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Abstract 15 

Generative models have shown breakthroughs in a wide spectrum of domains due to 16 

recent advancements in machine learning algorithms and increased computational 17 

power. Despite these impressive achievements, the ability of generative models to 18 

create realistic synthetic data is still under-exploited in genetics and absent from 19 

population genetics. 20 

 21 

Yet a known limitation of this field is the reduced access to many genetic databases 22 

due to concerns about violations of individual privacy, although they would provide a 23 

rich resource for data mining and integration towards advancing genetic studies. Here 24 

we demonstrate that we can train deep generative adversarial networks (GANs) and 25 

restricted Boltzmann machines (RBMs) to learn the high dimensional distributions of 26 

real genomic datasets and create artificial genomes (AGs). Additionally, we ensure 27 

none to little privacy loss while generating high quality AGs. To illustrate the promising 28 

outcomes of our method, we show that augmenting reference panels with AGs 29 

improves imputation quality for low frequency alleles. In summary, AGs have the 30 

potential to become valuable assets in genetic studies by providing high quality 31 

anonymous substitutes for private databases.  32 
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Introduction 33 

Availability of genetic data has increased tremendously due to advances in sequencing 34 

technologies and reduced costs (Mardis 2017). The vast amount of human genetic 35 

data is used in a wide range of fields, from medicine to evolution. Despite the 36 

advances, cost is still a limiting factor and more data is always welcomed, especially 37 

in population genetics and genome-wide association studies (GWAS) which usually 38 

require substantial amounts of samples. Partially related to the costs but also to the 39 

research bias toward studying populations of European ancestry, many autochthonous 40 

populations are under-represented in genetic databases, diminishing the extent of the 41 

resolution in many studies (Cann 2002; Popejoy and Fullerton 2016; Mallick et al. 42 

2016; Sirugo et al. 2019). Additionally, a huge portion of the data held by government 43 

institutions and private companies is considered sensitive and not easily accessible 44 

due to privacy issues, exhibiting yet another barrier for scientific work. A class of 45 

machine learning methods called generative models might provide a suitable solution 46 

to these problems. 47 

 48 

Generative models are used in unsupervised machine learning to discover intrinsic 49 

properties of data and produce new data points based on those. In the last decade, 50 

generative models have been studied and applied in many domains of machine 51 

learning (Libbrecht and Noble 2015; Zhang et al. 2017; Rolnick and Dyer 2019). There 52 

have also been a few applications in the genetics field (Davidsen et al. 2019; Liu et al. 53 

2019). Among the various generative approaches, we focus on two of them in this 54 

study, generative adversarial networks (GANs) and restricted Boltzmann machines 55 

(RBMs). GANs are generative neural networks which are capable of learning complex 56 

data distributions in a variety of domains (Goodfellow et al. 2014). A GAN consists of 57 

two neural networks, a generator and a discriminator, which compete in a zero-sum 58 

game (Supplementary Figure 1). During training, the generator produces new 59 

instances while the discriminator evaluates their authenticity. The training objective 60 

consists in learning the data distribution in a way such that the new instances created 61 

by the generator cannot be distinguished from true data by the discriminator. Since 62 

their first introduction, there have been many successful applications of GANs, ranging 63 

from generating high quality, realistic imagery to gap filling in texts (Ledig et al. 2017; 64 
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Fedus et al. 2018). GANs are currently the state-of-the-art models for generating 65 

realistic images (Brock et al. 2018). 66 

 67 

A restricted Boltzmann machine, initially called Harmonium is another generative 68 

model which is a type of neural network capable of learning probability distributions 69 

through input data (Smolensky 1986; Teh and Hinton 2001). RBMs are two layer neural 70 

networks consisting of an input (visible) layer and a hidden layer (Supplementary 71 

