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This review deals with restricted Boltzmann machine (RBM) under the light of statistical physics. The RBM is a
classical family of machine learning (ML) models which played a central role in the development of deep learning. Viewing
it as a spin glass model and exhibiting various links with other models of statistical physics, we gather recent results dealing
with mean-field theory in this context. First the functioning of the RBM can be analyzed via the phase diagrams obtained
for various statistical ensembles of RBM, leading in particular to identify a compositional phase where a small number of
features or modes are combined to form complex patterns. Then we discuss recent works either able to devise mean-field
based learning algorithms; either able to reproduce generic aspects of the learning process from some ensemble dynamics

equations or/and from linear stability arguments.
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1. Introduction

During the last decade, machine learning has experienced
a rapid development, both in everyday life with the incredible
success of image recognition used in various applications, and
in research!!?! where many different communities are now
involved. This common effort involves fundamental aspects
such as why it works or how to build new architectures and at
the same time a search for new applications of machine learn-
ing to other fields, like for instance improving biomedical im-
ages segmentation'’! or detecting automatically phase transi-
tions in physical systems.[*! Machine learning classical tasks
are divided into at least two big categories: supervised and
unsupervised learning (putting aside reinforcement learning
and the more recently introduced approach of self-supervised
learning). Supervised learning consists in learning a specific
task — for instance recognizing an object on an image or a
word in a speech — by giving the machine a set of samples
together with the correct answer and correcting the prediction
of the machine by minimizing a well-design and easy com-
putable loss function. Unsupervised learning consists in learn-
ing a representation of the data given an explicit or implicit
probability distribution, hence adjusting a likelihood function
on the data. In this latter case, no label is assigned to the data
and the result depends thus solely on the structure of the con-
sidered model and of the dataset.

In this review, we are interested in a particular
model: the restricted Boltzmann machine (RBM). Originally
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31 or product of experts,[®) RBMs were

called Harmonium!
designed!”! to perform unsupervised tasks even though they
can also be used to accomplish supervised learning in some
sense. RBMs are part of what is called generative models
which aim to learn a latent representation of the data in order
to later be used to generate statistically similar new data — but
different from those of the training set. There are Markov ran-
dom fields (or Ising model for physicists), that were designed
as a way to automatically interpret an image using a parallel
architecture including a direct encoding of the probability of
each “hypothesis” (latent description of a small portion of an
image). Later on, RBMs started to take an important role in
the machine learning (ML) community, when a simple learn-
ing algorithm introduced by Hinton et al.,!! the contrastive
divergence (CD), managed to learn a non-trivial dataset such
as MNIST.® It was in the same period that RBMs became
very popular in the ML community for its capability to pre-
train deep neural networks (for instance deep auto-encoder),
in a layer wise style. And, it was then showed that RBMs are
universal approximator!®! of discrete distributions, that is, an
arbitrary large RBM can approximate arbitrarily well any dis-
crete distribution (which led to many rigorous results about the
modelization mechanism of RBMs!!%). In addition, RBMs of-
fer the possibility to be stacked to form a multi-layer genera-
tive model known as a deep Boltzmann machine (DBM). U1
the more recent years, RBMs continued to attract scientific in-
terest. Firstly because it can be used on continuous or discrete
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[12-15] Secondly, because the possible in-

variable very easily.
terpretations of the hidden nodes can be very useful.['%!7] In-
terestingly, in some cases, more elaborate methods such as
GANI8I are not working better.!!”! Finally it can be used for
other tasks as well, such as classification or representation
learning.[?°] Besides all these positive aspects, the learning
process itself of the RBM remains poorly understood. The rea-
sons are twofold: firstly, the gradient can be computed only in
an approximated way as we will see; secondly, simple changes
may have terrible impact on the learning or, messed up com-
pletely with the other meta-parameters. For instance making a

21.22] can affect

naive change of variable in the MNIST dataset!
importantly the training performance (In MNIST, it is usual to
consider binary variable {0, 1} to describe the dataset. Taking
instead {1} naively will affect dramatically the learning of
the RBM). In another example, varying the number of hidden
nodes, while keeping the other mete-parameters fixed, will af-
fect not only the representational power of the RBM but also
the learning dynamics itself.

