as detailed in Sect. 5;

e Our region graph construction as discussed in Sect. 4 relies on a minimal cycle basis
optimization, which to some extent and thanks to some approximate algorithm can scale-
up to relatively large size as seen experimentally in Sect. 7;

e We propose in Sect. 6 a general inverse pairwise MRF method based on the Kikuchi
approximation which scales linearly with system size, once a cycle basis is given or
properly guessed, again without any limitation in the cycles’ sizes.

3 Generalized Cycle Based BP (GCBP)

The first motivation for attaching regions to the elements of a cycle basis originates in the
observation that the Bethe approximation violates the “global unit sumrule” (2.5) for counting
numbers, except on singly connected graphs, precisely by an amount corresponding to the
cyclomatic number of the graph. Completing the regions set with elements of a cycle basis
restores the unit sum rule property [53].

A different motivation comes from statistical physics considerations associated with the
duality transformation [41] which can be performed with certain restrictions on the models
like e.g. the Ising model without external fields. In such cases, one is naturally led to consider
a dual belief propagation on the dual graph whose nodes correspond to the element of a
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- o
o . ¢ /

Cs

C=24—16+1=9
C=12-8+1=5

C=26-20+1=7

Fig. 2 Example of cycle bases on 2-D and 3-D lattices and a fundamental cycle basis on an arbitrary graph

cycle basis [7]. The extension of such considerations to arbitrary pairwise models led us to
consider GBP based on such cycle basis.

3.1 Cycle Based Kikuchi Approximation

To set up notations, we consider a pairwise MRF of n random variables valued in some
arbitrary subset x = {xq,...,x,} € I1 x ...Z, C R”, specified by some undirected graph
g =W, ¢&), with vertex set V = {1, ...,n} and edge set £ C V x V. To simplify we also
assume G to be connected. The reference distribution, considered to be pairwise, is of the
form

P(x) = [Tvd o [T dun). (3.

te€ veV

By definition a cycle of G is an unoriented subgraph where each node has an even degree.
The set of cycles is a vector space over Z; of dimension |£| — [V| + 1 for a graph with
one single component which is assumed from now on. This means that when two cycles are
combined, edges are counted modulo 2. Examples of cycle bases are shown on Fig. 2. For
heterogeneous graphs, a simple way to generate a basis consists first in selecting a spanning
tree of the graph and associating a cycle with each of the |£| — [V| 4 1 remaining links of the
graph, by adding to each one the path on the spanning tree joining the two ends of the link.
This yields by definition a fundamental cycle basis, associated with the considered spanning
tree.

Let us assume that a cycle basis of G is given with cycles indexed by ¢ € C = {1, ... |C|}.
IC] = |€] — V] + 1 also called the cyclomatic number represents the number of independent
loops of G. In the Kikuchi CVM approximation that we consider, the maximal clusters are
associated with each element of the cycle basis and possibly links which are not contained
in any basic cycle. We assume also that one cycle has at most one edge in common with any
other cycle. If this is not the case then one edge and one cycle can be added to G in order
to restore this property, for each set of cycles having a common group of edges in common
(see Fig. 3). Disconnected intersections can be eliminated by a proper choice of cycle basis.
As explained in Sect. 2 all mean-field type approximations underlying BP or GBP, consist in
assuming a factorized form of the joint measure in term of some of its marginal distributions.
Within the CVM and given our choice for the maximal cluster this leads to assuming the
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540 C. Furtlehner, A. Decelle

g G
Fig. 3 Dual graph construction. Dashed link correspond to one virtual added link

following factorization of the joint measure:

Papp(x) = [ [ peCxo) [ ] peCxoy™ [] pote), (3.2)

ceC te& veyV

where p., p¢ and p, are marginal probabilities respectively associated with cycles, links and
single variables. As we shall see, and this is an important observation for what follows, the
probability p. associated with a cycle can be itself expressed as a pairwise MRF, with each
factor corresponding to one edge of the cycle:

pexe) = [ | eexo). (3.3)

lec
In (3.2) counting numbers respectively of cycles, edges and vertices are set to k., = 1,
ke=1—djandky = 1= .5 ke — D5, K¢ d is the number of cycles in C containing

edge ¢. This choice is in accordance to general CVM prescriptions, as being dictated by the
constraint that each degree of freedom is counted exactly once in the Kikuchi free energy.
As already said, thanks to these rules the global unit sum rule for counting numbers is
automatically satisfied:

Dke+ D kit D ky=ICl— €|+ VI =1.

ceC te& veV

A dual bipartite graph G* = (V*, VY, £*) can be defined, where V indexes the cycle basis,
and elements of V" represent connected intersection between cycles, i.e. either single nodes,
links or sub-trees corresponding to bridges connecting distant cycles. Elements of £* connect
intersecting elements of V and V;.

Under this assumption we have the following important property, illustrated on Fig. 4
which justifies the approximation (3.2, 3.3).

Proposition 3.1 If G* is acyclic, the factorization 3.2 is exact.

Proof See Appendix 1. O
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Fig. 4 Successive graphical models obtained by deconditioning variables (circled in red) from the leaves,
starting from a polygon tree. Factors corresponding to links or vertices in red are modified during the process
(Color figure online)

The variational problem that GBP aims at solving, is to find the closest distribution of the
form (3.2) to the reference distribution (3.1). For later convenience we define

Ve (xe) € (o) [T boln),

vel
and also introduce for any ¢ € C:
def
We(xe) S [JweCxo [ ] o). (3.4)
Lec vee

For a candidate measure p, the variational free energy functional reads

pe( xg)
Ye(xe)

Pe(xe)
1
SRES +z€§5 ke pe( xe)log

X

F(PappllP) = D pe(xc)log

ceC, x,

(xv)
+ E Ky py(xy)log ZU( v) + E Aee(xe) | pe(xe) — E Pe(xc)
vey, vy L,col, xy¢ xc\x[
Xy

+ D @) [P = D pe(xe)

v,€30,xy X\ Xy
+ D k) [ o) = D pelxe) (3.5)
V,C3V,Xy Xr\ Xy

after introducing three sets of Lagrange multipliers, Ac¢(x¢), Aoy (xy) and Aqy (xy) to enforce
respectively cycle-edge, edge-variable and cycle-variable marginals compatibility. The min-
imum of the free energy is then obtained as:

Pe(xe) o¢ We( xe) exp [Z hee(xe) + wam)}

Lec vee
1
Pe(xe) o el xe) exp [K[ (Z v (x0) — Zmuw)}

vel =14

1
Pu(xy) o gy (xy) exp [—K (Z hev(r0) + Zm(xv))}

cov {5v
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g g g
\.\. .
e . 4
v /.
3‘ E [ ) % [ ]
Fig. 5 Local dual graph construction. In this case the choice of cycle basis leads to k, = 2 with d}; = 3 and
Ch =

As direct consequence of these expressions we have

Corollaire 3.2 p. has the form 3.3.

3.2 Single Variable Counting Numbers and Dual Loops

The counting number «, contains some information about the local structure of the dual
graph In order to unravel it we define the local dual graph G5 C G* attached to v as

(V* 12 n.0» Ey), where V2 are dual vertices corresponding to cycles containing v; V).,
are dual ver‘uces correspondmg to all edges containing v with non-zero counting number
&} is the set of dual edges connecting £-nodes in V], to their corresponding c-nodes in V;;C
they belong to in the primal graph (Fig. 5).

Proposition 3.3 Let d;; be the number of components of G, and C}; its cyclomatic number.
We have
ky=1—d,+Cj. (3.6)

Proof By definition, we have

= &1 =V =V +d)
YIS YRR
3v (=Y 3v

=Ky +d;, — 1

where between the first and second line it is remarked that for any ¢ parent of v, any ¢ parent
of ¢ necessarily contains v. O

Qualitatively C}; represents the number of dual cycles “centered” on v. This decomposition
will prove useful for building our cycle based region graph.