Figure 2). The learning procedure for the RBM consists in maximizing the likelihood 72 

function over the visible variables of the model. This procedure is done by adjusting 73 

the weights such that the correlations between the visible and hidden variables on both 74 

the dataset and sampled configurations from the RBM converge. Then RBM models 75 

recreate data in an unsupervised manner through many forward and backward passes 76 

between these two layers (Gibbs sampling), corresponding to sampling from the 77 

learned distribution. The output of the hidden layer goes through an activation function, 78 

which in return becomes the input for the hidden layer. Although mostly overshadowed 79 

by recently introduced approaches such as GANs or Variational Autoencoders 80 

(Kingma and Welling 2013), RBMs have been used effectively for different tasks (such 81 

as collaborative filtering for recommender systems, image or document classification) 82 

and are the main components of deep belief networks (Hinton and Salakhutdinov 2006; 83 

Hinton 2007; Larochelle and Bengio 2008). 84 

 85 

Here we propose and compare a prototype GAN model along with an RBM model to 86 

create Artificial Genomes (AGs) which can mimic real genomes and capture population 87 

structure along with other characteristics of real genomes. We envision two main 88 

applications of our generative methods: (i) improving the performance of genomic 89 

tasks such as imputation, ancestry reconstruction, GWAS studies, by augmenting 90 

genomic panels with AGs serving as proxies for private datasets, (ii) demonstrating 91 

that a proper encoding of the genomic data can be learned and possibly used as a 92 

starting input of various inference tasks by combining this encoding with recent neural 93 

network-based tools for the reconstruction of recombination, demography or selection 94 

(Sheehan and Song 2016; Adrion et al. 2019; Flagel et al. 2019).  95 
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Results 96 

Reconstructing genome wide population structure: 97 

Initially we created AGs with GAN, RBM, and two simple generative models for 98 

comparison: a Bernoulli and a Markov chain model (see Materials & Methods) using 99 

2504 individuals (5008 haplotypes) from 1000 Genomes data (1000 Genomes Project 100 

Consortium et al. 2015), spanning 805 SNPs from all chromosomes which reflect a 101 

high proportion of the population structure present in the whole dataset (Colonna et al. 102 

2014). Both GAN and RBM models seem to capture a good portion of the population 103 

structure present in 1000 Genomes data while the other two models could only 104 

produce instances centered around 0 on principal component analysis (PCA) space 105 

(Figure 1). All major modes, corresponding to African, European and Asian genomes, 106 

seem to be well represented in AGs produced by GAN and RBM models. Uniform 107 

manifold approximation and projection (UMAP) mapping results also correlate with the 108 

performed PCA (Supplementary Figure 3). We additionally checked the distribution of 109 

pairwise differences of haploid genomes to see how different AGs are from real 110 

genomes (Supplementary Figure 4). Both RBM and GAN models seem to have highly 111 

similar distributions to the distribution of pairwise differences of the real genomes within 112 

themselves. Especially RBM excels at acquiring the real peaks, indicating a high 113 

similarity with real genomes. Since GANs and RBMs show an excellent performance 114 

for this use case, we further explored other characteristics using only these two 115 

models.  116 
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Figure 1. The six first axes of a PCA applied to real (gray) and artificial genomes (AGs) 117 

generated via Bernoulli (green), Markov chain (purple), GAN (blue) and RBM (red) 118 

models. There are 5000 haplotypes for each AG dataset and 5008 (2504 genomes) 119 

for the real dataset from 1000 Genomes spanning 805 informative SNPs. See 120 

Materials & Methods for detailed explanation of the generation procedures. 121 

 122 
 123 
Furthermore, similarly to tSNE and UMAP, RBMs perform a non-linear dimension 124 

reduction of the data and provides a suitable representation of a genomic dataset as 125 

a by-product based on the non-linear feature space associated to the hidden layer 126 

(Supplementary Text). As Diaz-Papkovich et al (Diaz-Papkovich et al. 2019), we found 127 

that the RBM representation differs from the linear PCA ones. Here we plot the 128 

representation corresponding to the selected RBM model and exhibit its rapid evolution 129 

through training (Supplementary Figure 5). 130 

 131 

Supplementary Figure 5 shows that African, East Asian, and to a lesser extent, 132 

European populations stand out on the two first components. The Finnish are slightly 133 

isolated from the other European (similar to Peruvian from American) populations on 134 

the first components. South Asians are located at the center separated from 135 

Europeans, partially overlapping with American populations, and stand out at 136 

dimension 5 and higher. Interestingly when screening the hidden node activations, we 137 

observed that different populations or groups activate different hidden nodes, each one 138 