The statistical physics community, on its side, has a long
tradition of studying inference and learning process with its
own tools. Using idealized inference problems, it has managed
in the past to shed light on the learning process of many ML
models. For instance, in the Hopfield model,[*>-2%] a retrieval
phase was characterized where the maximum number of pat-
terns that can be retrieved can be expressed as a function of the
temperature. Another example is the computation of the stor-

271 on synthetic datasets.!?82°]

age capacity of the Perceptron!
In these approaches, the formalism of statistical physics ex-
plains the macroscopic behavior of the model in term of its
position on a phase diagram in the large size limit.

From a purely technical point of view, the RBM can be
seen for a physicist as a disordered Ising model on a bipar-
tite graph. Yet, the difference with respect to the usual models
that are studied in statistical physics is that the phase diagram
of a trained RBM involves a highly non-trivial coupling matrix
where the components are correlated as a result of the learn-
ing process. These dependencies make it non-trivial to adapt
classical tools from statistical mechanics, such as the replica
theory. 31 We will illustrate in this article how methods from
statistical physics still have helped to characterize both the
equilibrium phase of an idealized RBM where the coupling
matrix has a structured spectrum, and how the learning dy-
namics can be analyzed in some specific regimes, both results
being obtained with traditional mean-field approaches.

The paper is organized as follows. We will first give the
definition of the RBM and review the typical learning algo-
rithm used to train the model in Section 2, Then, in Section 3,
we will review different types of RBMs by changing the prior
on its variables and show explicit links with other models. In
Section 4, we will review two approaches that characterize the

phase diagram of the RBM and in particular its compositional
phase, based on two different hypotheses over the structure of
the parameters of the model. Finally, in Section 5, we will
show some theoretical development helping to understand the
formation of patterns inside the machine and how we can use
the mean-field or TAP equations to learn the model.

2. Definition of the model and learning equa-
tions

2.1. Definition of the RBM

The RBM is an Ising model (or equivalently, a Markov
random field), defined on a bipartite graph structure over two
layers of variables: the visible nodes s;, for i = 1,...,N, and
the hidden nodes 7, = 1,..., MV, with N, and Ny, denoting the
numbers of visible and hidden nodes, respectively. In the fol-
lowing, we will use i, j, k, . .. to enumerate the visible variables
and a,b,c, ... for the hidden ones. No connection between any
pair of visible or hidden nodes occurs . Hence, we will call w
the coupling or weight matrix and denote its elements as wj,
since no other interactions are present (such as w;; or wy). In
addition to the pairwise coupling matrix w, each visible and
hidden node can have a local magnetic field, or local bias (we
will refer to it as bias in the rest of the article), respectively
named 6; and 1,. We can introduce the following Hamilto-
nian:

H[S7T] :_Zsiwiara_zeisi_znaraa (1)
ia i a
from which we define a Boltzmann distribution

pls,7) =  exp(~H]s. ).

where Z is given by
Z= Z exp(—H][s,T]).
{sh{r}
The structure of the RBM is presented in Fig. 1 where the vis-

ible nodes are represented by black dots, the hidden nodes by
red dots, and the weight matrix by blue dotted lines.

T T 7]
1. [ ¢ ° ) P\ Hidden layer
- W; a
] ° ° ° ° ° ° o Visible layer
S1 Si SN,

Fig. 1. Bipartite structure of the RBM.

The benefit of having a bipartite structure is that, when
keeping fixed an entire layer, in our case all the visible or all
the hidden nodes, the variables of the other layer become sta-
tistically independent. In other words, the measure p(s|T)
and p(7|s) factorize over the visible/hidden nodes, respec-
tively. This is an important property to keep in mind since
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it will be used in the learning procedure of the model. We will
see that this property is widely used during the learning in or-
der to draw new samples using a Monte—Carlo Markov chain
(MCMC) by Gibbs sampling.

