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We present a novel framework exploiting the cascade of phase transitions occurring during a
simulated annealing of the Expectation-Maximisation algorithm to cluster datasets with multi-scale
structures. Using the weighted local covariance, we can extract, a posteriori and without any prior
knowledge, information on the number of clusters at different scales together with their size. We
also study the linear stability of the iterative scheme to derive the threshold at which the first
transition occurs and show how to approximate the next ones. Finally, we combine simulated
annealing together with recent developments of regularised Gaussian mixture models to learn a
principal graph from spatially structured datasets that can also exhibit many scales.

I. INTRODUCTION

Many optimisation and inference problems have been
shown to have an equivalent formulation in statistical
physics [1, 2] that allowed a brand-new look at some long-
standing problems and improved the understanding of
complex systems [3, 4]. In particular, the identification of
the phase diagram of a model can bring interesting new
insights such as knowing if a given information can be
retrieved depending on the model’s parameters and the
dataset at hand. In the context of clustering, it has been
demonstrated that the Gaussian Mixture Model (GMM)
can be formulated as a statistical mechanics problem [5,
6] where the negative log-likelihood can be interpreted as
a free energy.

GMMs are extensively used in many fields of science
like physics, statistics and machine learning, mainly for
complex density estimation [7] or for unsupervised tasks
like clustering [8]. Some attempts to solve other classes
of NP-hard problems such as the travelling salesman [9]
or to model principal curves as an extension of principal
components [10] were also conducted. Standard meth-
ods to fit model parameters rely on the Expectation-
Maximisation (EM) algorithm [11], an iterative proce-
dure maximising the log-likelihood with guaranteed con-
vergence toward a local maximum [12]. However, the
direct application of EM algorithm is known to be easily
trapped in local maxima of multi-modal likelihoods lead-
ing to variability in the provided results depending on
the initialisation of the algorithm [13, 14]. This problem,
coupled with the main drawback of mixture modelling,
i.e. the choice of the number of components to model
the data, make parametric mixture models very sensitive
to the initialisation and the choice of hyper-parameters.
In that regard, the statistical physics formulation of the
clustering problem helped to overcome these issues by
making use of deterministic simulated annealing allowing
the relaxation of the non-convex optimisation problem by
solving it iteratively while a parameter, assimilated to a
temperature, in our case, the variance of all components,

is slowly reduced [15].
Following these steps, we aim at showing how the lat-

ter formulation can be useful to understand and analyse
the outcome of GMMs. In particular, we exploit the
cascade of phase transitions occurring during annealing
procedures of the EM algorithm to build a hierarchical
multi-scale description of a dataset. By defining an over-
lap between the ground truth and the inferred partitions,
we show on artificial datasets how it can be interpreted
as an order parameter whose value follows the sequence
of phase transitions. In more general cases, where the
ground truth is not known, we use a physical observ-
able to get an a posteriori interpretation of what hap-
pened during the annealing. For a given mixture com-
ponent, we track the hierarchy of scales that are being
represented through the eigenvalues of the weighted co-
variance matrix and use it to extract information on the
structure, i.e. the number of clusters, their scale and
their hierarchy without prior information on the ”cor-
rect” number of clusters, even in high dimension when
direct visualisation is impossible. To represent different
scales simultaneously, we propose an alternative to the
classical annealing in which the temperature is the mode
of a prior distribution on variances. We show that the
threshold at which the first transition occurs can be com-
puted exactly from the linear stability of the fixed-point
iterative scheme in both cases. Approximate positions
of successive thresholds can also be estimated when the
dataset is clustered into several sub-systems. The pro-
posed methodology hence leads to a representation: i)
independent from the inputted number of components,
ii) independent from the data space dimensions, iii) hi-
erarchically nested from high scales to lower ones.

