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The restricted Boltzmann machine is a basic machine learning tool able in principle to model the
distribution of some arbitrary dataset. Its standard training procedure appears however delicate
and obscure in many respects. We bring some new insights on it by considering the situation where
the data have low intrinsic dimension, offering the possibility of an exact treatment, illustrated with
simple study cases where the standard training is observed to fail. The reason for this failure is
clarified thanks to a Coulomb interactions reformulation of the model where the hidden features
are uniformly charged hyperplanes interacting repulsively with point-like charges representing the
data. This leads us to consider a convex relaxation of the original optimization problem thereby
resulting in a unique solution, obtained in precise numerical form in d = 1, 2 while a constrained
linear regression solution is conjectured on the basis of an information theory argument.

Recent advances in machine learning (ML) pervade
now many other scientific domains including physics by
providing new powerful data analysis tools in addition
to traditional statistical ones. The restricted Boltzmann
machine (RBM) could be considered as one of these
when already a large spectrum of possible use has been
proposed in physics [1–5]. Introduced more than three
decades ago [6], the RBM played an important role in
early developments of deep learning [7]. It is a special
case of generative models [8–10] which remains very pop-
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FIG. 1. Bipartite structure of the RBM (left). Hyperplanes
defined by the weight vectors and bias associated to each hid-
den variable can delimit fixed density regions in input space
(right).

ular thanks to its simplicity and effectiveness when ap-
plied to moderately high dimensional data [11–13]. It is a
2-layers undirected neural network which represents the
data in the form of a Gibbs distribution of visible and
latent variables (see Figure 1):

p(s, σ) =
1

Z[Θ]
exp
(∑
i,j

siWijσj −
Nv∑
i=1

ηisi −
Nh∑
j=1

θjσj

)
.

(1)
The former noted s = {si, i = 1 . . . Nv} correspond to ex-
plicit representations of the data while the latter noted
σ = {σj , j = 1 . . . Nh} are there to build arbitrary depen-

dencies among the visible units. They play the role of an
interacting field among visible nodes. While many differ-
ent types of variables can be considered, we take here spin
variables si, σj ∈ {−1, 1} for definiteness. Θ = (W,η,θ)
are the parameters, W being the weight matrix, η and
θ are local field vectors called respectively visible and
hidden biases. Each weight vector associated to a given
hidden unit and its corresponding bias defines an hy-
perplane partitioning the visible space into two regions
corresponding to the hidden unit being activated or not
(see Figure 1). Z[Θ] is the partition function of the sys-
tem. The joint distribution between visible variables is
then obtained by summing over hidden ones. Learning
the RBM amounts to find Θ such that generated data
obtained by sampling this distribution should be statis-
tically similar to the training data. The standard method
to infer the parameters is to maximize the log likelihood
(LL) of the model

 L[Θ] =
∑
j

〈log cosh(
∑
i

Wijsi − θj))〉Data

−
∑
i

ηi〈si〉Data − log
(
Z[Θ]

)
. (2)

This is a non-trivial optimization problem in two re-
spects: it is non convex and the loss function − L[Θ] is
difficult to estimate because log

(
Z[Θ]

)
is not tractable.

Nevertheless, the gradient ∇Θ  L[Θ] can be written in
terms of simple response functions of the RBM. These
can be estimated approximately via Monte-Carlo meth-
ods, leading to various algorithms called contrastive di-
vergence [14] with possible refinements [15, 16].

The similarity of the RBM with disordered spin sys-
tems has raised a lot of interest in statistical physics.
Mean-field based training algorithms and analyses have
been proposed [17–20], a mapping with the Hopfield
model as been found in [21], retrieval capacity has been
characterized in [22, 23] and compositional mechanisms
analyzed in [24, 25] (see more recent ref. e.g. in [26]).
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In previous works [27, 28] we studied to what extent
the learning process of the RBM is reflected in the
spectral dynamics of the weight matrix where a certain
number of modes emerge from a Marchenko-Pastur bulk
at initialization and condense to built up a structured
ferromagnetic phase. In this letter we complete this
program by showing that the two main difficulties
(non-tractability and non-convexity) of the training
can be addressed at least in the special case where the
number of condensed modes is small i.e. when training
data lay on a flat intrinsic space of low dimension.