Real Bernoulli Markov_w10 GAN RBM
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representing a specific combination of SNPs, thereby confirming that the hidden layer 139 

provides a meaningful encoding of the data (Supplementary Figure 6). 140 

 141 

Reconstructing local high-density haplotype structure: 142 

To evaluate if high quality artificial dense genome sequences can also be created by 143 

the generative models, we applied the GAN and RBM methods to a 10K SNP region 144 

using (i) the same individuals from 1000 Genomes data and (ii) 1000 Estonian 145 

individuals from the high coverage Estonian Biobank (Leitsalu et al. 2015) to generate 146 

artificial genomes. PCA results of AGs spanning consecutive 10K SNPs show that both 147 

GAN and RBM models can still capture the relatively toned-down population structure 148 

(Supplementary Figure 7) as well as the overall distribution of pairwise distances 149 

(Supplementary Figure 8). Looking at the allele frequency comparison between real 150 

and artificial genomes, we see that especially GAN performs poorly for low frequency 151 

alleles, due to a lack of representation of these alleles in the AGs (Supplementary 152 

Figure 9). On the other hand, the distribution of the distance of real genomes to the 153 

closest AG neighbour show that GAN model, although slightly underfitting, outperforms 154 

RBM model, for which an excess of small distances points towards slight overfitting 155 

(Supplementary Figure 10). 156 

 157 

Additionally, we performed linkage disequilibrium (LD) analyses comparing artificial 158 

and real genomes to assess how successfully the AGs imitate short and long range 159 

correlations between SNPs. Pairwise LD matrices for real and artificial genomes all 160 

show a similar block pattern demonstrating that GAN and RBM accurately captured 161 

the overall structure with SNPs having higher linkage in specific regions (Figure 2a). 162 

However plotting LD as a function of the SNP distance showed that all models capture 163 

weaker correlation, with RBM outperforming the GAN model perhaps due to its 164 

overfitting characteristic (Figure 2b). To further determine the haplotypic integrity of 165 

AGs, we performed ChromoPainter (Lawson et al. 2012) and Haplostrips (Marnetto 166 

and Huerta-Sánchez 2017) analyses on AGs created using Estonians as the training 167 

data. It was visually impossible to distinguish the difference between real and artificial 168 

genomes in terms of local haplotypic structure with Haplostrips (Supplementary Figure 169 

11). However, majority of the AGs produced via GAN model displayed fractured 170 

chunks when painted against 1000 Genomes individuals whereas RBM AGs were 171 

nearly indistinguishable from real genomes (Supplementary Figure 12). 172 
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Figure 2. Linkage disequilibrium (LD) analyses on real and artificial Estonian 173 

genomes. a) Correlation (r2) matrices of SNPs. Lower triangular parts are SNP 174 

pairwise correlation in real genomes and upper triangular parts are SNP pairwise 175 

correlation in artificial genomes. b) LD as a function of SNP distance. Pairwise SNP 176 

distances were stratified into 50 bins and for each distance bin the correlation was 177 

averaged over all pairs of SNPs belonging to the bin. 178 

 179 

 180 
 181 
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After demonstrating that our models generated realistic AGs according to the 182 

described summary statistics, we investigated further whether they respected privacy 183 

by measuring the extent of overfitting. We calculated two metrics of resemblance and 184 

privacy, the nearest neighbour adversarial accuracy (AATS) and privacy loss presented 185 

in a recent study (Yale et al. 2019). AATS score measures whether two datasets were 186 

generated by the same distribution based on the distances between all data points and 187 

their nearest neighbours in each set. When applied to artificial and real datasets, a 188 

score between 0.5 and 1 indicates underfitting, between 0 and 0.5 overfitting (and likely 189 

privacy loss), and exactly 0.5 indicates that the datasets are indistinguishable. By using 190 

an additional real test set, it is also possible to calculate a privacy loss score that is 191 

positive in case of information leakage, negative otherwise, and approximately ranges 192 

from -0.5 to 0.5. Computed on our generated data, both scores support haplotypic 193 

pairwise difference results confirming the underfitting nature of GAN AGs and slight 194 

overfitting nature of RBM AGs with a risk of privacy leakage for the latter (Figure 3a 195 

and 3b). 196 

 197 

Since it has been shown in previous studies that imputation scores can be improved 198 

using additional population specific reference panels (Gurdasani et al. 2015; Mitt et al. 199 