In Section II, we introduce the mathematical back-
ground of GMMs and review the main equations of EM
algorithm to estimate parameters of the model. Section
III presents the hard annealing setting and motivates the
use of the procedure to learn hierarchical representations.
Section IV focuses on the interest of combining a regu-
larised version of the GMM with the annealing procedure
for the study of complex datasets and provides theoreti-
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cal derivations of the threshold at which the first transi-
tion occurs. Finally, in Section V, we illustrate how these
transitions can be used together with the recently intro-
duced graph regularisation of Gaussian mixtures (GMs)
to learn a principal graph structure from spatially struc-
tured datasets, even with high heteroscedasticity of the
sampling.

II. GAUSSIAN MIXTURE MODELS AND
EXPECTATION-MAXIMISATION ALGORITHM

It is not always possible to fit known probability dis-
tributions to those resulting from a set of physical mea-
surements X = {xi}Ni=1 with xi ∈ RD. GMMs naturally
allow the modelling of complex probability distributions
as a linear combination of K Gaussian components with
unknown parameters. In what follows, we restrict our-
selves to spherical and uniform GMs with means {µk}Kk=1
and variances {σ2

k}Kk=1 such that

p(xi |Θ) =
1

K

K∑
k=1

N (xi,θk), (1)

with Θ = {θ0, . . . ,θk} the set of parameters with θk =
(µk, σk).

EM states that the log-likelihood can be maximised
through an iterative procedure involving two alternating
steps by considering a set of latent variables {zi}Ni=1 with
zi ∈ {0, . . . ,K} describing the label of the cluster that
generated the datapoint xi. The E-step first estimates
the posterior distribution of the latent variables from the
current values of parameters as

pik = p(zi |xi,θk) =
exp

(
−‖xi − µk‖22/2σ2

k

)
K∑
j=1

exp
(
−‖xi − µj‖22/2σ2

j

) . (2)

The M-step then refines parameter estimates based on
the current values of pik as


µk =

∑N
i=1 pikxi
Nk

,

σ2
k =

∑N
i=1 pik‖xi − µk‖22

DNk
,

(3)

where Nk =
∑N
i=1 pik.

From the statistical physics point of view, identical
update equations can be obtained by deriving the free
energy under a quadratic cost function for the datapoints
assignation to clusters [1].

III. PHASE TRANSITIONS IN HARD
ANNEALING

Simulated annealing in EM procedure was introduced
to overcome the issue of local maxima. It consists in
reducing iteratively the variance of all components such
that ∀k ∈ {1, . . . ,K}, σ2

k = σ2, where σ2 is the con-
trolled value of the variance during the annealing. The
idea behind these approaches is to smooth the likelihood
by starting with a very high variance leading to a concave
function. Decreasing it slowly leads to a finer and finer
description of the dataset hence resulting in a more com-
plex likelihood function with multiple modes appearing.

In this work, we focus on a particular aspect of the an-
nealing based on successive phase transitions. First, we
are interested in the range of σ2 values for which the like-
lihood is concave and hence all of the K components are
collapsed into a single location centred at 1/N

∑N
i=1 xi.

This critical quantity, noted T hard
c , is known to be the

maximum eigenvalue of the data covariance matrix [5].
When σ2 > T hard

c , even though K components are used
in the model, they are all collapsed as Kr = 1 physical
cluster at the centre of mass (c.m.) of the dataset. When
σ2 becomes slightly smaller than T hard

c , the likelihood is
deformed and centres get aligned with the first principal
direction given by the data covariance matrix C. When
σ2 continues to decrease, the dataset description becomes
more and more detailed and Kr takes increasing values.

We propose a novel way to extract information on
the structure of a dataset from the annealing process
by tracking the evolution of the size represented by a
given component k through the maximum eigenvalue
Γk of its weighted covariance matrix, namely Σk =

1/Nk
∑N
i=1 pik(xi − µk)T(xi − µk).