Effective theory in the ferromagnetic phase. Let us
first disentangle the contribution of the collective modes
corresponding to the information stored from the data
(the ferromagnetic and difficult part) from the other de-
grees of freedom corresponding to the noise (the param-
agnetic and easy part). After summing over the hidden
variables in (1) the visible distribution reads

P [s|Θ] =
1

Z[Θ]
exp
(Nh∑
j=1

log cosh
( Nv∑
i=1

Wijsi−θj
)
−
∑
i

ηisi

)
(3)

As in [28] the weight matrix is expressed through its SVD
decomposition as

Wij =

min(Nv,Nh)∑
α=1

wαu
α
i v

α
j ,

with wα, uα and vα representing respectively the singu-
lar values, the left and right singular vectors. Assume
that some modes α ∈ {1, . . . d} have condensed along a
magnetization vector denoted m = (m1, . . . ,md), i.e.

mα
def
=

1√
Nv

Nv∑
i=1

siu
α
i = O(1).

For an RBM trained on some data, d would represent
their intrinsic dimension at least locally. These magneti-
zation constraints define a canonical statistical ensemble.
We look for a change of variables s −→ (m, s⊥) where the
original spin variables are replaced by a set of d contin-
uous variables and N [m] transverse weakly interacting
spin variables. N [m] is related to the configurational

entropy per spin S[m] = N [m]
Nv

log(2) under these con-
straints. Thanks to a large deviation argument S[m] is
the Legendre transform of (see Appendix A)

Φ[µ] =
1

Nv

∑
i

log cosh
(√

Nv

d∑
α=1

uαi µα

)
,

with µ[m] given implicitly given by the constraints [29]

mα =
1√
Nv

Nv∑
i=1

uαi tanh
(√

Nv

d∑
β=1

uβi µβ
)
, α = 1, . . . d.

(4)

Given a condensed magnetization vector m, there
remains N [m] interacting degrees of freedom
{s⊥1 , . . . , s⊥N [m]}. In terms of this new set of visible
variables we may now formally write our distribution as

P [m, s⊥|Θ] =
e−NvF

‖[m|Θ]−Heff

[
s⊥|m,Θ

]∫
dm e−NvF [m|Θ]

,

where the canonical free energy F [m|Θ] = F‖[m|Θ] +
F⊥[m|Θ] is decomposed into two contributions coming
respectively from the condensed modes and the trans-
verse fluctuations:

F‖[m|Θ] = −S[m]−
d∑

α=1

ηαmα − V [m|Θ], (5)

F⊥[m|Θ] = − 1

Nv
log
( 1

2N [m]

∑
s⊥

e−Heff [s
⊥|m,Θ]

)
, (6)

(ηα
def
= 1√

Nv

∑
i ηiu

α
i ) to which are respectively associ-

ated a potential function for the magnetizations and the
Hamiltonian for the transverse degrees of freedom:

V [m|Θ] =
1

Nv

Nh∑
j=1

log cosh
(√

Nv

d∑
α=1

wαmαv
α
j − θj

)
,

(7)

Heff

[
s⊥|m,Θ

]
=

N [m]∑
`=1

η⊥` [m,Θ]s⊥` +

N [m]∑
`,`′=1

W⊥``′ [m,Θ]s⊥` s
⊥
`′

By convenience we assign to F‖ the default entropy
(N [m] log(2)) contribution of the transverse variables in
order that F⊥ vanishes when Heff = 0. The couplings
W⊥``′ [m,Θ], local fields η⊥` [m,Θ] and consistent defini-
tions of transverse variables s⊥` are given in the Ap-
pendix B. This defines for each m a disordered Ising
model of N [m] spins with paramagnetic-like state of or-
der.

Coulomb formulation and linear regression. The po-
tential term in F‖ which act on the magnetization m rep-
resenting here the position of a particle in a d-dimensional
space can be written as (See appendix C)

V [m|Θ] =

∫
dndθ Θ(n, θ)|nTm− θ|, (8)

after introducing the density in the space O(d) × R of
latent features

Θ(n, θ) =
2

Nv

Nh∑
j=1

νjδνj

(θj
νj

)
δ(n− nj)δ

(
θ − θj

νj

)
. (9)
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with δν(x) = ν
2

[
1− tanh2(νx)

]
a “smoothed” delta func-

tion of width ν−1, with

νj =
√
Nv

( d∑
α=1

w2
αv

α
j

2
) 1

2

, (10)

nαj =

√
Nv
νj

wαv
α
j . (11)

The kernel |nTj m − θ| represents the Coulomb poten-
tial exerted by a uniformly charged hyperplane defined
by its normal vector n and its distance θ to the ori-
gin to a charge located at m. As a result, each fea-
ture j corresponds also to charged hyperplane of nor-
mal vector nj , offset θj/νj but of finite width of order
ν−1
j . At this point let us remark that the singular val-

ues wα control two different things through νj , namely
the strength of the Coulomb interaction via (8,9,10) and
the width of the charged hyperplanes while the right sin-
gular vectors projection on the various modes vαj control
the orientation of these hyperplanes in the intrinsic space
through (11). Overall the density of Coulomb charges in
the d-dimensional intrinsic space is given by