2017), as a possible future use case, we tried imputing real Estonian genomes using 200 

1000 Genomes reference panel and additional artificial reference panels with Impute2 201 

software (Howie et al. 2011). Both combined RBM AG and combined GAN AG panels 202 

outperformed 1000 Genomes panel for the lowest MAF bin (for MAF < 0.05, 0.015 and 203 

0.024 improvement respectively) which had 5926 SNPs out of 9230 total (Figure 3b). 204 

Also mean info metric over all SNPs was 0.009 and 0.015 higher for combined RBM 205 

and GAN panels respectively, compared to the panel with only 1000 Genomes 206 

samples. However, aside from the lowest MAF bin, 1000 Genomes panel 207 

outperformed both concatenated panels for all the higher bins. This might be a 208 

manifestation of haplotypic deformities in AGs, that might have disrupted the 209 

imputation algorithm. 210 

 211 
  212 
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Figure 3. a) Nearest neighbour adversarial accuracy (AATS) of artificial genomes 213 

generated from Estonian Biobank. Black line indicates the optimum value whereas 214 

values below the line indicate overfitting and values above the line indicate underfitting. 215 

b) Privacy loss. Positive values indicate information leakage, hence overfitting. c) 216 

Imputation evaluation of three different reference panels based on Impute2 software’s 217 

info metric. Imputation was performed on 8678 Estonian individuals (which were not 218 

used in training of GAN and RBM models) using only 1000 Genomes panel (gray), 219 

combined 1000 Genomes and GAN artificial genomes panel (blue) and combined 1000 220 

Genomes and RBM artificial genomes panel (red). SNPs were divided into 10 strata, 221 

from 0.05 to 0.1, after which mean info metric values were calculated for each stratum. 222 

Bars in the zoomed section show the standard error of mean. 223 

  224 
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Linking genotypes with phenotypes: 226 

We then explored the possibility of creating AGs with unphased genotype data and 227 

recreating phenotype-genotype associations using generative models. As a proof of 228 

concept, we created GAN AGs via training on 1925 Estonian individuals with 5000 229 

SNPs using unphased genotypes instead of haplotypes. There was an additional 230 

column in this dataset representing eye color (blue or brown). This region 231 

encompasses rs12913832 SNP which is highly associated with eye color (Han et al. 232 

2008; Eriksson et al. 2010; Zhang et al. 2013). In our real genomes dataset, nearly 233 

96% of the individuals possessing at least one ancestral allele A have brown eye color. 234 

The AGs were able to reproduce the same genotypic-phenotypic association with a 235 

ratio of 80% with the same allele A. Similarly, 97% of all blue-eyed individuals have the 236 

both derived alleles (G) whereas the same percentage is 88% in GAN AGs. There are 237 

no blue-eyed individuals who have both ancestral alleles in the real dataset but this 238 

number is 9 out 1925 in GAN AGs (Supplementary Table 1). We weren’t able to create 239 

RBM AGs for this dataset.  240 
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Discussion 241 

In this study, we applied generative models to produce artificial genomes and 242 

evaluated their characteristics. To the best of our knowledge, this is the first application 243 

of GAN and RBM models in this context, displaying overall promising applicability. We 244 

showed that population structure and frequency-based features of real populations can 245 

successfully be preserved in AGs created using GAN and RBM models. Furthermore, 246 

both models can be applied to sparse or dense SNP data given a large enough number 247 

of training individuals. Our different trials showed that the minimum required number 248 

of individuals for training is highly variable, possibly correlated with the diversity among 249 

individuals (data not shown). Since haplotype data is more informative, we created 250 

haplotypes for the analyses but we also demonstrated that the models can be applied 251 

to genotype data too, by simply combining two haplotypes if the training data is not 252 