Let us give a few examples: for nodes in the bulk of a planar graph we have C;; = 1, on a
cubic lattice C;; = 3 which generalizes to C;; = d(d —1)/2 on a d-dimensional square lattice.
On a N/2 4 N /2 bipartite graph we have C}; = 3N /2 — 1 while on a complete graph of size
N, using a cycle basis {(1ij), 1 <i < j < N} rooted on node 1, C} = (N —2)(N — 3)/2
and C; =0 Vv # 1.
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3.3 Parent-to-Child Algorithm and Minimal Graphical Representation

At this point, following the region-based algorithm [56] prescriptions, a message passing
algorithm can be set-up which rules are associated with the Hasse diagram of the regions
hierarchy. Regions are associated with all terms having non-vanishing counting number
in (3.2), and directed edges are associated with each Lagrange multiplier added in (3.5),
corresponding to direct parent to child relationship, hence discarding the A.,. The message
rules which are obtained are then based on the existence of a certain linear transformation of
the Lagrange multipliers, which allows one to parameterize the beliefs as follows

DPo(xy) = @p(xy) Hm{—w(xv)v

{3v

peCxe) = Ye(xe) [ [ meseCxo) [ [ o o),
=Y vel

Pe(xe) = We(x) [ [ nemeCxo) [ [ o e ), (3.7)
lec vec

with
def
nese(xe) S [ me—e(xo)

c’30\c

def
Ny—se(Xy) = | | My sy (Xy),
V30\L

def
Ny—sc(Xy) = H me sy (Xy)-

>0, ¢c

From this we get the following message passing rules:

mc%@(xl)l_‘[miw\gﬁv(xv) < z Be(xc) H np—c(Xpr) X H Ny—sc(Xy),

vel xe\ xg 1//'@()([) lec\t vec\l
(3.8)
Yo x¢)
M) <— D ( [Tme—exo T] nvoex), 39
xe\ Xy vidv) vel\v

where in the first rule the shorthand notation £,.\¢ is used to denote the link in ¢ containing
v different from £.

As noticed in [33], dependences between Lagrange multipliers are present in the parent-
to-child algorithm. This results in a more complex factor graph with more feed-back loops
than necessary which in turn may cause convergence failures of GBP. As a matter of fact we
observe experimentally, both on grids and on heterogeneous graphs tested in Sect. 7 that the
parent-to-child algorithm fails to converge for systems sizes exceeding a few hundreds of
nodes whatever damping coefficient is inserted into the message passing equations. In [33] a
minimal graphical representation construction is proposed to settle such problems, in order
to eliminate all redundant Lagrange multipliers. In our setting this leads in particular to
having any (non-bridge) variable node to be attached to at most one link node and to have
therefore at most one ancestor cycle node in the factor graph. As a consequence we have
always ny—c(xy) = mge,,,—»v(xy) = 1. As shown in Appendix 2 this leads to an essen-
tially unstable algorithm for graphs containing at least one single dual loop. So in short we
have
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e Poor global convergence properties of the parent to child algorithm;
e Local convergence problems for the minimal region graph based algorithm caused by
dual loops.

This problem of redundant Lagrange multipliers has actually also been discussed in the
context of the 2-D Edward Anderson (EA) model in [6]. In this context the authors propose
a solution based on a specific gauge choice for the message definition in order to regularize
GBP. Our approach to this problem is different. As we shall see in the next Section it is solely
based on topological properties of the graph of interactions. This yields a generic method
independent of the graph or the type of interactions.

3.4 Mixed Factor Graph and Associated Message Passing Rules

We introduce here a specification of the region graph which on the one hand eliminates
all unnecessary feed-back loops present in the parent-to-child algorithm, but on the other
hand prevents instabilities associated with dual loops. In this formulation first a minimal set
of Lagrange multipliers are taken into account as proposed in [33]; but additional “clone
variables” need to be introduced for variables at the center of dual loops, i.e. for which
C; # 0, as defined in Sect. 3.2, to prevent some instability which we have identified (see
Appendix 2). Before explaining it in detail let us give the specification of the region graph
which we refer to as the mixed factor graph (MFG) for reasons which will soon be clear:

e (i) Each term in (3.2) having a non-zero counting number is associated with a node in
the MFG. There are three families of nodes, c-nodes, £-nodes and v-nodes, respectively
associated with cycles, links and vertices of the original graph. c-nodes are always factors
while v-nodes are always variables. Instead, £-nodes associated with links are composite
nodes, i.e. can be of both types.

e (ii) Edges of the MFG represent Lagrange multipliers and relate variables to factors. A
v-node can be linked to £-nodes, considered then as factors nodes. £-nodes considered
as variable nodes can be linked to c-nodes.

e (iii) all links of a given cycle ¢ with non-vanishing counting numbers are linked as
variables to this c-node.

e (iv) to a variable v we associate in general two types of v-nodes depending on d;; and C;;
defined in Sect. 3.2:

— (a)if d; > 1 one v-node is associated with v, which connects exactly to one single
arbitrary £-node of each components of G, its degree being therefore d;; and a
counting number of 1 — d is attributed to it. If necessary an £-node with zero
counting number can be inserted into the MFG in order to ensure that this v-node is
properly connected to all components it needs to be.

- (b)ifC;; > 0,to each £ containing v we associate one v*-node that is singly connected
to £ as long as this £-node is in a component of G} containing at least one dual loops.
Each clone is attributed a counting number «,» = C;;/q if g is the number of clones.

This set of rules is illustrated on Fig. 6. Rule (iii) ensures that all marginal probabilities
of cycles are compatibles at link intersections. Rule (iv)(a) is applied to cut-vertices, i.e.
vertices which separate G in multiple components when removed as shown on the example
of Fig. 6. Rule (iv)(b) is there to take into account dual loop corrections. The prescription
(iv)(b) is there to ensure a better convergence of GCBP by making use of replicas of v-
nodes, while preserving the minimal use of Lagrange multipliers. The number of constraints
is still minimal in the sense that the number of independent loops of the MFG is equal to the
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1/4 c—node: ]

& S )
{—node: ()
v—node: O

Fig. 6 Pairwise MRF (left). Variables and links with non-zero counting number are in bold. Corresponding
mixed factor graph (right) with counting numbers

number of independent loops of the dual graph G*. From the Lagrangian formulation «+ is
constrained by

Z kyr =C,,

V¥R

where ~ indicates the correspondence between v*-node and variable v. The choice made in
rule (iv)b for ks satisfies this constraint, albeit other ones are possible.

The reason for introducing clone variables becomes clearer when trying to write down
message passing equations. In fact a direct generalization of the change of variables (2.3,
2.4) used to define ordinary BP from the Lagrange multipliers can be obtained as follows:

def
Agp(xy) = log H My sy (Xy) = logny—¢(xy),

30\L
def
Appr (Xy) = —kyx log gy« (xy) = lognys— ¢ (xy),
Ace(xe) =logng—c(xe) + ZIOgnv—%(xv),

vel
where 3, is taken over all types of v-nodes and with
def
nese(x) = [ meseCxe)
c¢/30\c

Note that A, have disappeared by definition of the MFG. We get the following expression
for the beliefs

1
Pu(x) = ¢u(xy) exp [— T me)} = ¢u () [ [ e (x).

EEY) 3v

1
Por (xy) = Py(xy) €Xp [_:Alvav" (xv):| = ¢v(xv)mlv«~>v*(xv),
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Mixed Factor Graph

Parent to Child Minimal Region graph

(6 (N (N

©

Fig. 7 One dual loop on top (C; = 1) with corresponding factor-graphs

pe(xe) = Ye(xe) exp [ (me) - Zmun)}

vel (=14

= Ye(x0) [ [ memeCxo) [ [ o eGr0),

(=14 vel

Pe(xe) = W xc) exp [Z mm)] =we(xo) [] {nm(xe)ﬂnv%(xv)} . (3.10)

lec lec vel

where €,» denotes the £-node connected to v*. From this we get the following message
passing rules:

We(xe)
mee(x0) <— > I1 [”z’»c(xz/)nnuae/(xv)}, (3.11)
o VO e vel/
My (@) <— > ‘Z‘(”) Hmﬁe(m [T rv—e@w. (3.12)
xp\ Xy U U v'el\v
1/ (14K %)
My (o) <— | D WE”) [Trme—exor T no—eten NN
xp\Xy ¢v v ol v'el\v*

The difference between factor graph of the standard parent-to-child algorithm, the minimal
one proposed in [33] and the one associated with MFG is illustrated on Fig. 7. With this
formulation GCBP can be seen mainly as an ordinary belief propagation defined on the
MFG, where (3.11, 3.12) are direct generalization on a MFG of ordinary BP update rules (2.1,
2.2), with an additional peculiarity given by dual loop corrections carried by clone variables
in (3.13).
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3.5 MAP Estimation

The general inference schema proposed in the previous sections can be straightforwardly
adapted to the optimization context, the same way as the min-sum algorithm also called
belief revision [35] is derived from BP, by simply replacing “>_” by “min” (see e.g. [40]).
First, adding some specific notations, the messages are parameterized in terms of log prob-
ability ratio:

Me_g(xg) X exp (—pese(xe)) and my_y(xXy) < eXp (—osy(Xy)) .