Historically, the RBM was first defined with binary {0, 1}
variables for both the visible and the hidden nodes in line with
the sigmoid activation function of the perceptron, hence be-
ing directly intepretable as spin-glass model of statistical me-
chanics. A more general definition is considered here by in-
troducing a prior distribution function for both the visible and
hidden variables, allowing us to consider discrete or contin-
uous variables. This generalization will allow us to see the
links between RBMs and other well-known models of ma-
chine learning. From now on we will write all the equations
for the generic case using the notations ¢y (o) and gy(7) to in-
dicate an arbitrary choice of “prior” distribution. Averaging
over the RBM measure corresponding to Hamiltonian (1) will
then be denoted by

<f(377-)>7-l = {Z}p(377—)f(377-)7 ()

where X can represent both discrete sums or integrals and with
the RBM distribution defined from now on as

La(emmexp(-Hs, 7). ()

ps,7)=~

It is worth mentioning that, the choice of the prior distribu-
tion can be rephrased in terms of an activation function on the
conditioned distribution over the visible or hidden variables.
Therefore, when specifying a prior distribution, we will sys-
tematically indicate the corresponding activation function for
the hidden layer, that is p(7|s), which is obtained using the
Bayes theorem

_ _ an(T)exp(=H]s, 7))
Lirygn(T)exp(=H[s, 7))

p(s,7)
Y. p(s T)

p(tls) =

Before entering more into the technical details about the RBM,
it is important to recall that it has been designed as a “learn-
able” generative model in practice. In that sense, the usual
procedure is to feed the RBM with a dataset, tune its param-
eter w, 6, and 1 such that the equilibrium properties of the
learned RBM reproduce faithfully the correlations (or the pat-
terns) present in the dataset. In other words, it is expected that
the learned model is able to produce new data statistically sim-
ilar but distinct from the training set. To do so, the classical
procedure is to proceed with a stochastic gradient ascent (to
be explained in Subsection 2.2) of the likelihood function that
can be easily expressed. Usually the learning of ML models
involves the minimization of a loss function which happens
here to be minus the log likelihood, thus in the following we
will refer to stochastic gradient descent (SGD) instead. First,

>}, whered =1,...,
index of the data. The log-likelihood is given by

= % ; log (Z p(s' T)) = Alldg,llog (p(s)
— Z {log (qu T)exp(— H[s(‘”,ﬂ))} —log(Z)
1

- £ s o)
+) log (th(fa)GXP(Zsfd)wiarﬁnara))] —log(Z).

The gradient with respect to (w.r.t.) the different parameters

consider a set of datapoints {sl(d M is the

will then take a simple form. Let us detail the computation
of the gradient w.r.t. the weight matrix. By deriving the log-
likelihood w.r.t. the weight matrix we get

- (SiTa>H

<SiTa>Ha “4)

where we have used the following notation:

d=1
SiTa >ddtd

(£(5,7))dua = Zl {Z}f p(rls@). )

The gradients for the biases (or magnetic fields) are
2% — (hana— (e ©
a&é = (Ta)data — (Na)2- (M

It is interesting to note that, in expression (4), the gradient is
very similar to the one obtained in the traditional inverse Ising
problem with the difference that in the inverse Ising problem
the first term (sometimes coined “positive term”) depends only
on the data, while for the RBM, we have a dependence on the
model (yet simple to compute). Once the gradient is com-
puted, the parameters of the model are updated in the follow-

ing way:
+1) _ 0, 9L
Wiq Wia +Y3Wm Wt 79_(t) n(’)’ ®)
oL
ei(l+1) ( ) + ’y89 0 (9)
(t+1 oL
-’ an\ a0

where v called the learning rate tunes the speed at which the
parameters are updated in a given direction, the superscript ¢
being the index of iteration. A continuous limit of the learn-
ing process can be formally defined by considering ¢ real and
replacing t + 1 by ¢ + dz, y by ydt and letting dr — 0.
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The difficulty to train an RBM resides in the difficulty to
compute the second term of the gradient, the so-called “nega-
tive term”, which represents , in the gradient over the weight
matrix, the correlation between a visible node i and a hidden
node a under the RBM distribution. Similarly, the gradient
over the biases is difficult to compute, where the negative term
is given by the mean value over the visible/hidden nodes. De-
pending on the value of the parameters of the model (the cou-
plings and the biases), we can either be in a phase where it
is easy to sample configurations from p(s, ), (usually called
paramagnetic phase); either be (if unlucky) in a spin glass
phase, where it is exponentially hard to escape from the spuri-
ous free energy minima; either be (if lucky) in a “recall” phase
where the dominant states correspond to data-like configura-
tions. But even in the latter case, it might be difficult to transit
from one state to another one with random jumps if these states
are separated by large energy or free energy barriers, as in the
Hopfield model for instance.