phased (see Materials & Methods). In addition, we showed that it is possible to 253 

generate AGs with simple phenotypic traits through genotype data (see Results). Even 254 

though there were only two simple classes, blue and brown eye color phenotypes, 255 

generative models can be improved in the future to hold the capability to produce 256 

artificial datasets combining AGs with multiple phenotypes. 257 

 258 

One major drawback of the proposed models is that, due to computational limitations, 259 

they cannot yet be used to create whole artificial genomes but rather snippets or 260 

sequential dense chunks. Although parallel computing might be a solution, this might 261 

further disrupt the haplotype structure in AGs. Instead, adapting convolutional GANs 262 

for AG generation might be another possible solution in the future (Radford et al. 2016). 263 

Another problem arose due to rare alleles, especially for the GAN model. We showed 264 

that nearly half of the alleles become fixed in the GAN AGs in the 10K SNP dataset, 265 

whereas RBM AGs seem to capture more of the rare alleles present in real genomes 266 

(Supplementary Figure 13). A known issue in GAN training is mode collapse (Salimans 267 

et al. 2016). Mode collapse happens when the generator fails to cover the full support 268 

of the data distribution. This failure case could explain the inability of GANs to generate 269 

rare alleles. For some applications relying on rare alleles, GAN models less sensitive 270 

to mode dropping would be a promising alternative (Arjovsky et al. 2017; Lucas et al. 271 

2018). 272 

 273 

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted September 14, 2019. . https://doi.org/10.1101/769091doi: bioRxiv preprint 

https://doi.org/10.1101/769091
http://creativecommons.org/licenses/by-nc-nd/4.0/


An important use case for the AGs in the future might be creating publicly available 274 

versions of private genome banks. Through enhancements in scientific knowledge and 275 

technology, genetic data becomes more and more sensitive in terms of privacy. AGs 276 

might offer a versatile solution to this delicate issue in the future by protecting the 277 

anonymity of real individuals. Our results showed that GAN AGs seem to be 278 

underfitting while RBM AGs seem to be overfitting based on distribution of minimum 279 

distance to the closest neighbour (Supplementary Figure 10) and AATS scores (Figure 280 

3a), although this can be investigated further by integrating  AATS scores within our 281 

models as a criterion for early stopping in training (before the networks start overfitting). 282 

In the context of the privacy issue, GAN AGs have a slight advantage since underfitting 283 

is preferable. More distant AGs would hypothetically be harder to be traced back to the 284 

original genomes. We also tested the sensitivity of the AATS score and privacy loss 285 

(Supplementary Figure 14). It appears that both scores are affected very slightly when 286 

we add only a few real genomes to the AG dataset from the training set. Therefore, 287 

more sensitive measurement techniques should be developed in the future for better 288 

assessment of generated AGs. Additionally, even though we did not detect exact 289 

copies of real genomes in AG sets created either by RBM or GAN models, it is a very 290 

complicated task to determine if the generated samples can be traced back to the 291 

originals. Reliable measurements need to be developed in the future to assure 292 

complete anonymity of AGs to their source. 293 

 294 

Imputation results demonstrated promising outcomes especially for population specific 295 

low frequency alleles. However, imputation with both RBM and GAN AGs integrated 296 

reference panels showed slight decrease of info metric for higher frequency alleles 297 

compared to only 1000 Genomes panel (Figure 3c). We initially speculated that this 298 

might be related to the disturbance in haplotypic structure and therefore, tried to filter 299 

AGs based on chunk counts from ChromoPainter results, preserving only AGs which 300 

are below the average chunk count of real genomes. The reason behind this was to 301 

preserve most real-alike AGs with undisturbed chunks. Even with this filtering, slight 302 

decrease in higher MAF bins was still present (data not shown). Yet results of 303 

implementation with AGs for low frequency alleles and without AGs for high frequency 304 

ones could be combined to achieve best performance. In terms of imputation, future 305 

improved models can become practically very useful, largely for GWAS studies in 306 

which imputation is a common application to increase resolution. Different generative 307 
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models such as MaskGAN (Fedus et al. 2018) which demonstrated good results in text 308 