ρ(m) =

∫
dndθ Θ(n, θ)δ

(
nTm− θ

)
. (12)

If not constrained to be a superposition of a finite number
of charged hyperplanes, ρ can be adjusted to have the
following matching with any distribution p̂(m):

eNv
(
S(m)−F⊥[m|ρ]+

∫
dm′ρ(m′)Kd(|m−m′|)

)
∝ p̂(m),

withKd(|m−m′|) the inverse of the d-dimensional Lapla-
cian ∆d. Inverting this yields

ρ(m) = ∆d

( 1

Nv
log p̂(m)− S[m] + F⊥[m|ρ]

)
(13)

up to surface terms. As long as F⊥ is independent of ρ
this constitutes an explicit solution to the problem which
has to be approximated in the form of (12). The fact
that any distribution ρ can be approximated to arbitrary
precision by such a superposition of charged hyperplanes
relates to the property that the RBM is a universal ap-
proximators [30]. Note that the visible bias vector η is
equivalent to some surface charge placed at the edge of
the domain of m and can be incorporated into Θ. The
log likelihood of the RBM has then three terms

 L[Θ] = −Ep̂
[
V [m|Θ] + F⊥[m|Θ]

]
− log

(
Z[Θ]

)
,

log
(
Z[Θ]

)
is a complex self-interaction of the charged hy-

perplanes among each others; Ep̂
[
F⊥[m|Θ]

]
is in princi-

ple small especially if there is no transverse bias; finally
the term

Ep̂
[
V [m|Θ]

]
=

∫
dmdndθ p̂(m)|nTj m− θ|Θ(n, θ), (14)

takes the form of a repulsive Coulomb interaction be-
tween data points and charged hyperplanes. The opti-
mization of  L[Θ] w.r.t. the features weights Θ(n, θ) in-
stead of the original RBM parameters is convex when F⊥
is independent of Θ, as this “Coulomb” formulation is in
the exponential family. It corresponds to a slight exten-
sion of the RBM model in terms of more general activa-
tion function (including RELU [31] for instance and sim-
ilar also to [32]), where each feature contribution in (3)
comes with a non-negative weight Θj which from now
on is the parameter to be optimized, while the features
themselves defined by the pairs (nj , θj) are predefined.
Solving equation (13) with a smoothing of log p̂(m) leads
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FIG. 2. 1-d intrinsic data (Nv = 103) with 5 clusters solved
with Nh = 20 predefined features thanks to a natural gradient
ascent of the LL. Dotted lines indicate location of features
with non-vanishing weights Θj . The feature contributions
F(m)−h(m) to the free energy is seen to regress h(m) on the
data. The resulting distribution is shown (red) on the inset
with the empirical training distribution (blue) and the result
of a standard RBM training (green).

to overfit the data with a density of Coulomb charges con-
centrated on the faces of the Voronoi cells enclosing the
data points (see Appendix D). This should be projected
on a density ρ of the form (12) corresponding to a finite
number of features to be meaningful. This projection
to be consistent need to be done using the Fisher met-
ric [33] instead of the Euclidean one for instance and end
up being equivalent to minimizing the Kullback-Leibler
divergence (DKL) between p̂(m) and p(m|Θ) i.e to max-
imizing LL. Suppose now we expect the optimal solution
to be very close to p̂. This allows us to consider instead
the Fisher metric estimated at the empirical point p̂ and
turn the problem into the following linear regression

Θ? = argmin
Θ

Ep̂
[∣∣S(m) +

Nh∑
j=1

ΘjVj(m)
∣∣2]

of S[m] on the score variables Vi(m)
def
= ∂ log(p(m|Θ))

∂Θj
con-

jugate to Θj (see Appendix E).
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Study case. To illustrate these statements first con-
sider a dataset supported by a 1-d subspace given by
the vector ui = 1/

√
Nv with unbiased fluctuations along

other directions. We assume a rank one weight matrix of
the formW = w1u

1v1T since we expect the singular value
associated to other directions to vanish from the linear
stability analysis of the training given in [28]. The rela-
tion (4) reduces then to the magnetization m = tanh(µ)
along u leading in the Coulomb formulation to