@9

The counterparts to “n” messages are in turn defined as:

def
Ve Xg) = Z e —e(Xe),

c’a0\c

def
Vy—¢ () = z v (X)),
5v\0
def
V¢ (Xpx) = — Ky p—pr (Xpr),
where again clone variables are distinguished from ordinary ones using * notation. Corre-
spondingly, let
def def
Ec(xe) = —log(We(xe)),  Ee(xp) = —log(¥e(xp))

and

Ey(ry) & —log (¢ (x,)) .

To the generalized belief propagation rules (3.11, 3.12, 3.13) correspond the following min-
sum update rules:

He—se(xe) < min (Ec(xc)—Ee(xz)+ > |:V£’—>c(xe’)+zvv—>z’(xv):|>,

Tedxe vec\e vet!

(3.14)

sy (xy) <— m\in (Eﬁ(xi) — Ey(xy) + ZMC—)K(XZ) + Z Vv’—)@(xv’)> . (3.15)
X0\ Xy

oL v'el\v

Hg—sp (Xy) <—

min (Eg(xe)—Ev<xu>+ZuHe(xe)+ > vmﬂxv/)).

iy xe\x c3! v'el\v*
(3.16)

As aresult the beliefs associated with the various family of nodes, expressing log marginal
probabilities, are given by

Ey(xy) = Ey(xy) + ZI/LK—w(xv)a

v

Eo(x0) = E¢(x0) + D et (x0) + D vose(xy),
(=14 vel

Ec(xe) = Ec(xe) + Z |:V€—>c( x¢) + Z Vy—t (xv):| . (3.17)
lec vel
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When the messages correspond to a fixed point, the usual compatibility between beliefs is
expressed as

min E.(x.) = &(xp), YL ec,
Xe\ X¢

min & (x¢) = Ey(xy), Yv el

X\ Xy
In addition, if the joint probability measure is given in a Gibbs form,
P(x)=e £,

these beliefs provide us with the following decomposition, up to a constant, of the energy
function :

E(x) = D" Ec(x) + D i€e(x0) + D i€y,
c Y4 v

and the approximate minimizer of E( x), given by

xM = argmin,. & (x;), Vi €V,

verifies

E(x"") = Z min[ &, xe)] + ;xz min[ & (xe)] + ;KU min[ &, (x,)],

by virtue of the belief’s compatibility. Next, as will be also the case for inference, we exploit
the ring geometry in order to compute efficiently the c-node to £-node messages 3.14. This
can be done in O (ng?) time complexity per message. Indeed, the c-node to £-node message
update simply reads:

et (x0) = min [£(¥0)] = E(x0) = Veme(X0) = D e ().
et vel

Running a min-sum algorithm associated with the energy function &.( x.) given x; on the
loop ¢ for each £ € ¢ yields immediately pq— 0.

4 Cycle Basis Determination
4.1 Various Criteria

At this point, nothing has been said concerning the choice of the cycle basis. In [9] it is
argued that a good choice of basis ensures the algorithm of being tree-robust (TR), namely
that GBP converges to an exact fixed point when the underlying graph G is singly connected.
They provide a characterization for cycle bases ensuring this property. First it has to be a
weak fundamental cycle basis (WFCB), ensuring in particular the maxent property to be
satisfied. By definition a cycle basis is fundamental if each cycle contains an edge that is
not included in any other basis cycle. For a WFCB, this constraint is relaxed, it is a cycle
basis for which there is an ordering such that each cycle contains a link which is absent of all
preceding cycles in this ordering. In addition the WFCB is TR, if it is such that any subset
of the cycle basis contains a set of links, each one pertaining to a unique cycle in this subset,
and altogether forming at least one loop. The reason behind this can be understood quite
simply in the special context of CVM approximation (3.2), where a simple reduction rule as
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the ones given in [51] is at work. Suppose the MREF is such that the set of non trivial links
v) (i xj) # fxi)g(x;) in (3.1) forms a tree 7.

Proposition 4.1 (i) if a trivial link € pertains to a single cycle, the factorized joint mea-
sure (3.2) coincides with the same CVM approximation defined on a reduced graph,
where link € has been removed and c is discarded.

(ii) if the cycle basis is a WFCB based on a series of trivial links, the factorized joint mea-
sure (3.2) is reduced to the Bethe joint measure associated with the underlying tree T.

Proof (ii) is the direct consequence of (i) by induction. See Appendix 3. O

As already stated in Proposition 3.1, GCBP is exact when the dual graph G* and henceforth
the MFG are acyclic. It could be tempting to push the logic to the end and try to impose a
“dual-tree robust” condition for the cycle basis, i.e. that GCBP be exact if there exists a cycle
basis of G such that G* be singly connected. Clearly this is a dead end, as can already be seen
by considering the simple example of a planar graph: the natural cycle basis given by the
faces of the graph cannot fulfill such property, when all links at the border of the graph are
non-trivial. Nevertheless, let us simply notice that in the case where the underlying graph of
non trivial links noted 7, has an acyclic dual graph 7., we have the following

Proposition 4.2 GCBP will converge to the exact fixed point if

(i) The cycle basis has a subset which is a cycle basis of T,
(ii) The complementary set of cycles defines a graph for which it is a WFCB based on trivial
links.

Proof The argument is the same as before, applying the reduction property (i) of the preceding
Proposition to the complementary set of cycles, until reaching the core sub-graph 73, for
which GCBP is exact. o

TR cycle bases are easily identified in special cases like planar or complete graphs [9], but
searching for such a basis in general is difficult, its existence being not always guaranteed.
Instead there is yet another feature that could be even more desirable, namely that the cycle
basis be such that the number of independent dual cycles, i.e. the cyclomatic number of G*,
be minimal. Recall that GCBP is similar to an ordinary BP on the MFG. Consequently, as
for an ordinary BP, we expect these (dual) loops to be a source of problems. As observed
in [7], the dual cyclomatic number depends on the sum of cycle sizes noted |c|:

C(9)
CG" =D lel = C©Q) — |E] + PG,
c=1

with P(G*) the number of connected components of G*. As aresult, a good choice for the cycle
basis could be the minimal cycle basis (MCB) and there exists polynomial time algorithms
for finding it [14]. Furthermore if one wants to remain close to the TR prescription, one could
even search for a minimal WFCB, which is an APX-hard problem but for which efficient
heuristic do exist [39].

4.2 Heuristic Algorithm
Exact algorithms for solving the MCB problem have a polynomial time complexity, scaling

typically like O (N L?) up to logarithmic corrections [17]. Making use of these would spoil
the efficiency of GCBP, whose main virtue is to scale linearly with systems size. We have
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therefore to resort to some approximate procedure. It is guided by the empirical assumption
that most important loops to be taken care of are the smallest ones. The main steps of the
method are the following:

e (i) Build a subset of candidate cycles which contains the most important ones. This step
can be made linear with system size for sparse graphs with bounded degree dp.; typically
O(Nd},,) for finding cycles with sizes < n.

e (ii) Complete this set in order to have a complete set containing the MCB. This step can
be done exactly in O (N L) time complexity [17].

e (iii) Extract an independent set of shortest sizes. Exact methods typically use Gaussian
elimination which is the main source of time consumption.