gap filling might also be adapted for genetic imputation. RBM is possibly another option 309 

to be used as an imputation tool directly by itself, since once the weights have been 310 

learned, it is possible to fix a subset of the visible variables and to compute the average 311 

values of the unobserved ones by sampling the probability distribution (in fact, it is 312 

even easier than sampling entirely new configurations since the fixed subset of 313 

variables will accelerate the convergence of the sampling algorithm). 314 

 315 

As an additional feature, training an RBM to model the data distribution gives access 316 

to a latent encoding of data points, providing a potentially easier to use representation 317 

of data (Supplementary Figure 5). Future works could augment our current GAN model 318 

to also provide an encoding mechanism, in the spirit of (Dumoulin et al. 2016 Jun 2), 319 

(Chen et al. 2016) or (Donahue et al. 2016). These interpretable representations of the 320 

data are expected to be more relevant for downstream tasks (Chen et al. 2016) and 321 

could be used as a starting point for various population genetics analyses such as 322 

demographic and selection inference, or yet unknown tasks. 323 

 324 

Although there are some current limitations, generative models will most likely become 325 

prominent for genetics in the near future with many promising applications. In this work, 326 

we demonstrated the first possible implementations and use of AGs in the forthcoming 327 

field which we would like to name artificial genomics.  328 
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Materials & Methods 329 

Data: 330 

We used 2504 individual genomes from 1000 Genomes Project (1000 Genomes 331 

Project Consortium 2015) and 1000 individuals from Estonian Biobank (Leitsalu et al. 332 

2015) to create artificial genomes (AGs). Additional 2000 Estonians were used as a 333 

test dataset. Another Estonian dataset consisting of 8678 individuals which were not 334 

used in training were used for imputation. Analyses were applied to a highly 335 

differentiated 805 SNP range selected as a subset from (Colonna et al. 2014) and a 336 

dense 10000 SNP range from chromosome 15. We also used a narrowed down 337 

version of the same region from chromosome 15 with 5000 SNPs with an additional 338 

eye color column for unphased genotype data using another 1925 Estonians as 339 

training dataset. In this set, 958 of the Estonian samples have brown (encoded as 1) 340 

and 967 have blue eyes (encoded as 0). In the data format we used, rows are 341 

individuals/haplotypes (instances) and columns are positions/SNPs (features). Each 342 

allele at each position is represented either by 0 or 1. In the case of phased data 343 

(haplotypes), each column is one position whereas in the case of unphased data, each 344 

two column corresponds to a single position with alleles from two chromosomes. 345 

 346 

GAN Model: 347 

We used python-3.6, Keras 2.2.4 deep learning library with TensorFlow backend 348 

(Chollet 2015), pandas 0.23.4 (McKinney 2010) and numpy 1.16.4 (Oliphant 2007) for 349 

the GAN code. Generator of the GAN model we present consists of an input layer with 350 

the size of the latent vector size 600, one hidden layer with size proportional to the 351 

number of SNPs as SNP_number/1.2 rounded, another hidden layer with size 352 

proportional to the number of SNPs as SNP_number/1.1 rounded and an output layer 353 

with the size of the number of SNPs. The latent vector was set with 354 

numpy.random.normal function setting the mean of the distribution as 0 and the 355 

standard deviation as 1. The discriminator consists of an input layer with the size of 356 

the number of SNPs, one hidden layer with size proportional to the number of SNPs 357 

as SNP_number/2 rounded, another hidden layer with size proportional to the number 358 

of SNPs as SNP_number /3 rounded and an output layer of size 1. All layer outputs 359 

except for output layers have LeakyReLU activation functions with leaky_alpha 360 

parameter 0.01 and L2 regularization parameter 0.0001. The generator output layer 361 

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted September 14, 2019. . https://doi.org/10.1101/769091doi: bioRxiv preprint 

https://doi.org/10.1101/769091
http://creativecommons.org/licenses/by-nc-nd/4.0/


activation function is tanh and discriminator output layer activation function is sigmoid. 362 