F [m] = h(m)−
Nv∑
j=1

Θj |m− θj |, (Θj ≥ 0)

with h(m) = 1
2 (1±m) log(1±m). Performing the natu-

ral gradient ascent [33] of the LL yield optimal solution
as the one shown on Figure 2. Note that for this kind of
problem, to the best of our training experiments with any
type of sampling and extensive meta-parameters settings,
the standard RBM training basically fails to resolve prop-
erly the cluster structure, essentially because the charged
hyperplanes remain trapped into sub-optimal configura-
tions related to the Coulomb barriers formed by the clus-
ters of data. In the convex “Coulomb” setting this task
becomes much easier. As is manifest on Figure 2 the fea-
ture part of the free energy (F(m)−h(m)) is performing
a linear regression of h(m) in terms of a piece-wise lin-
ear function where the break points corresponds to the
locations θj of the relevant features and Θk the corre-
sponding break of slope at these points. This regression
involves however an implicit regularization in order to
maintain the regions free of data below h(m) in order
to stay away from first order transitions where the local
Fisher metric would ceases to be a meaningful approxi-
mation to the DKL. Finding this regularization remains
to us an open question which if identified could lead to an
approach similar in spirit to support vector machines [34]
for classification problems. As it appears, the linear parts
are nearly tangent to h(m) at the data points and inter-
sect at the position of relevant features. This suggests
that a relevant set of candidate features could possibly
be obtained more generally by intersecting tangent hy-
perplanes to the hypersurface S(m) = cte in RNv+1 at
the datapoints.

As a 2-d example we consider data concentrated in the
subspace spanned by the vectors u1

i = 1/
√
Nv and u2

i =
(−1)i/

√
Nv with irrelevant transverse fluctuations such

that the weight matrix once the relevant axes have been
found, is of the form W = w1u

1v1T +w2u
2v2T . We have

then a finite magnetization (m1,m2) along each direction
and the free energy considered with a continuous field of
features in the Coulomb formulation reads

F [m|Θ] =
1

2
[h(m+) + h(m−)]

−
∫
dωdθ Θ(ω, θ)|m1 cos(ω) +m2 sin(ω)− θ|,

Training distribution RBM distribution
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FIG. 3. Free energy landscape (bottom left) found with Nh =
900 pre-defined features on a 2-d intrinsic dataset (Nv = 103)
with 6 point-like clusters and a circular one and corresponding
Coulomb charges distribution obtained here (bottom right)

where m± = m1±m2 and ω ∈ [0, π[ is the angle made by
the normal vector n to the charged lines with the m1 axe.
Again this can be optimized efficiently by performing the
natural gradient ascent of the LL as is shown on Figure 3.
Here a large number of features have been predefined on
a regular lattice of the (ω, θ) plane, in order to obtain a
continuous charge distribution and a smooth free energy
landscape. Again, for this kind of problem our experi-
ments (not shown) indicate that standard RBM training
procedures fail by a large margin.

Conclusion. The specific treatment presented here
could be used directly as it is for practical applications in-
volving intrinsically 3-d data but presumably not beyond
d = 3. Nevertheless our main goal was to understand bet-
ter the optimization problem posed by the RBM training.
The Coulomb relaxation presented here opens many op-
tions for algorithmic developments, in order in particular
to address the shortcomings of the RBM model identi-
fied in this letter and to explore further the possibility
of tackling unsupervised learning via regularized linear
regressions.
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magnetization constraints

We look for a change of variables s −→ (m, s⊥) where
the original spin variables are replaced by the set
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Nv
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i=1

siu
α
i

def
= sα, α = 1, . . . d,
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of variables in [−1, 1] and N [m] transverse spin variables.
The change of measure is made by looking at the prior
distribution over the original spin variables:

f0[s] =
1

2Nv
= f [s⊥|m]f [m],

where

f [m] =
1

2Nv

∑
s

d∏
α=1

δ(sα −mα) = eNv(S[m]−log 2) (A1)

represents the density of states (normalized to one) as-
sociated to the magnetization constraints m, S[m] the
configuration entropy associated to these magnetizations
and

f [s⊥|m] =
1

2Nv [m]

with N [m] = NvS[m]/ log(2) representing the remaining
number of degrees of freedom s⊥ taken out of the Nv
initial ones. We want here to determine S[m] from (A1).
By definition of the uαi we have

Ef [mα] = 0 and Ef [mαmβ ] = δαβ ,

so for large Nv we have

f [m] =
1

(2π)d/2
exp
(
−Nv

2

d∑
α=1

m2
α

)
. (A2)