This strategy is basically the one which is followed by the most efficient exact algorithms. In
order not to be a limiting speed factor for GCBP steps (ii) and (iii) have to be approximated.
Note that step (ii) is not mandatory. Since the goal is to take into account most important
loop corrections, an independent set of short cycles, not necessarily complete can be used.
Concerning step (iii) we replace the Gaussian elimination procedure by an approximate one
which has the additional virtue of respecting as much as possible the WFCB criteria explained
in the previous section. Our algorithm goes as follows:

e (S0) Initialization: weight all the links with the number n of cycles in the candidate set
they belong to and extract with respect to these weights a maximum spanning tree from
G called Gyp. Create a double ordered list {co(n, s)} of candidate cycles indexed by their
number n of links not already present in Gy and their sizes s. Create an empty list of cycle
elements By.

e (S1) cycle selection: At step ¢ select in ¢; the cycle ¢ with smallest n and then with
smallest size s and update B; | <— B; + {c}.

e (S2) update (c7, Gr) —> (¢r41, Gry1):

— if n = 1: insert the corresponding link into G to obtain G;4 and update ¢; in ¢;41.
All cycles with n = 0 have a linear decomposition in By and are eliminated.

— if n > 1: insert one of the n free links of ¢ into G, to obtain G4 . Update ¢, in
cr+1 as if all the n links where selected. For each of the n — 1 non-selected links of
c create a new cycle by joining this link to the path on G; connecting its two ends
point, using the Dijkstra algorithm'. Insert these new cycles into ¢, 1.

if ¢;41 # ¥ go back to (S1) else exit().

Note that if by chance the new added cycle at each step corresponds to n = 1 we would get
a WFCB. The procedure followed in the case n > 1 is there to ensure that we get a complete
set at the end. As already said this is not mandatory in practice, so if this constraint is relaxed,
then the n links can be directly inserted into G,.

4.3 Cycle Basis Cleaning

Once a cycle basis has been obtained some adjustments have to be performed to cope with
GCBP. First the basis can be optimized further by a local random greedy shuffling procedure,
which consists in looking for combination of pairs of cycles sharing some links, from which
smaller cycles can be generated (see Fig. 8).

Secondly, as already stated in the MFG prescriptions any pair of cycles must have at most
one single link in common. Note in passing that this requirement seems actually difficult if

! This ensures the independence of these new cycles among each others and with B, .
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S=5+4+6

Fig. 8 Example of cycle combinations leading to smaller cycle basis

not impossible in general to conciliate with the search for TR cycle basis advocated in [9].
In contrast, the smaller the aggregated cycle’s size is, the less cleaning is to be expected. By
cleaning we mean the operation shown on Fig. 3. This consists in to add one link relating
the two ends of a path common to two or more cycles and formed by at least two links.
In this operation a new cycle composed of this path and of the new added link is created
which, when combined with the other cycles containing that path leaves all these cycles
intersecting on this single link. This cleaning operation is done greedily by treating in order
the intersection paths with largest sizes until intersections only composed of one single link
remain.

Finally in some cases, cycles remain which have non-connected intersections with other
cycles. This kind of situation occur sometimes but rarely, so in practice the adopted cleaning
procedure consists simply to discard the largest cycle involved in such pathological intersec-
tions.

As we observed in practice, these cleaning operations take a small if not negligible part
in the overall computation time needed to determine the cycle basis. The complete workflow
is shown on the example of Fig. 9 leading to the MFG starting from a bipartite graph.

5 Loop Corrections: c-Node to £-Node Messages

5.1 General Case

We exploit now the specific structure of the cycle-based region definition to propose an
efficient method illustrated on Fig. 10 for computing the messages (3.11), with a cost at most
linear in the size of the cycles per message. c-node to £-node messages are computed using,

pi(xe)
Ve(xne—e(x0) [1pep no—sexp)’

mc—)ﬁ(xﬁ) = (51)

where

P E D pe( o).

xe\ xe

is the pairwise marginal associated with any link £ € ¢, obtained from distribution (3.10).
We wish to bypass the summation over x.\ x¢, which has an exponential cost in the size of
the loop. Variables x € {1, ...q} are assumed to have g possible states and p. is a product
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E—
MFG
Cleaning

Fig. 9 Example of 7 + 7 regular bipartite graph of mean connectivity 3.4, and corresponding mixed factor
graph, with c-nodes, ¢-nodes and v*-nodes colored respectively in red, blue and green. v-nodes associated
with bridges are absent on this example. 4 auxiliary links (in red on the middle panel) have been inserted in
order to ensure single link intersection between cycles as explained in Sect. 4.3 (Color figure online)

Fig. 10 Message exchange at the
cycle level

of pairwise factors along the cycle

De(Xe) = sz(xl)

lec

On the ring geometry, the partition function as well as any correlation function can be
expressed as the trace of a product of transition matrices:

n
Zring = Tr(H M@),
(=1
where M® is a g% matrix with elements given by
M) =y, y).

Upon introducing the following matrices

n n i—1 n i—1
U [Tm®. v® def [Tm9 M9, v® def [T 9 ] m",
i=1 j=i j=1 j=i+1 j=1
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the expression for the exact marginals are given by

pic(x) = Tr (axxU(i)) ,
ring
¢ 1 )
piCry) = ——Tr (5, V7).
Zring

In this form the cost for computing each c-node to ¢-node message is O (ng>). As shown
in [50], running BP on a single cycle always converges and there is a linear relation between
single variable beliefs and the exact marginals given by the largest eigenvalue of some product
of matrices taken from the factors along the loop. In fact, somewhat simpler relations can be
established, valid also for pairwise marginals, by applying to a single loop the general loop
corrections [2,46] expansion to BP. First factorize p.( x.) with help of BP,

1 4 S, xig)
(x)=—\|"—%— (5.2)
PRl = E b (x;)

by means of a set of single and pairwise beliefs bf(xl-) and bf(x,-, Xi+1), wherei =1,...n
indexes the variables along the cycle. We define the following ¢ matrices in operator form:

(i) def bic(xv y) = bf(x)bfﬂ(y)
BX)’ = c
b ()

3

and associated product of matrices

n

n i—1
v, v?<T]8 ] (5.3)
i=1 =1

j=i
. n i—1
vo < TT 8/ ] 8.
j=i+l =1
Proposition 5.1 The relations between beliefs and exact marginals are then given by

be(x) + U

pi(x) = with Zpgp =1+ Tr(U)
Zpp
. beCx, y) + Vb (x) + B VD
pi (X, )’) =
Zpp
Proof See Appendix 4 for details. O

The c-nodes messages 3.11 can then be computed from these exact marginals. From these
expressions, we see that the cost for computing each message is still O (n¢>). The only benefit
of using the BP factorization at this point resides in the fact that B and therefore U ) and
V@ have an obvious zero eigenmode:

> BYb () =0.
y

Trying to find the other modes is not advantageous in general except if some symmetries are
present or when ¢ is small. In particular for the binary case (¢ = 2) we end up with a scalar
problem for expressing loop corrections, as is detailed in the next section.
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5.2 Binary Case

For binary variables this relationship can be made even more explicit as we show now. Using
of the standard Ising spin notation, each node i € 0,...n — 1 is associated with a binary

variable s; € {—1, 1} and the joint measure of s e {s1,...,s,} is exponential and given by

Pe(s) = exp(ths, +ZJ s,sl_,_]) (5.4)

i=1

where h{ € R is the local field exerted on variable i and JS € R denotes the coupling
between s; and s;1. Running BP on this measure leads to the following factorization of the
joint measure:

& bSGsivsiv) 1
P = — bC ; 5.5
= Zae b%mqﬂuwoll G 62

where the b (-) and b; (-, -) are the single and pairwise approximate marginals delivered by
BP. These can be parameterized as follows

1 .
bi (si) = 5(1 +mis;), (5.6)
. 1 . . . .
bi (si, siv1) = 1(1 + s s+ (g 4 Xi)sis;), (5.7)

where m; def E(s;) represents the “magnetization” of spin s; and y; def E(sisi+1) —
E(s;)E(s;i+1) is the covariance, also named “susceptibility” coefficient, between s; and s; 1.
We use the sign“to denote a BP estimate, which is to be distinguished from the exact value.
The relation between BP values and exact ones can be made explicit in the following form.