Figure 1 illustrates the evolution of the ratio Γk/σ
2

during the annealing for an artificial dataset with five
clusters and K = 25 centres coloured by their end-point
cluster. In the bottom panel, we see the cascade of tran-
sitions and successive splitting of centres when σ2 de-
creases. When two or more centres collapse, they share
similar values of µk and pik leading to similar evalua-
tions of Γk. This is why all lines are superimposed for
σ2 > T hard

c . Each time a curve reaches the horizontal
unit line, one of the Kr sub-system made of collapsed
components reached the temperature of the sub-dataset
it represents, namely σ2 ' Γk. From there, we observe
either a bounce or a cross of the line. When bouncing,
there is a split between two populations of centres that
were representing the same part of the dataset but that
will take different paths. Centres thus move toward a
smaller cluster and the value of Γk decreases. Cross-
ing the line occurs when centres split inside an individ-
ual cluster due to its inner random structure. In that
case, the imposed variance gets smaller than the phys-
ical one. Since the transitions are driven by the maxi-
mum eigenvalues of the empirical covariance matrices, it
is this quantity that is plotted as vertical lines for the size
of spherical clusters on the figures. Note that if we use
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instead the empirical variance, this estimates would be
slightly shifted to lower values and the transition would
occur earlier in the annealing than the true variance of
the cluster.

Following a posteriori the several curves and the suc-
cessive transitions provide an informative insight on the
structure of the dataset. It also allows to visualise the
evolution of the local size representation of the data and
the interactions between centres. In the bottom panel of
Fig. 1, we clearly see that {purple, red, green} sets of
centres represent the same information when σ2 > 9 and
then split into {purple} and {red, green}. This indicates
the presence of a sub-system of two clusters. Later, we
observe a crossing of the horizontal line for the {purple}
centres before splitting again after crossing. This indi-
cates that the effective variance of the cluster is larger
than the one fixed by the annealing and, therefore, that
these centres now describe fluctuations within a ”true”
cluster. The {red, green} sets of centres split at lower σ2

followed as well by a crossing of the line at the scale of
individual cluster sizes.

Successive transitions can be computed in two steps:
First by identifying the Kr macro-components resulting
from the collapse of centres based on their positions and
then by assigning to each data point the label of the
macro-component that most probably generated it. We
are thus assuming, at a given iteration, a GMM with Kr

components to compute responsibilities from Eq. (2).
Hence, we can group data points with identical labels
and compute the next transition as the maximum eigen-
value of the covariance matrix for each sub-system. These
quantities, basically corresponding to successive evalu-
ations of the critical temperature in sub-systems, can
be approximated during the annealing and are shown as
black stars on the bottom panel of Fig. 1.

We identify the overlap Q, defined as the quality of
the data classification at each temperature, as an order
parameter whose value changes throughout the several
phases during the annealing. Formally,

Q ({ẑi}, {zi}) =
maxπ∈Π

1
N

∑
i δẑi,π(zi) − 1/q

1− 1/q
, (4)

where δ is the Kronecker delta, Π denotes all the pos-
sible permutations of the set {1, . . . , q} with q the true
number of clusters used to generate the data and ẑi =
argmaxk pik the estimated latent variable for the affilia-
tion of the datapoint xi. Q is hence defined such that
when ∀i, ẑi = zi, Q = 1 and for a random assigna-
tion pik = 1/K, Q = 0. By doing so, Q is zero when
σ2 > T hard

c and undergoes successive transitions as the
system is cooled down, as illustrated on the bottom panel
of Fig. 1. During the annealing, Q remains at 1 for the
range of σ2 between the last split of centres between two
true clusters and before the first split due to the inner
random structure of one of them. Note that this met-
ric is not applicable when Kr > q since the dataset is
partitioned into more clusters than actually used for the
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FIG. 1. (top) Displacement of K = 25 centres during the an-
nealing procedure for a dataset with five spherical Gaussian
clusters. Colours indicate in which final cluster the centre
ends. (bottom) Evolution of the ratio Γk/σ

2 as a function of
σ2. Black stars correspond to the scales of successive transi-
tions, the black vertical line to T hard

c and coloured ones indi-
cate the size of the clusters as defined by the maximum eigen-
value of the empirical covariance. The black dashed curve
shows to the evolution of Q as defined in Eq. (4) that we
identify as an order parameter. This quantity is not repre-
sented for σ ≤ 1 since the number of physical clusters Kr

begins to be higher than the number of generated clusters q.

generation, and this is why the curve is not shown for
σ2 ≤ 1.