This is valid as long as the magnetization are not too
large (mα = O(1/

√
Nv)). To study the regime where

modes condense, i.e. when mα = O(1), we have to resort
to large deviations estimations [35]. With d assumed to
beO(1), as Nv →∞ we expect in this regime a behaviour
of the form

f [m] � e−NvI[m],

where I[m] called the rate function, has 0 as minimum
value and can be determined in the present situation
thanks to the Gärtner-Ellis theorem from the moment
generating function of f [m]. Denoting by µ = O(1) a
conjugate d-dimensional vector and assuming that we can
make sense to the following limit

Φ[µ]
def
= lim

Nv→∞

1

Nv
log
(
Es

[
eNv

∑d
α=1mα(s)µα

])
,

= lim
Nv→∞

1

Nv

∑
i

log cosh
(√

Nv

d∑
α=1

uαi µα

)
,

I[m] is then simply given by the Legendre-Fenchel trans-
form of Φ:

I[m] = mµ[m]T − Φ
[
µ[m]

]
,

with µ[m] implicitly given by (in principle when Nv →
∞)

mα = lim
Nv→∞

1√
Nv

Nv∑
i=1

uαi tanh
(√

Nv

d∑
β=1

uβi µβ
)
,

= Eu∼pu

[
uα tanh

( d∑
β=1

uβµβ
)]

(A3)

where we assume in the last equality some limit pu of
the joint empirical distribution of uα =

√
Nvu

α
i when

Nv →∞. From the small m behaviour given in (A2) we
finally have determined the configuration entropy as

S[m] = −I[m] + log(2) +
d

2Nv
log(2π),

= Φ[µ[m]]−mTµ[m] + log(2) +O
( 1

Nv

)
.

Note that practically speaking we use finite Nv estimates
of Φ and mα so that the preceding relation is in fact valid
up to some O(1/

√
Nv) corrections w.r.t. limit defined by

some hypothetical pu when Nv →∞.

Appendix B: Effective Hamiltonian

We then expect to be able to rewrite the Hamiltonian
corresponding to the visible distribution (3)

H[s] = H′[m, s⊥]

in terms of these new degrees of freedoms, with

H[s] =

Nv∑
i=1

ηisi −
Nh∑
j=1

log cosh
( Nv∑
i=1

Wijsi − θj
)

and

H′[m, s⊥] = Nv

d∑
α=1

ηαmα +Nv

Nv∑
β=d+1

ηβsβ [s⊥|m]

−
Nh∑
j=1

log cosh
(√

Nv

d∑
α=1

wαmαv
α
j

+
√
Nv

Nv∑
β=d+1

wβsβ [s⊥|m]vβj − θj
)
,

where sβ [s⊥|m] is a mapping to be defined of s⊥ to trans-

verse projections sβ = 1√
Nv

∑
i siu

β
i given some magneti-

zation m, and ηα = 1√
Nv

∑
i ηiu

α
i . We transform further
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the RBM measure as

P [s] = P [m, s⊥]

=
e−H[s⊥|m]−NvF0[m]∑

s⊥ e
−H[s⊥|m]

= P (s⊥|m)P (m),

with

P (m) =
∑
s

P [s]

d∏
α=1

δ(sα −mα)
def
= e−NvF0[m].

We have introduced the Hamiltonian H
[
s⊥|m

]
corre-

sponding to the conditional measure P (s⊥|m) while all
the remaining dependency on m are stored (up to con-
stant terms) in the quantity

F0[m] =

d∑
α=1

ηαmα +

Nv∑
β=d+1

ηβmβ [µ]

− 1

Nv
log
(∑

s⊥

e−H[s⊥|m]
)
,

where the transverse modes magnetizations β > d are
given by

mβ [µ] =
1√
Nv

Nv∑
i=1

uβi tanh
(√

Nv

d∑
α=1

µαu
α
i

)
, ∀β > d

(B1)
as a function of {µα, α = 1, . . . d} solution to equa-
tion (A3) and are O(1/

√
Nv). The transverse Hamilto-

nian corresponding to the probability of s⊥ conditional
to m reads

H
[
s⊥|m

]
=

Nv∑
β=d+1

ηβ(sβ [s⊥|m]−mβ [µ])

+
1

Nv

Nh∑
j=1

log cosh
(√

Nv

d∑
α=1

wαmαv
α
j

+

min(Nv,Nh)∑
β=d+1

wβsβ [s⊥|m]vβj − θj
)
,

where sβ [s⊥|m] is a mapping of the configuration s⊥ onto
s given some magnetization m. The transverse configu-
ration (sβ , β = 1, . . .min(Nv, Nh)) satisfies