Proposition 5.2 Let
0 & - uz)v(i —
i=1 \/(1 - ml)(l - m,’+1)

then the BP normalization constant, the exact magnetization and susceptibility coefficients
read:

(5.8)

Zgp=1+0, (5.9)
1—
m; = Q v,' (5.]0)
1+0
, 1 —m)(1 - 5%
o= iy (UZADUZILY) | i) sy
1+0 1+0 Xi 1+ 0
Proof The proof is based on the following identity
bi(si, Sit1) o (si = mi)(siv1 — mit1)
o = R
bi(si)bi1(si+1) (1 —m}) (1 —mi, )
and follows the same lines as the proof of Proposition 5.1. O

Section 6 will be based on these identities. The corresponding loop corrected marginals
pi and p;;i41 are expressed from the loop corrected quantities (m;, m;41, x;) through the
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same relations (5.6) and (5.7) and allow one to obtain all messages 3.11 sent by the c-node
at once from the BP beliefs, so the cost per-message in this special case is now O(1) instead
of O (n) if there are n messages to be sent.

In addition to this slight but non-crucial reduction in computational cost, one should note
the scalar characterization in terms of Q €] — 1, 1] of the cycle which shows up. First from
the matrix formulation 5.8, Q is the non-zero eigenvalue of U. It is the product of “BP
correlations” along the loop and characterizes its strength.

e ( =~ 0 corresponds to weak loop correction, BP is nearly exact.
e (O — 1 corresponds to a strongly correlated loop.
e O — —1 corresponds to a strongly correlated frustrated loop.

5.3 Loop Corrections to the Bethe Free Energy

The formalism used previously suggests reconsidering the cycle based Kikuchi approximate
free energy by rewriting it in an appealing form where loop corrections are made more
explicit. Indeed using the BP factorization of each independent cycle marginal (5.2) yields
the following decomposition of the entropy term for any pairwise MRF in terms of single
and pairwise marginals {p;, i € V} and {p¢, £ € £} and associated cycle beliefs {5, (i, c) €
VY x C}and {bS, (£, c) € £ x C}. Starting from the cluster expansion we have:

SKikuchi = Z Si + Z ASy + Z AS,.

iey te€ ceC
The first two terms represent the Bethe entropy,

SBethe = D, Si + ASe,
i

as a sum of individual variables entropy S; corrected by mutual information of variables

_ plx)
Py (XK] )sz(xzz) B

’

—ASe =) pe(xe) log
X¢

counted for each link £ € &. The corrections induced by each cycle ¢ has the following

expression:
AS.=S.— D Si— > AS

iec lec
= log(Zgp) — > DkL(pillbf) + D Drr(pellby). (5.12)
iec tec

= fBethe[pC”pc],

where Zp, is the normalizing factor of the BP factorization (5.2) associated with the cycle
marginal distribution p¢ compatible with the p;’s and p,’s. The cycle beliefs b and by are
implicitly and uniquely determined from the p;’s. Fpewme is the Bethe approximation to the
free energy functional:

Flplpol = Dxr(pllpo) + Fo,
Fy being the free energy associated with pg. This has the following immediate consequence.
Let us consider an auxiliary measure, build from the exact marginals:
def 1 [lpe. PeCxe)

P(xe) = =
‘ Zsp ice PiGxi)
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with normalization constant Zgp.

Lemma 5.3 .
log (Z§) = AS. < log (Zp) - (5.13)

Proof Recall that on the loop geometry BP has one single stable fixed point which cor-
responds to a global minimum of the approximate Bethe free energy functional [11].
Consequently, the minimum for fixed b is obtained for p; = b; and py = by in (5.12)

FBelhe[pC”pc] = IOg(ZlgP)’

which proves the left hand side inequality. Next consider the following quantity:

. Z§ . ¢
De(p°115) = log( BP)+ > Dre(pillb) = D Dre(pellb)

C
ZBP iec lec
= log (Zgp) — AS. 2 0,

since the Kullback-Liebler divergence is non-negative, we get the right hand side inequality
of (5.13). O

As a consequence of (5.13), if the stochastic operator U defined by (5.3) has a positive
trace then the loop correction has a counter effect to the Bethe correction ASy. In particular
for binary variables in the ferromagnetic case, log(Zgp) = log (1 4+ Q.) with Q. > 0,
leading therefore to negative loop corrections to the Bethe free energy. Since the Kikuchi
correction is exact in absence of dual loops, i.e. when C} =0, Vi € V, we may expect that
the correction is overestimated in presence of dual loops, i.e. that we should have a bounding
of the free energy

FKikuchi < F =< FBethes (5.14)

for ferromagnetic like systems, when Fpeine and Fkikuchi are given in terms of the exact single
and pairwise beliefs {p;,i € V} and {p,, £ € £}. Note that the inequality F < FBethe Only
proved in some special ferromagnetic cases [46], involves the approximate marginals given
by BP instead of the exact ones in our case. The conditions under which the bounding (5.14)
might be relevant is left aside to future investigations.

All this also suggests that in presence of dual loops some appropriate correction terms
proportional to local dual loop counting numbers C;; could be inserted into the free energy
functional in order to compensate for the kind of “overcounting” of loop corrections which
occurs in such cases. This possibility which would potentially lead to a new family of approx-
imate and hopefully more precise mean field schema is left as a side remark for the moment
and will be investigated in the near future.

6 Kikuchi Cycle-Based (KIC) Inverse Inference

From the explicit expression of the Kikuchi type approximation (3.2) it should be in principle
possible to find a set of fields and couplings corresponding to a given input of single and
pairwise empirical marginals. Assuming first we know the graph structure and have a cycle
basis, it remains to determine the marginal probabilities p., p¢ and p, associated with each
region. We expect the p¢’s and p,’s to be given from the data, but the p.’s have to be
constructed. This means that the global inverse problem is decomposed into |C| small inverse
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problems. In the Ising case, if we denote by ¢ and J; z the local field and coupling associated

as in (5.4) with the marginal representing cycle c, h Jg associated with py and finally h to
pi, then from (3.2) the corresponding Kikuchi cycle based (KIC) approximate inverse Ising
solution reads

WO = kihi + > B+ > (1= d)ht,

i €31

IO = —anio+ U

(=14

When the graph structure is unknown, one possibility is to select a set of candidate links, the
one carrying the largest amount of mutual empirical information among all possible edges.
Then on the graph defined by those links an algorithm is run in order to find the minimal
cycle basis, with respect to the weights given by minus the mutual information. More refined
strategies could then be used like the one based on iterative proportional scaling proposed
in [26] in the context of Gaussian MRF.

In the following we concentrate on how to invert equations (5.10, 5.11) in order to compute
h{ and J§ for any cycle ¢ € |C].

6.1 Fixed Point Method

Consider a single loop of size n. Assume we are given a set of empirical marginals p; (s;) and
pi(si, si+1),fori = 1, ...norequivalently a set of magnetizations /m; and susceptibilities ;.
First note that the change of variables {h;, J;, i = 1, ...n}to {m;, x;}is aone to one mapping:
on the one hand k; and J; can be explicitly written in terms of the {m;, x;} (see below); on
the other hand, on a loop there is a unique BP fixed point yielding factorization (5.5), so
through relations (5.6, 5.7) {m;, x;} are uniquely determined.