To further assess the robustness and accuracy of the
transitions, we use the dataset from Fig. 1 where only
a fraction ρ of the datapoints is randomly kept for the
computation. During the annealing, we freeze all the
K = 25 centres at the last split before reaching Γk/σ

2 =
1 and then let variances evolve freely hence providing
an estimate for each detected cluster that we note σ̂2.
Figure 2 shows that the retrieved variances are, even in
highly sparse sampling settings, with ρ ≤ 30%, close to
the true ones of the clusters. It is worth emphasising
that all five clusters are always correctly identified and
that the value of Q is always close to 1 at the end of the
process, showing the ability of the method to highlight
structures, even in sparse configurations.

Usual applications of GMMs for clustering are per-
formed blindly by inputting the desired K to obtain a
classification making use of all components. Some cri-
teria, based on information theory [16, 17] or Bayesian
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FIG. 2. Ratio between the estimated variances σ̂2 obtained
when freezing the K = 25 centres when Γk/σ

2 ' 1 and the
empirical ones σ2

true from data of Fig. 1. Colours refers to
several value of ρ, the proportion of datapoints left for the
computation.

approaches [18, 19], were proposed to overcome this ma-
jor drawback of unsupervised clustering. Here, we pro-
pose an approach to avoid such a K-dependent unique
solution. A key aspect of the annealing is the collapse of
{µk}Kk=1 at the c.m. of successive sub-datasets providing
a hierarchical view of clustering with an increasing num-
ber of physical clusters. The proposed diagram enables
to capture this set of nested representations as shown in
Fig. 3 for a 5D artificial dataset made of ten Gaussian
clusters, spatially appearing as three clusters at larger
scale. Transitions occurring at large scales in each panel
(grey vertical lines) clearly indicate that the dataset is de-
scribed as three different physical clusters. Pursuing the
decrease of variances leads to a finer description where
each of the three macro-clusters splits into smaller ones
that still have physical interpretations [20]. Such infor-
mation on the spatial organisation of the dataset are of
crucial importance when having no prior idea of its struc-
ture nor the number of underlying components.

IV. PHASE TRANSITIONS IN SOFT
ANNEALING

When the dataset is more complex with nested struc-
tures or overlapping clusters of different sizes, the previ-
ously presented analysis is not suitable. Multiple scales
cannot be represented at the same time, hence biasing
those of embedded structures toward higher values. To
overcome this, we rely on a modified annealing acting on
the mode of an a priori distribution on each σ2

k. More
particularly, we use the conjugate prior for variances,
namely an inverse-Gamma distribution, with shape pa-
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FIG. 3. (top) Displacement of K = 25 centres during the
annealing procedure for a dataset made of ten 5D spherical
Gaussian clusters visualised in the plane of the two first prin-
cipal components. Colours depend on the macro-cluster the
component stands in at the last iteration. (bottom) Evolution
of the ratio Γk/σ

2 as a function of σ2, the hard annealing pa-
rameter. Coloured vertical lines indicate the actual size of the
corresponding Gaussian cluster or macro-cluster (grey lines)
as defined by the maximum eigenvalue of the empirical co-
variance.
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rameter 1 + λσ and scale parameter λσσ2 so that the
distribution has a mode at σ2. Formally, it reads

log p(σ2
k) = −λσ

[
log σ2

k +
σ2

σ2
k

]
+ cte, (5)

where the constant comes from the normalisation of the
probability distribution. Introducing such a prior modi-
fies the update Eq. (3) for variances as