Nv∑
β=d+1

s2
β = 1−

d∑
α=1

m2
α

def
= 1− q‖[m]

and its entropy is N [m] log(2). At this point it is le-
gitimate to introduce the set of spin variables s⊥ such

that

sd+γ [s⊥|m] =
»
q⊥[m]u⊥0

γ + r[m]

N [m]∑
`=1

s⊥` u
⊥`
γ ,

= md+γ [µ] + r[m]

N [m]∑
`=1

s⊥` u
⊥`
γ ,

for each γ = 1, . . .min(Nv, Nh)− d, where the first term
is a bias due to transverse magnetization mβ , β > d
while the second term represents the residual fluctua-
tions. {u⊥`, ` = 0, . . .N [m]} is an orthogonal set of
N [m] + 1, normalized vectors decomposed onto the set
{uβ , β = d+ 1, . . .min(Nv, Nh)} as

u⊥0 =
1√
q⊥[m]

Nv∑
β=d+1

mβu
β

u⊥` =

min(Nv,Nh)−d∑
β=1

u⊥`β u
β+d, ` = 1, . . .N [m],

and the s⊥` = 2B(1/2) − 1 are iid spin variables (prior
distribution), while we have introduced

q⊥[m] =

min(Nv,Nh)∑
β=d+1

m2
β (B2)

r[m] =

 
1− q[m]

N [m]
. (B3)

With η⊥`
def
=
√
N
∑N
β=K+1 ηβu

⊥
β−K = O(1), we get

H
[
s⊥|m

]
=
√
Nvr[m]

N [m]∑
`=1

η⊥` s
⊥
`

+
1

Nv

Nh∑
j=1

log cosh
(√

Nv

min(Nv,Nh)∑
α=1

wαmαv
α
j

+ r[m]

min(Nv,Nh),N [m]∑
β=d+1,`=1

wβu
⊥`
β vβj s

⊥
` − θj

)
.

Finally, expanding up to second order the log cosh we
may obtain an effective disordered Ising model for the
s⊥ variables:

Heff

[
s⊥|m

]
=

N [m]∑
`=1

η⊥` [m]s⊥` +

N [m]∑
`,`′=1

W⊥``′ [m]s⊥` s
⊥
`′ .
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Introducing the notations:

m̄j = tanh
(√

Nv

Nv∑
α=1

wαmαv
α
j − θj

)
,

m̄β =
1√
Nv

Nh∑
j=1

µjv
β
j ,

we obtain

η⊥` [m] =
√
Nvr[m]

[
η⊥` +

Nv∑
β=d+1

m̄βwβu
⊥`
β

]
W⊥`,`′ [m] = Nvr

2[m]

×
Nh,min(Nv,Nh)∑
j=1,β,γ=d+1

(1− m̄2
j )wβwγu

⊥`
β u⊥`

′

γ vβj v
γ
j ,

where η⊥` [m] is potentially O(1) while W⊥`,`′ [m] is

O
(

1√
Nv

)
. The zero order term in the expansion of

H
[
s⊥|m

]
provides an additional contribution (7)

F [m] = F0[m]− V [m]

to the free energy which we further decompose into trans-
verse and longitudinal free energy F‖ and F⊥ given
in (5,6). To make connection with data, i.e. given a
configuration s with magnetization mα, α = 1, . . .K, the
s⊥ are constructed as follows. First let

m⊥` [s] =
1

1− q‖[m]

N∑
β=K+1

sβu
⊥`
β ∈ [−1, 1],

for each ` = 1, . . . ,N [m] the magnetization of the con-
figuration s along this mode. This allows us to define the
probability

p`[s] =
1 +m⊥` [s]

2
∈ [0, 1].

Then with

s⊥` = 2B
(
p`[s]

)
− 1, ∀` = 1, . . .N [m]

with B(p) the Bernoulli distribution of parameter p, we
have a set of spin variables fulfilling our needs.

Appendix C: Coulomb interaction picture

We can rewrite V [m] as

V [m] =

∫
ddm′ρ(m′)Kd(|m−m′|)

where the inverse d-dimensional Laplace kernel Kd(|m−
m′|) is by definition

∆dKd(|m−m′|) = δ(m−m′).

As a result, by construction V [m] is solution to the Pois-
son equation

∆dV [m] = ρ(m)

with the density of Coulomb charges given by

ρ(m) =

Nh,d∑
j=1,α=1

w2
αv

α
j

2
(

1−tanh2
(√

Nv

d∑
β=1

wβmβv
β
j −θj

))
.