Finding a joint-measure of highest likelihood to model the empirical marginals is therefore
equivalent to find a set of parameters 7; and x; defining the joint-measure (5.5) which satisfy
xi = Xi and m; = m; in equations (5.10, 5.11). The problem is therefore to find the unique
value of Q for which all these relations are satisfied. Note also that these relations could be as
well obtained by writing down the gradient of the log likelihood, which in the (%, J) variables
is a convex function. Hence these equations must anyway have a unique valid solution. The
reason for not working in these (4, J) variables is that the LL is not given explicitly in these
variables but in the m and y variables (see below). By rewriting equations (5.10, 5.11) in
terms of the spin-spin correlation

oY , 6.1)

Ju—%a m?.)

letting Q simply read
n
o=]]e (6.2)

we arrive at the following fixed-point equation:

Proposition 6.1 The solution (f_;:l, ;Z) satisfying equations (5.10, 5.11) for a given set {m; =
m; def tanh(h;),i = 1,...n} and {xi = %i,i = 1,...n} of empirical magnetizations and

susceptibilities is determined by the n-dimensional vector o) obeying

= f(©),

(l

@u
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with
def

fz(®) = Ai(Q)O

@‘(Q

(6.3)

where

— 0)20; —
4:(0) & (1+0)(1 = 0)*6; —40(1 + Q) sinh(h; )Slnh(ht—H) (6.4)

\/(1 —2Q cosh(h;) + Q*)(1 — 2Q cosh(h;11) + QZ)

Proof Expressing all the magnetizations m; in Eq. (5.11), in terms of Q and tanh(ﬁi) with
help of (5.10), after performing the change of variables x; —> ©®; yields the desired result.
[m}

Let us specify the domain D C [—1, 1]* of validity for this iteration schema. For arbitrary
magnetizations and susceptibilities there are some basic constraints. The first one is that
m; € [—1, 1], foralli € {1, ..., n} which entails

def 1 —m;

=< = max .
0 < Omax = TS

The second set of constraints is that probabilities b(s;, s;+1) are in [0, 1]:
V(siysia1) € (=1 1}%, 0 < (1 +siis) (1 + fitig1sis1) + Xisisir < 4. (6.5)

We may rewrite these constraints in a more convenient form. We denote by hi the local fields
corresponding to m; = tanh(h;). In these notations the constraints now read:

0< hisithisisis + Ojsisit1 < 4cosh(h;) cosh(hiy1).

Considering all possible cases for (s;, s;) we end up with the following somewhat simpler
constraints: . Lo
—e7thithinl < §. < g=lhi=hil (6.6)

which combined with Q € [—1, Q4] entirely defines the domain DD and which prove useful
in practice to restrict efficiently the search for a fixed point in a valid domain.
Stability analysis In order to remain inside D the iteration schema is defined as follows:

g:D—D 6.7)

X —7= f(;}) iffgi)em (6.8)
UM, iff (X) ¢D.

where f coincide with (6.3) for any x such the image is in the domain D and is otherwise
replaced by a random function U : I — D. This function consists first of drawing Q
uniformly between ] — 1, Qpax], and then drawing (:)i for each i = 1...n, uniformly
between the bounds given in (6.6). Finally an overall scaling is applied to each O; if the
product exceeds Q,,x. Defined as it is g is an iterative map on a compact domain with no
other guaranty than there exists one unique fixed point solution. Let us examine the conditions
under which this solution corresponds to a stable fixed point. The Jacobian of this iterative
map, when it coincides with f reads

et Ofi O (o _sy L
ey (Ai(Q) (1 a,j)®i).
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1,2

Denoting ®,~ the two lowest absolute values of ®; and

B(Q) dﬁmiaxm;(Q)@n,

we get the following sufficient condition of local convergence:

Proposition 6.2 The fixed point is stable in general if

1) @

0] < m, (6.9)

and in particular if
S @
O 6"
10| < ——n, (6.10)
n

in absence of magnetization.
Proof See Appendix 5. O

When some of the magnetizations m; are non zero, the coefficient B(Q) can become arbi-
trarily large when Q approaches Q4 so clearly there exists a value of | Q| above which the
condition 6.9 will be violated. For small Q we have

B(0) = max |©; — 4sinh(h;) sinh(h;41) + cosh(h;) + cosh(h;41)|, 6.11)
1

which as well diverges when one of the magnetization m; approaches #=1, which means that
convergence problems are likely to occur in this domain. Instead, for small magnetizations
B(Q) can get smaller to 1,

lim  B(Q) =max©; < 1.
1

max; m;—0

The inequality (6.10) becomes relevant in this regime and the iterative schema can converge
for small Q, in particular if the largest correlation © is not greater than n~ /=2 which is
close to 1 forn > 1.

6.2 Line Search Optimization

The preceding conditions are not always met to guarantee the convergence of the fixed
point method. Therefore we develop an alternative method which directly maximizes the log
likelihood, this latter being an explicit function LL(®) of the ®;’s,

= —tog (14 0@)) + 3 (wi(®) + hi @yt + Ji @) + i 1))

(6.12)

LL(©®)

By convention we have

LL(®) = —0c0, VO ¢D.
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The corresponding Ising fields and couplings of the cycle are given by

1 bi(—1, =1)b;(—1, )b; (1, —=1)b; (1, 1)

w; = —lo
T b2~ B2 (1)
Lo 2D 1 bi(1, Dbj(si = 1,57 = —1
h; = —log i )+7 Z log i (1 Db (i S )
2 biy 4. =, biti=-Lsj=1Dbj(=1.-1
1 bi(—1,—Dbi(1,1
= L iog i1 =D D

4% b= 1, Db(1,— 1)

in addition to the weighting exponents w; which show up. All these parameters are given
through (5.6, 5.7) as function of the magnetizations m; and susceptibilities x; which in
turn are fully determined by the ©;’s through (6.1) and (5.10, 6.2) given m; = ;. Let
Dg C [—1, Qmax] denote the domain of possible values for Q. In order to find the optimal
point we show the following

Proposition 6.3 There exists two functions

h:Dg — R
O: Do — D
such that
argmaxg,.p LL(©) = ©(0*)
with

o = argmax gep,, h(Q).

Proof To prove this we explicitly construct these functions, which in turn will be used to run
a line search algorithm.

First note that taking the gradient of LL(C:)) with respect to the m2;’s and x;’s in order to
find the stationary points leads to Eqgs. (5.10) and (5.11). After doing the change of variables
and manipulations given in Proposition 6.1, the set of equations to be solved reads:

@?—A(Q)(:)i—l—Q:O, fori =1,...n,

where Q depends implicitly on the solutions. A first consequence is that, given Q, there is
the constraint that the quadratic equation have solutions, i.e. that

Ai(Q)?—40>0, Vi=1,...n,

which depends only on the empirical values 7; and x;. This further constraints the domain
Do C [—1, Omax] of possible values of Q. If this condition is fulfilled, foreachi =1, ...n,
there are two solutions,

. LA +aVAQ) -40
®I(Qaal)_ 2 )

where o; € {—1, 1} is introduced by convenience. Unfortunately, in general both solutions
can be valid, as long as they satisfy the constraints (6.6). At the fixed point, which is unique,
the m;’s and ©;’s are uniquely given by Q, therefore among the 2" possible choices, the
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correct one will satisfy (6.2) and corresponds to the lowest likelihood. The function /4 can
now be defined as follows:

h:Dg — R
0 — LL(8(0)

where C:)(Q) in turn is given as

0(0) = argmax, LL ((:)/(Q, 0)) (6.13)
with
000 =2 &,0.00.
[Tj= ©(Q.0))
This last normalization is there to ensure that @(Q) effectively corresponds to Q. ]

6.3 Combined Method and MRF Inference

The two methods can be combined by selecting the solution with highest LL (6.12), after
running each one with a fixed computational budget. The line search method has a combina-
torial step present in (6.13), which can be solved by simple enumeration for small loops, but
may become problematic for large ones, n >> 1. However, for larger cycles, already typically
forn > 5, Q is usually very small and the iterative schema of Sect. 6.1 is converging. Even
though some specific optimization might well be possibly developed to solve (6.13), we leave
this question aside, as being non-critical from what is seen experimentally on Fig. 11.