σ2
k =

∑N
i=1 pik‖xi − µk‖22 + 4λσσ

2

D
∑N
i=1 pik + 4λσ

. (6)

Consequently, when λσ → 0, the prior, and hence the
annealing, has no effect and components update their
variances as Eq. (3). Inversely, for a large enough value,
σ2
k will be close to σ2 resulting in the classical annealing

procedure. Choosing intermediate values for λσ hence
imposes a broad trend for all components but lets each
of them correct the prior by the actual value of the neigh-
bouring covariance. In what follows, we refer to this pro-
cedure as "soft annealing" that we distinguish from the
"hard annealing" to describe the classical procedure act-
ing directly on the variance parameter. There is no rule
to fix the hyper-parameter λσ and, in this work, we adopt
λσ = 2 [21].

Similarly as in the hard annealing case, we can com-
pute the threshold value T soft

c such that all components
are collapsed at the c.m. when σ2 > T soft

c . Without
any loss of generality, the dataset can be considered cen-
tred, with

∑N
i=1 xi = 0D where 0D is the D-dimensional

zero vector. In a first step, we propose to derive the
fixed-point variance σ2

0 of all centres when σ2 � T soft
c .

Linearly Taylor expanding the expression of pik given by
Eq. (2) for small perturbations µk ≈ 0D leads to

pik =
1

K

[
1 +

1

σ2
k

xT
i µk

]
+ o(µk). (7)

Further, assuming that σ2 > T soft
c =⇒ ∀k ∈

{1, . . . ,K}, σ2
k = σ2

0 and injecting pik expansion in up-
date Eq. (6) gives

σ2
0 =

4λσKσ
2 +

∑N
i=1 x

T
i xi

ND + 4λσK
. (8)

This equation links σ2
0 , the actual variance attributed

to all Gaussian components, to σ2, the soft annealing
parameter and is valid in the large σ2 limit. By consid-
ering small perturbations εk and δk, respectively around
the fixed points µk = 0D and σ2

k = σ2
0 , we can derive

the set of equations for the vectorised perturbations ε =(
εT0 , . . . , ε

T
K

)T ∈ RKD×1 and δ = (δ0, . . . , δK) ∈ RK×1,

ε(t+1) =
1

σ2
0

(U ⊗C) ε(t) + (U ⊗ a)
T
δ(t),

δ(t+1) = (U ⊗ b) ε(t) + cUδ(t),

(9)

where ⊗ denotes the Kronecker product, U =(
IK − 1

KJK
)
with IK is the K ×K identity matrix, Jk

the K ×K all-ones matrix, and

a =
∑
i

‖xi‖22xTi
2Nσ4

0

, (10)

b =
∑
i

‖xi‖22xTi
mσ2

0

, (11)

c =
1

2σ2
0m

(∑
i

‖xi‖42
σ2

0

−D
∑
i

‖xi‖22

)
, (12)

with m = ND + 4λσK. Putting it all together leads to
the matrix representation of the system’s perturbations
η =

(
ε, δ
)
∈ RK(D+1)×1

η(t+1) = (U ⊗M)η(t), (13)

with M the squared block matrix of order D + 1

M =


C/σ2

0 aT

b c

 , (14)

where C is the data covariance matrix.
Since the eigenvalues of the Kronecker product are

given by the product of all individual eigenvalues of the
two matrices involved and that U has eigenvalues 0 or 1,
we can only restrict the analysis to those of M . There-
fore, the value of σ2 at which the first transition occurs,
namely T soft

c , can be derived as the value of σ2 such that
the spectral radius of M is 1, leading to instabilities in
the dynamic of the system.