To make sense of this quantity we remark that the func-
tion

δν(x)
def
=
ν

2

[
1− tanh2(νx)

]
−→
ν→∞

δ(x)

represents a normalized 1-d narrow density of width ν−1

such that ρ can be expressed as

ρ(m) =
2

Nv

Nh∑
j=1

νjδνj
(
nTj m− θ̃j

)
with νj and nj given by equation (10,11) and θ̃j = θj/νj .
In this form, ρ is readily a superposition of Nh uniformly
charged hyperplanes. Each hyperplane j being defined by
a normal vector nj , an offset θ̃j from the origin, a width
ν−1
j and a (hyper)surface charge density 2νj/

√
Nv. Fur-

thermore, integrating the d-dimensional Poisson kernel
over transverse variable m′⊥ w.r.t. some unit vector n
at distance θ of the origin yields the 1-dimensional one:∫

dm′⊥Kd

(
|m−m′|

)
= |nTm− θ|.

As a result the one particle potential takes the form

V [m] =
2

Nh

Nh∑
j=1

νj

∫
dθρνj (θ)|nTj m− θ|.

Appendix D: Exact Coulomb charges interpolation

In order to interpolate exactly the empirical distribu-
tion p̂ with a generalized Coulomb charges RBM based
distribution it is needed to regularize log(p̂(m)). This can
be done in many different ways. Consider for instance

δε(m)
def
=

exp
(
− |m|

2

2ε

)
(2πε)d/2

with infinitesimal ε to approximate our point-like distri-
bution as

p̂(m) =
1

M

M∑
k=1

δε(m−mk),

and let

qε(k|m) =
δε(m−mk)∑
l δε(m−ml)

.
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These probability weights realize a smooth partition of
the space at finite ε with Voronoi cells Rk centered at
each data point, qε(k|m) representing the probability
that m belongs to kth cell. Equipped with this nota-
tion we have

∇mδε(m−mk) = −m−mk

ε
δε(m−mk)

∇mqε(k|m) = −m−mk

ε
qε(k|m)

+

M∑
`=1

m−m`

ε
qε(k|m)qε(`|m).

As a result we get

∆d log p̂(m) = −1

ε
+

1

ε2

M∑
k=1

Vark∼qε(k|m)[mk].

When ε becomes small compared to nearest neighbour
distances this quantity becomes constant (= −1/ε) ex-
cept on the intersections between Voronoi cells, in par-
ticular on common faces Rk ∩ R` between two cells Rk
and R` it is

∆d log p̂(m) ∼
ε→0
−1

ε
+
|mk −m`|

2ε
δ(m ∈ Rk ∩R`).

Indeed, let

θk
def
=

1

2
(mk + mk+1) and ∆k

def
=

1

2
(mk+1 −mk).

For δm = m− θk small compared to ∆k we have

qk(θk + δm) =
1

2

[
1− tanh

(∆T
k δm

2ε

)]
,

leading to

Vark∼qk(m)[mk] = |∆k|2
[
1− tanh2

(∆T
k δm

2ε

)]
.

Since ν
2

[
1 − tanh(νx)

]
tends to δ(x) when ν → ∞ we

arrive at the statement. As a result the distribution of
charges is composed of a constant background + surface
distribution on Voronoi cells intersections:

ρbulk(m) = − 1

Nvε
+
|mk −m`|

2Nvε
δ(m ∈ Rk ∩R`).

The Voronoi cells intersecting with the boundary of the
m domain induce additional surface charges which can
be directly taken care of with visible bias. Let us show
how this works in 1-d. Let us call

V (m) =
1

Nv
log p̂(m)

which when regularized reads

V (m) = − 1

Nv
min
k

(m−mk)2

2ε
.

From what precedes, this potential can be exactly de-
composed onto a set of features as

V (m) = − m2

2Nvε
+ ηm+

∑
k

ρk|m− θk|

with

ρk =
1

2Nvε
(mk+1 −mk),

while from the limit behaviour V ′(1) and V ′(−1) of
V ′(m) we get

η =
m1 +mNv

2ε
.