Both discriminator and combined GAN were compiled with Adam optimization 363 

algorithm with binary cross entropy loss function. We set the discriminator learning rate 364 

as 0.0008 and combined GAN learning rate as 0.0001. For 5000 SNP data, the 365 

discriminator learning rate was 0.00008 and combined GAN learning rate was 0.00001. 366 

Training to test dataset ratio was 3:1. We used batch size of 32 and trained all datasets 367 

up to 20000 epochs. We stopped training based on coherent PCA results of AGs with 368 

real genomes. During each batch, when only the discriminator is trained, we applied 369 

smoothing to the real labels (1) by vectoral addition of random uniform distribution via 370 

numpy.random.uniform with lower bound 0 and upper bound 0.1.  Elements of the 371 

generated outputs were rounded to 0 or 1 with numpy.rint function. 372 

 373 

RBM Model: 374 

The RBM was coded in Julia (Bezanson et al. 2017), and all the algorithm for the 375 

training has been done by the authors. The part of the algorithm involving linear algebra 376 

used the standard package provided by Julia. Two versions of the RBM were 377 

considered. In both versions, the visible nodes were encoded using Bernoulli random 378 

variables {0,1}, and the size of the visible layer was the same size as the considered 379 

input. Two different types of hidden layers were considered. First with a sigmoid 380 

activation function (hence having discrete {0,1} hidden variables), second with ReLu 381 

(Rectified Linear unit) activations in which case the hidden variables were positive and 382 

continuous (there are distributed according to a truncated gaussian distribution when 383 

conditioning on the values of the visible variables). Results with sigmoid activation 384 

function were worse compared to ReLu so we used ReLu for all the analyses 385 

(Supplementary Figure 15). The number of hidden nodes considered for the 386 

experiment was Nh=100 for the 805 SNP dataset and Nh=500 for the 10k one. There 387 

is no canonical way of fixing the number of hidden nodes, in practice we checked that 388 

the number of eigenvalues learnt by the model was smaller than the number of hidden 389 

nodes, and that by adding more hidden nodes no improvement were observed during 390 

the learning. The learning in general is quite stable, in order to have a smooth learning 391 

curve, the learning rate was set between 0.001 and 0.0001 and we used batch size of 392 

32. The negative term of the gradient of the likelihood function was approximated using 393 

the PCDk method (Brügge et al. 2013), with k=10 and 100 of persistent chains. As a 394 
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stopping criterion, we looked at when the AATS score converges to the ideal value of 395 

0.5 when sampling the learned distribution. 396 

 397 

Bernoulli Distribution Model: 398 

We used python-3.6, pandas 0.23.4 and numpy 1.16.4 for the Bernoulli distribution 399 

model code. Each allele at a given position was randomly drawn given the derived 400 

allele frequency  in the real population.  401 

  402 

Markov Chain Model: 403 

We used python-3.6, pandas 0.23.4 and numpy 1.16.4 for the Markov chain model 404 

code. Allele at the initial position was set by drawing from a Bernoulli distribution 405 

parameterized with the real frequency. Each sequence window consisting of a given 406 

number of positions was determined by the probability of the previous sequence 407 

window. After the initial position, window size increased incrementally up to the given 408 

window size. 409 

 410 

Chromosome Painting: 411 

We compared the haplotype sharing distribution between real and artificial 412 

chromosomes through ChromoPainter (Lawson et al. 2012). In detail, we have painted 413 

100 randomly selected “real” and “artificial” Estonians (recipients) against all the 1000 414 

Genome Project phased data (donors). The nuisance parameters -n (348.57) and -M 415 

(0.00027), were estimated running 10 iterations of the expectation-maximization 416 

algorithm on a subset of 3,800 donor haplotypes.  417 

 418 

Haplostrips: 419 

We used Haplostrips (Marnetto and Huerta-Sánchez 2017) to visualize the haplotype 420 

structure of real and artificial genomes. We extracted 500 individuals from each sample 421 

set (Real, GAN synthetics, RBM synthetics) and considered them as different 422 

populations. Black dots represent derived alleles, white ancestral. The plotted SNPs 423 

were filtered for a population specific minor allele frequency >5%; haplotypes were 424 

clustered and sorted for distance against the consensus haplotype from the real set. 425 

See the application article for further details about the method.   426 
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