Figure 4 illustrates the result of the soft annealing pro-
cedure on an artificial dataset made of six clusters similar
as Fig. 1 but with more complexity such as overlapping
and nested clusters. The bottom panel focuses on the
evolution of the ratio between the size of the represented
sub-system by a given component and its actual vari-
ance, namely Γk/σ

2
k. This is the same physical quantity

as in the hard annealing case, except that we relax the
constraint on σ2

k which is now varying for each compo-
nent. In this soft configuration, all the µk are collapsed
for σ2 > T soft

c followed by steep transitions when σ2 de-
creases. This relaxed annealing is especially useful for the
representation of the two nested clusters. Even though
we would learn that those structures are encapsulated,
reaching accurate size description for the smallest compo-
nent would not be possible in hard annealing because its
variance would be boosted by neighbouring data points.
The top panel illustrates positions and variances of all
K = 25 components when fixing parameters a posteriori
at the value they had during the annealing at their last
transition point just before crossing the line Γk/σ

2
k = 1.

Although K = 25 components are used, we correctly
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FIG. 4. (top) Arrows indicate the displacement of K = 25
centres during the soft annealing procedure for a dataset made
of six spherical Gaussian clusters (black points). Colours re-
late to the cluster in which the component ends. Red crosses
and grey dashed circles respectively indicate the positions and
variances fixed a posteriori when the centre undergoes its last
split before remaining above the Γk/σ

2
k = 1 line. (bottom)

Evolution of the ratio Γk/σ
2
k as a function of σ2. The verti-

cal black line corresponds to T soft
c . The inset figure shows the

evolution of the ratios maxQ/Qth and σ̂2/σ2
true, when varying

the contrast between the two nested clusters.

identify Kr = 7 physical clusters with their variances
and means as indicated by red crosses and grey circles
on Fig. 1.

To assess the robustness of the soft annealing proce-
dure in clustering complex datasets, we focus on a setup
restricted to the two nested clusters of Fig. 4 only and
dilute the small one by varying its number of sampling
points N . This translates into a decreasing contrast be-
tween the signal to noise ratios σ/

√
N of the two clus-

ters. The inset of Fig. 4 shows the evolution of the ratio
between the maximum overlap value Q obtained during
the annealing and Qth the theoretical overlap computed
using the ground truth parameters as a function of the

contrast. It can be seen that both clusters are recov-
ered when the contrast is sufficiently high (above 1.5 in
practice) while below, there is not the necessary informa-
tion for the model to retrieve it. The ratio between the
estimated variances is also shown to and we observe an
overestimated variance at lower and lower contrast which
explains the decreasing maxQ/Qth ratio. This effect can
partly be explained by the uniform weights hypothesis
being less and less true when the contrast decreases.

V. MULTI-SCALE PRINCIPAL GRAPHS

Recently proposed methods explore the graph regu-
larisation of GMs to learn a smooth graph representa-
tion from point-cloud distributions [22, 23]. Based on a
Gaussian prior acting on component averages, these ap-
proaches rely on a measurement of the graph smoothness
through the graph Laplacian as

‖4µ‖2 =

K∑
i=1

K∑
j=1

Aij‖µi − µk‖22, (15)

where A is the adjacency matrix taking value 1 when
centres i and j are linked and 0 otherwise. Exploiting
this prior knowledge in the GMM leads to the regularised
model

log p(Θ |xi) ∝ log p(xi |Θ) + log p(Θ), (16)

with log p(Θ) = −λµ‖4µ‖2/2. This added term on the
log-likelihood acts as an attractive quadratic interactions
of centres connected on the graph A. This prior only
impacts the M-step update of centre positions of Eq. (3)
as

µ
(t+1)
k =

∑N
i=1 xipik/σ

2 + 2λµ
∑K
j=1Akjµ

(t+1)
j∑N

i=1 pik/σ
2 + 2λµ

∑K
j=1Akj

. (17)

As in Sect. IV, it is possible to compute the value
of σ2 for which the high-temperature system becomes
unstable, noted T graph

c considering perturbations around
the fixed point µk = 0D. Analogous derivations as in
Sect. IV shows that the system is unstable when the
maximum eigenvalue of M is greater than 1, with

M =

[(
IK −

1

K
JK

)
⊗C

]
[
σ2IKD +

2λµKσ
4

N
L⊗ ID

]−1

, (18)

where L the Laplacian matrix defined as L = D−A with
D the diagonal K × K degree matrix Dkk =

∑
iAik.