Appendix E: RBM optimization seen as a linear
regression

The projection of the empirical distribution onto the
space of RBM number of features is classically done by
minimizing the Kullback Liebler divergence (DKL). If
however our RBM space is chosen with a high number of
relevant features, we may expect the solution to be close
enough to the empirical distribution so that a Fisher met-
ric, i.e. the infinitesimal counterpart of the DKL, evalu-
ated from the solution or from the empirical distribution
should coincide. In that case it might be pertinent to use
it instead of the DKL. Let us formalize more precisely
this projection problem. On one hand we have the em-
pirical measure approximated by a Coulomb based RBM
model of the form

p̂(m|ρ) =
1

Z[ρ̂]
e−NvF(m|ρ̂)

with

F(m|ρ̂) = F⊥[m]− S[m]−
∫
dm′ρ̂(m′)Kd(|m−m′|),

where ρ̂(m) is the charge density concentrated on the
Voronoi cells faces coming from the empirical part
log p̂(m) (including surface terms at the edge of the do-
main of m). On the other hand we have an RBM with a
pointwise distribution of features Θ(n, θ) yielding a free
energy of the form

F(m|Θ) = F⊥[m]− S[m]

−
∫
dm′ρ(m′)Kd(|m−m′|),

with

ρ(m) =

Nh∑
j=1

Θjδ
(
nTj m− θj

)
.
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Our goal is to find the (positive) weights {Θj , j =
1, . . . Nh} such that the following distance

D(ρ, ρ′) =

∫
dm1dm2ρ(m1)J(m1,m2)ρ′(m2),

between ρ̂ and ρ is minimized, J being the Fisher metric
defined as

J
[
m1,m2

]
= Covm∼p(m|Θ)

[
Kd(|m−m1|),Kd(|m−m2|)

]
,

' Covm∼p̂(m)

[
Kd(|m−m1|),Kd(|m−m2|)

]
.

As we shall see this projection turns out to be a linear
regression of the centered random variable

V̂ (m) =

∫
dm′ρ̂(m′)Kd(|m−m′|)

− Em∼p̂(m)

[∫
dm′ρ̂(m′)Kd(|m−m′|)

]
onto the set of centered random variables (the score vari-
ables associated to Θ)

Vj(m)
def
=

∫
dm′δ

(
nTj m

′ − θj
)
Kd(|m−m′|)

− Em∼p̂(m)

[∫
dm′δ

(
nTj m

′ − θj
)
Kd(|m−m′|)

]
= |nTj m− θj | − Em∼p̂(m)

[
|nTj m− θj |

]
.

Em∼p̂(m) and Covm∼p̂(m) denote respectively empirical
expectation and covariance, according to our assumption
that the solution is close to p̂. Indeed, from elementary
linear algebra, the orthogonal projection V ‖ of a given
vector V̂ , onto a subspace spanned by a set of indepen-
dent vectors Vk is given by

V ‖ =
∑
k,l

[
G−1]kl(Vl, V̂ )Vk

with Gkl = (Vk, Vl) the Gram matrix of the set of vector
Vk for some given inner product (·, ·). Specified to our
problem, the projection is given by V ‖ with G the em-
pirical covariance matrix of {V1, . . . VNh} and (Vk, V̂ ) the

empirical covariance between Vk and V̂ (if the set Vk is
not independent the pseudo-inverse of G is taken instead
of G−1). At this point this regression seems un-tractable
since V̂ involves a very complicated density of charge ρ̂.
This is not the case because by construction we have∫
dm′ρ̂(m′)Kd

(
|m′−m|

)
=

1

Nv
log p̂(m)−S[m]+F⊥[m],

and log p̂(m) = log 1
M when evaluated on the data. This

means that the solution to our projection problem is ob-
tained by performing the previous linear regression with

V̂ (m) = F⊥[m]− S[m] + Em∼p̂(m)

[
F⊥[m]− S[m]

]
,

so that the RBM distribution will be finally of the form

PRBM(m) =
1

Z
e−NvF(m|Θ)

with

F(m|Θ) = F⊥[m]− S[m]−
Nh∑
j=1

Θj |nTj m− θj |,

def
= V (m)− VRBM (m),

i.e. a difference between 2 convex potential whenever
F⊥[m] is convex or negligible. The interpolation point
corresponding to the situation where there is a sufficient
amount of Coulomb features to model exactly the em-
pirical distribution is shown on Figure 4. In this ap-
pealing picture there is however a loophole hidden un-
der the carpet. The fact that we impose the features
weights to be non-negative insures the regression curve
to be convex but do not prevent it to pass above the fit-
ted potential in empty regions of data. The reason for
this, while the information theory argument would seem
to provide some strong guarantee at first sight, is that
the empirical Fisher metric is not relevant everywhere
on the embedding functional space defined by the RBM
features used to approximate V (m), but only on regions
supported with data. Other directions are represented by
random variables which are decorrelated from the data.
This requires the linear regression to be complemented
with some additional regularization which remains out
of our reach at this point.

m

θk

VRBM(m)V (m)

data point

2 arctan(Θk)

FIG. 4. Picture of the VRBM(m) (in blue) at the interpolation
threshold in 1-d.
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