To infer an MREF, a set of candidate cycles is either given either pre-processed from the
data e.g. using mutual information scores. As already mentioned, in such case we look for a
minimal cycle basis, which in practice, can be approximately obtained at low computational
cost as in experiments of the next Section, by a simple stochastic heuristic of loop mixing.For
general pairwise MRF, with non-binary variables no specific method is proposed at the cycle

Success rate

Fig. 11 Success rates for the inverse inference on a single cycle with different sizes (color) for the fixed point
(FP), the line search (LS) and the combined methods (LS+FP) (Color figure online)

@ Springer



562 C. Furtlehner, A. Decelle

level, but at least a gradient descent could be used to solve each cycle independently. If
necessary, a posterior selection procedure, based on the generated solution, could be used to
refine the cycle basis, with various possible heuristics. Concerning the overall computational
cost needed to generate an approximate MRF solution, assuming a “low-cost” method for
fixing the cycle basis, it is linear in the number of candidate cycles i.e. in the number of
potential links. Therefore the method can in principle cope with large scale problems when
a sparse graph is to be expected.

7 Experiments

We have run various experiments to see how this approach to direct and inverse inference
works in practice.

7.1 Direct Inference

Figure 12 deals with direct inference, GCBP is run on 5 x 5 grids so that the RMSE on
the beliefs (single and pairwise) can be computed by exact enumeration. Couplings J;; and
local fields h; arei.i.d sampled uniformly respectively in the range [— 8, 8] and [—0.28, 0.28]
when local fields are present. § is varied on the range [0, 5], so that weak and strong couplings
are tested. 100 instances are generated for each point. With a damping factor up to 0.5 inserted
in the c-node to £-node messages needed at low temperature, GCBP always converge on these
small grids instances to a fixed point corresponding to a paramagnetic state. At larger scale
Fig. 14, thanks again to a damping factor up to 0.6, the algorithm is also always converging
on the considered range of temperature and sizes but two dynamical regimes are observed. At
high temperature, for 8 < 1.5 the computational time grows like N with a slight departure
from linear complexity as 8 increases, « = 1.05 for § = 0.5anda = 1.15at § = 1.5. In
that case all the fixed points correspond to paramagnetic states. Instead at 8 > 1.5 and no
external fields, the occurrence of non-paramagnetic states is observed at sufficiently large
scale, N > 10° for B >15and N > 104 for B = 2, as observed also in the +J 2-
D EA model® in [6]. This is an artifact of the Kikuchi approximation since the 2-D EA
model is thought to be exempt from a spin-glass phase [15]. Convergence is still observed
in this regime, but huge fluctuations in computational time occur, depending on whether
GCBP converges towards a paramagnetic or to a spin-glass fixed point. On the example
shown, outliers points with respect to the fitted scaling actually correspond to spin-glass
fixed points, while all other points are paramagnetic. This is clearly related to the fact that
a long range order has to be found by a GCBP fixed point when converging to a spin-glass
state which is not the case for a paramagnetic one. Indeed in the paramagnetic situation,
fixed point messages depend on others within distances on the grid of the order of the spatial
characteristic scale for the correlations which increases with 8. When compared to BP, the
computational time for GCBP is larger by a factor of 5-25, but in addition to being less
precise, BP is by far less robust and actually stops converging around 8 > 1. The same
experiments are performed first on small random sparse 20 + 20 regular bipartite graphs,
for which exact beliefs can as well be computed by complete enumeration. In these cases
the cycle basis is not given in advance and has to be determined. On Figs. 12b and 13a we
again vary the temperature for a fixed mean connectivity d = 4 and d = 5, while on Fig. 13b

2 Thresholds are comparable after dividing our B by +/3 to have random models with identical variance of
the couplings.
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Fig. 14 Convergence behaviour of GCBP and BP regarding computational time on 2-D EA models of large
sizes. Cases corresponding to 8 = 0.5, 1 have local random fields in [—0.18, 0.18] while other cases are

without external fields

1000

CPU Time (s)

100000

100 1000 10000
Size

Fig. 15 Computational times of GCBP and the MCB search algorithm on random bipartite graphs at 8 = 1
for different mean connectivity d

the inverse temperature is kept fixed at B = 1 and the mean connectivity is varied up to
d = 9. As seen on Fig. 13b. convergence problems are absent below 8 < 2 but occur at small
temperatures with increasing frequency above this threshold signaling the presence of a spin
glass phase. In addition, up to d = 9 we observe a significant gain factor in the error made
by GCBP compared to ordinary BP (Fig. 14).

On Fig. 15 are shown results of tests that were performed on random sparse bipartite
graphs of size up to N = 10° and mean connectivity up to d = 6. We obtain as well good
convergence properties, with no convergence failures, thanks again to a damping factor of 0.7
for d = 3-0.9 for d = 6. Concerning computational time we observe a scaling in N which
deviates from the linear one as expected as the graph becomes denser for a fixed temperature,
o ranging from 1.2 at d = 3-1.55 at d = 6. Heterogeneous graphs with larger mean
connectivity have a tendency to contains more highly connected nodes for which C; > 1.
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We suspect these nodes to be mainly responsible for a slowing down of convergence. On the
same figure we also show the computational time needed by our approximate pre-processing
cycle basis stochastic optimization. The scaling is quadratic when the heuristic detailed in
Sect. 4 is used in its complete version, but the very small multiplicative constant allows us
to go for relatively large size, before becoming a limiting factor for GCBP around N ~ 10*
ford = 3 and N ~ 10’ for d = 4. Since collecting most important small loops has a linear
complexity, the way to overcome this issue at large scale is then to limit ourselves to an
incomplete set of independent cycles.

7.2 Inverse Inference

For the inverse Ising problem, we first test the single loop algorithm explained in Sects. 6.1
and 6.2 and the results are shown on Fig. 11. For this we generate loops of increasing sizes
S € {3,...8}. Couplings and biases are sampled as before, with an inverse temperature
parameter § varied again in the range [0, 5]. The inference is considered successful for a
precision threshold, arbitrarily chosen to 10~ 8, on the max error of the couplings and biases.
A comparable computational budget of a maximum of 100 iterations for FP or estimations
for LS is given to both methods. Note however that generally when it converges FP does it
within 10 or 20 iterations. The fixed point method is always successful for all sizes when
B < 1.2, but this rate degrades when S is increased albeit less severely with larger loops.
On the contrary, the line search method is not sufficiently precise at small 8 but sees its
success rate increasing with 8 especially for small loops. Therefore the two methods are very
much complementary, and combining them leads to nearly maximal success rates, at least
for g < 3.

Our KIC method is then tested and compared with the linear response of the Bethe—Peierls
approximation [32] (BA+LR) at infinite sampling and with the pseudo-likelihood method
(PLM) [5,38] at finite sampling, again on small square grid and on small sparse random
bipartite models. Couplings and biases are sampled as before. Comparison with BA+LR
indicates a gain in precision between 1 and 2 orders of magnitude for 5 x 5 grids as seen on
Fig. 16 (left). For bipartite models, Fig. 16 (right) shows a decreasing gain with increasing
mean connectivity, BA + LR and KIC returning the same error around d = 3.4. On Fig. 17 one
representative grid and bipartite instances are shown. As expected the error increases with
but stays reasonably close to the order of a few percents in the strong coupling region g > 1,
in contrary to BA + LR which is useless in this region. At finite sampling, by comparing with
PLM, we see that the precision is either limited by the sampling itself (small 8 or small
sampling Ns < 10°) either by the Kikuchi approximation itself for 8 > 1 and Ns = 10° on
the grid instance and at Ns = 10* and 8 > 1 on the bipartite instance.