Since the prior is basically pulling adjacent centres, the
threshold is translated toward lower values as λµ in-
creases.

When paving the data distribution with Gaussian clus-
ters standing on a prior graph structure, the scale of
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FIG. 5. (top left) Displacement of K = 100 components
during the hard annealing of a tree branches dataset with
different sampling standard deviations. Black dashed line
corresponds to the first principal direction. Colours refer
to branches in which centres end. (top right) Learnt struc-
ture when stopping the annealing for components reaching
the temperature σ2 ' γk. Red lines are edges of the graph
and grey shaded areas are 1-σk circles. (bottom) Evolution
of the ratio γk/σ2 as a function of σ2. Vertical lines indicate
the used variance for the generation of branches. The black
vertical line corresponds to the value of T graph

c .

interest is the local width of the elongated structure.
This size is given locally, in our 2D case, by the mini-
mum eigenvalue γk of the weighted covariance Σk. Fig-
ure 5 shows the result of a hard annealing procedure for
K = 100 components, λµ = 300 and using a graph prior
given by the minimum spanning tree construction [24],
hence assuming that centres are linked together with the
minimum total length. This topological prior can takes
different forms depending on the data under considera-
tion and modifies the adjacency matrix A and, therefore,
the value of T graph

c . As predicted by linear stability, cen-
tres are first aligned with the principal axis of the dataset
at the beginning of the annealing and then spread over
the structure to pave it more precisely, as shown on the
top left panel. By tracking the evolution of the ratio
γk/σ

2 in the bottom panel, we clearly distinguish four
types of behaviours, signature of four distinct scales for
structures in the dataset. It is also interesting to observe
the absence of sharp phase transitions or splits within

this continuous dataset tending to smooth out the evo-
lution of the energy when the temperature is decreasing.
By imposing, for each component, the variance σ2 dur-
ing the annealing at the moment γk ' σ2, we obtain the
graph of the top right panel, showing multiple adaptive
scales, even though branches have one order of magnitude
difference in sampling standard deviation.

VI. CONCLUSIONS

In this work, we exhibited the cascade of phase tran-
sitions occurring when tracking the evolution of eigen-
values of the successive covariance matrices of mixture
components during a simulated annealing of the EM al-
gorithm in multiple cases. We saw that hard anneal-
ing has nice theoretical advantages with the ability to
compute successive theoretical transitions and we showed
that a relaxed version can provide an accurate descrip-
tion for datasets exhibiting multiple scales with nested
clusters. We also illustrated how hard annealing can be
used jointly with graph regularisation of GMs to learn a
multi-scale principal graph independently on the initiali-
sation. By revisiting the widely known problem of unsu-
pervised clustering formulated in the framework of sta-
tistical physics, the proposed way of exploring the data
through simulated annealing does not lead to an auto-
matic and blind solution using all the inputted compo-
nents. Instead, it builds a hierarchical description inde-
pendent from K providing a qualitative and quantitative
insight on the structure of the dataset at different scales
and without requiring any prior knowledge. The 2D dia-
gram allows the analysis of the annealing independently
from the data dimensionality and highlights characteris-
tic scales at which physical transitions occur. These in-
formation on the number of components, their scale and
hierarchy can be used a posteriori for data exploration
before running blind clustering methods.

Interestingly, we saw that the latent variables of the
GMM are directly related to the values taken by the or-
der parameter. Since the GMM can be recast into a Re-
stricted Boltzmann Machine [25] using a soft-max prior
on the hidden nodes, making it a particular type of au-
toencoder [26], our work can be seen as the learning of a
latent representation of the phase transitions, as is dis-
cussed in [27, 28].
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