2.2. Stochastic gradient descent

Considering the difficulty to use Eq. (4) to learn the
model (the computation of the negative term scales exponen-
tially with the system size, and Monte Caro Markov chains
(MCMC) can be very slow to converge), an efficient approxi-
mative scheme name contrastive divergence®! (CD) has been
developed in order to approximate this term. First of all, the
dataset is partitioned into small subsets called minibatches,
and the gradient ascent is performed sequentially over all these
minibatches in a random order. As a result each gradient step
is performed only over a small subset of the whole dataset at
a time. In order to estimate the negative term, the principle of
CD is to start many Monte—Carlo chains in parallel, as many as
the number of samples in a minibatch, and to use each sample
of the minibatch as an initial condition for the chain. The idea
being that starting from desired equilibrium configurations and
making k steps — the number of MC steps is coined in the
method : CD-k— we expect to explore nearby configurations
representative of the dataset when the machine is learned; if
otherwise the chains flow away they will “teach” the RBM
how to adjust the parameters. The interpretation of CD is that
it tends to create a basin of “attraction” centered on the data-
points where nearby configurations will be attractive to these
datapoint under the Gibbs dynamics. In practice, starting from
a datapoint s? a random configuration of the hidden layer is
sampled; in turn given this a configuration of the visible layer
is sampled and so on for k steps. For this we take advantage
of the bipartite structure of the model to draw a whole visi-
ble or hidden layer at once thanks to the factorization of the
conditional distribution p(s|7) and p(7|s):

s' = 1o~ p(7]s?) = 51~ p(s|mo) = - = sp~ p(s|Tie1)

— 7~ p(T]s1), QY

finally s; and 7y are used to estimate the negative term. It is
clear that the CD-k is not directly minimizing the likelihood,
or equivalently the Kullback Leibler (KL) divergence between
the data distribution po(s) and the Boltzmann one p(s). In re-
ality it minimizes the KL divergence Dxy (po||px) between the
data distribution pg and the distribution obtained after k MC
steps py that is defined as

Des(pulpe = T o) toz

k

pe(se)= ) [1r(silm)p(rialsi)

{K(),...,sk,l }{T(),...,‘Ekfl} =1

x po(s0)-

In Ref. [31] it is argued that this procedure is roughly equiva-
lent to minimizing the following KL difference:

Lepr = Dxu(pol|p) — DxL(pilp),

up to an extra term considered to be small without much the-
oretical guaranty. The major drawback of this method is that
the phase space of the learned RBM is never explored since
we limit ourselves to k MC steps around the data configura-
tions, therefore it can lead to estimate very poorly the probabil-
ity distribution for configurations that lie “far away” from the
dataset. A simple modification has been proposed to deal with
this issue in Ref. [32]. The new algorithm is called persistent-
CD (pCD) and consists of having again a set of parallel MC
chains, but instead of using the dataset as initial condition, they
are first initialized from random initial conditions and then the
state of the chains is saved from one update of the parame-
ters to the next one. In other words, the chains are initialized
one time at the beginning of the learning and are then con-
stantly updated a few MC steps further at each update of the
parameters. In that case, it is no longer needed to have as
many chains as the number of samples in the mini-batch even
though in order to keep the statistical error comparable be-
tween the positive and the negative terms it should be of the
same order. More details can be found in Ref. [32] about pCD
and in Ref. [33] for a more general introduction to the learning
behavior using MC. In Section 5, we will intend to understand
some theoretical and numerical aspects of the RBMs learning
process.

3. Overview of various RBM settings

Before investigating the learning behavior of RBMs, let
us have a glimpse at various RBM settings and their relation
to other models, by looking at common possible priors used
for the visible and hidden nodes.
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3.1. Gaussian—Gaussian RBM

The most elementary setting is the linear RBM, where
both visible and hidden nodes have Gaussian priors:

( ) 1 Si2
5i)= ——=exp| —
qv(Si /7271:03 p 20_3 )
1 72
() = =0 (5%,
\/27mo? Op

with oy and oy, are the intrinsic variances of the visible and
hidden variables, respectively. After summing over hidden
variables we get a multi-variate Gaussian distribution over the
visible ones. If not very sophisticated, the model is yet inter-
esting because it presents a non-trivial learning dynamics that
can be written exactly.**371 When using Gaussian prior, the
corresponding activation function p(7|s) is Gaussian centered
on 62 ¥ Wiasi:

o< Hexp ( —|—’L’a2wms,> .