8 Conclusion

Our investigations on GBP has led us to propose a systematic way of dealing with cycle
regions and a new mean field approach to inverse problems. Our contribution is two-fold:
for the direct problem, we propose (i) an original specification of the region graph (MFG)
ensuring simple and robust convergence properties (ii) the loop message computation using
ordinary BP ensuring fast message exchange between regions. (i)+(ii) characterize GCBP
as a new region based algorithm generic to pairwise MRF, which we have made specific
in the binary case. For the inverse Ising problem, we propose a new mean-field approach
(KIC) general for pairwise MRF models, which is simple and efficient at least for binary
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models and sparse graphs without necessarily finite tree-width like 2-d grids. In particular
the modular aspect of the method, which consists in a decomposition of the problem into
small independent inverse problems corresponding to each independent cycle is valid in
general, not only for binary MRF. For incomplete data, since it takes as input single and
pairwise marginals, it could be a good alternative to PLM which requires instead complete
data.

Still, the scalability of GCBP and KIC relies on the scalability of the cycle basis search
algorithm for irregular graphs. In [9] it is argued that a good choice of basis ensures the
algorithm of being tree-robust (TR), namely that GBP converges to an exact fixed point when
the underlying graph G is singly connected after eliminating fake links. In our experiments
we did not follow this prescription, but instead proposed a simpler one, namely based on
the search for a minimal cycle basis, for which a specific heuristic has been developed with
reasonable scalability.

Concerning possible applications of this work, it is planned to use both the direct and
inverse approach in combination, in order to test some traffic prediction schema based on
the Ising model that has been developed in some preceding related work [27]. In addition,
the systematic treatment of the loops that we propose could presumably be extended in a
specific way to the Potts model which has been applied in many different contexts like image
processing [47] for instance. Yet another perspective of this framework is to be found in the
combinatorial optimization context which could help improve approximate heuristics.

Appendix 1: Proof of Proposition 3.1

If G* is acyclic, we can build a junction tree using each cycle as a clique, so the form 3.1 is
correct except maybe for the specific form chosen for p.. The leaf nodes of G* correspond
either to dandling trees or to cycle regions of the primal graph G. From the hypothesis on
G these components are connected to the rest of the primal graph G either via a single node
or via a link. So summing over all variables contained in each of these regions except the
contact node or link results in a subgraph of G whose dual is still acyclic, with a modified
factor corresponding to the contact link or vertex. By induction, G can be reduced until one
single arbitrary loop region remains, which still corresponds to a sub-graph of G. This results
therefore in a marginal probability p. having pairwise form with factor graph corresponding
to cycle c.

Appendix 2: Dual Loop-Based Instabilities

Let us consider an Ising model on the single dual loop graph of Fig. 7 with uniform external
field 4 and coupling J. We give the label O to the central node with counting number xo = 1
and labels {1, 2, 3} to the peripheral ones, these having «, = 0. Links with non-vanishing
counting numbers (x; = —1) are for £ € {01, 02, 03}, cycles are labelled {012, 023, 031}.
Using the corresponding minimal factor graph, we attach arbitrarily the only v-node, indexed
by 0, to £ = 01. The following exponential parameterization of the messages is adopted:

Moy (50) = oWertHhL, g6, +h7_ 50y +Jes 5ty St

Me—0(s0) = eWt—>0Fhe—050
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From the update rules (3.8, 3.9) we get in particular for (i, j) € {(1,2), (2, 3), (3, 1)}

mo;j—0i (50) <— Zexp (hgkj—>0j50 + (hj + h(J)kj—>0j) sj+ (Joj + J()kj_>0j) SQSj) ,
5
and more specifically

Ap+ A
0 ++ A+
Hij0y < Hotgo; + 3 Toe 5

with
def j
Agoy = hij%o] +oi(h; + hékj_)Oj) + 02(Joj + Jokj—0))-
From this we see that these iterative equations are at least marginally unstable, by the presence
of an eigenmode of the Jacobian of eigenvalue 1 corresponding to hgk 0, = cte, Vkj.One
additional dual loop centered on v-node 0 would actually render this mode unstable.

Appendix 3: Proof of Proposition 4.1

By definition of the Lagrange multipliers, when a fixed point is obtained, the corresponding
set of beliefs {b;, by, b.} allows one to factorize the joint measure as (3.1), where for all
cycles of the basis, b, ( x.) is itself in Bethe form

b

1 by (xi, Xig1)
be(xe) = o lj[l o)
where the b} and bj; | are obtained from b, by running BP on the cycle and are in general
different from the b; and by computed globally. The relation between the two corresponds
to the loop correction. Let us call trivial, an edge (ij) whose factor is trivial ;) (x;, x;) =
f(xi) f(x;). Similarly we say that a cycle has a trivial belief if it is related to variable and
pairwise beliefs as

b

bijt1(xi, xXit1)

bC(xC) :H bl(xl) £
i=1

i.e. the b; and b coincide. First we remark that a cycle ¢ containing one such trivial edge,
not contained in any other cycle, has necessarily a trivial belief, because from the factoriza-
tion (3.1) for any edge ¢ we have in that case

by (xe)
©) _ ' . el
O (xe) = f(x:)g(xf)b“”)g be(x)’

= f(x)g(x;)by(xe),

so the pairwise cycle belief has to be of the form b5 (xg) = bf (xt)bc (x;). As a result the
factorized joint measure actually coincides with the same CVM appr0x1mat10n form (3.2) on
areduced graph, where link £ has been removed and ¢ is now discarded. From hypothesis (ii)
the set of trivial links contained in one single cycle is non empty. As a results all these link
can be removed and all corresponding cycles discarded. On the reduced graph, again since all
cycles have a trivial belief, there is a non-empty subset of trivial links, that can be removed
and so on. The procedure stops after eliminating all trivial links until only the underlying
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dual tree remains. The definition of the counting numbers ensures that we then end up with
the Bethe form of the joint measure associated with this dual tree.

Appendix 4: Proof of Proposition 5.1

The proof is based on the following factorization of the joint measure on a cycle with help
of a belief propagation fixed point:

n

1 b(xl,x])
P =7 H b (k)b (i) Hb ()

with
bi(xi, xj) _1 bi(xi, xiy1) — bi(x;)bj+1(xi1+1)
Di (xi)bi+1(xi+1) bi (xi)biy1(xi+1)
def B,
t+l(-x1+l) ’

and then by expanding the factors when taking averages. Let us call bond ii 41 the contribution
@)

BX X,
corresponding to the factor ﬁ’i‘l) instead of 1. The point is that one extremity of a bond

cannot be left alone in this expansion, if the corresponding variable is summed over, because
of the following identities:

BW

Zb (‘x’ XIXI+1 Z )((i 11)21 =

z+l(xl+1)

For the partition function for instance, either all or none of the bound have to be selected,
yielding only the two contributions:

Zep =2, (H?’zl bi(xi) + 172, Bifiiﬂ) ,
= 14 Tr(U).

For the single variable marginal, say p; (x;), again either none or either all of the bonds have
to be selected, giving

i) = —— Z Hb (x)) + H BY: .,

x\x,
b (x; U(’)
_ l (xl) + XiXi
Zgp
For the pairwise marginals p; (x;, x;+1) two additional contributions emerge corresponding

to selecting only the bond ii 4 1 or to selecting all the bonds except this one, yielding the
announced expression.
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Appendix 5: Proof of Proposition 6.2

The problem is to bound in absolute value the largest eigenvalue of the Jacobian. Let A be an
eigenvalue and v be an eigenvector of J Let

vV = maxv;

and i the corresponding index, such that v; = v. We have
v
Al = A
A =12 i
j
< Z|Jl~,-|
< —A
<| (Q)|+Z|O o
10|
®(1)7(2)(13(Q)+”— b,

min ~min

with the definition of B(Q) and ®2;3) given in the text. Imposing |[A| < 1 leads to the

conditions given in the proposition. In particular when magnetizations are absent, i.e. when
h; = 0, Vi, we have

A'(Q) =0,
SO
B(Q) = max |©;0;| < 1.
1
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