Let us write the marginal distribution over the visible
nodes p(s) (we omit the hidden bias since it can be canceled
by a redefinition of the visible one), starting from Eq. (3) and
integrating over the hidden variables we get

Wi
2 o
i 156
(e 202 ! t> Hexp( ZS W,aWjasj>
i a ij

1
- Z
1 1 o
= 7 €Xp <—ST [203 — zhw'wT} s+sT9>
1
= Eexp( TAs—|—sT9) (12)
2
where we define the precision matrix A = F — %}‘wa

Now we can also identify the conditions for the existence of
the measure p(s). We need the matrix A to be strictly pos-
itive definite, hence that the highest eigenvalue of ww? re-
mains strictly below 1/(62062). More interestingly, the Gaus-
sian prior let us write in closed form the stochastic gradients
(in fact we solve the deterministic equation, not the stochastic
one), hence giving us some hints on the nature of the learning
dynamics of non-linear RBMs, since in any case we expect
a linear regime to take place at the beginning of the learning

process. In the present case, we can rewrite Eq. (4) as

*Z

8wm

d
ZZS.(/' )wja - Gﬁ(s,-Zs])wja
J

J

(Zcuwja Z sls]>w,a>
J
= o} (Zc,-jwja—ZA,.j‘wja>, (13)
j j

where Cjj = (5i8)data = M1 ¥y sl(d)s;d) is the correlation be-
tween the nodes i and j in the dataset, and A~! the inverse of
the precision matrix. At this point, for following Ref. [36], it
is convenient to use the singular value decomposition (SVD)
of w. We note wiz = Y uFwqv? the eigen-decomposition of
the rectangular weight matrix w, where the matrix w and v
correspond to the left (resp. right) eigenvectors of w associ-
ated to the visible (resp. hidden) variables and w, the eigen-
value associated to the mode . As can be seen in Eq. (12),
this transformation will diagonalize the interaction term of the
Hamiltonian of the system. We can now make the following
change of variables:

& — o s __ o
—Zul Si, Ta—zvafa,
i a

under this change of variable, the Gaussian measure factorizes

where }; jaSiWiaWjaSj = Yo sAaw%CsAa and therefore

1 Fccw
T WWo .
—8TAs=—=Y §oq—1 &5
22 * o? *

Writing the distribution in this new basis we obtain
§2,1—o020:w?
p(8) o< exp % :
GV

Hence, we can obtain an exact equation for the gradient in the
basis of the SVD of the weight matrix w. First, we project
Eq. (13) on the modes a—f of the SVD of w

oL p_

() = Z gt = Lt

<§a7ﬁ>7-t

(8iTa)data — <SiTa>7-t]Vg

= <SaTB>data -

Now to simplify we discard the fluctuations associated to the
stochastic gradient by considering instead the full gradient
and an infinitesimal learning rate such that we can consider
the iteration time to be continuous and identify d.L/dw;, ~
dwj,/dt. As a result we obtain the time derivative of the ma-
trix w decomposed over its eigenmodes

dw d

d V
= Zuau —vyvﬁ +uf 5 —LwIvB
iay
+ dVy ,B

d duf dv®
=0qp :;;aJr(lSaﬁ)(uo‘utwaerB Y 'vﬁ).
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This equation shows that, the gradient update of w can be de-
composed when projected on the SVD basis of w into a gra-
dient over the mode w, and a rotation of the matrices u% and
v%. Noticing first that (§o%a) = 62wa(5%), we therefore end
up with the following dynamics for the singular values w:

dWa

dr

dw A A .
— (d> = <Safa>data - <SO!T0‘>7'L
t ) aa

2 ~2 2
= OpWq (<sa>data - <Sa>7-l)
2
2 2 Oy
=ow § )data — —————— (14)
h"Wo (< a> ata 1 _G\?G}%W(zx) )
where <s%c)dm denotes the variance of the components of the
data on the mode

K 1 d) (d
<S(2x>data = Z”za (M Zsz( )SS' )> ”?‘
ia ij
This first result tells us that when keeping the matrices v and
v fixed, the SGD on the mode wy, will adjust the value of wy
such that the r.h.s matches the variance in the direction given
by u?, giving the following limit values:
(§a)daa—0v .. o 2
Poldwa N it (2) 0 > 02,
wh =14 06262(52)daa a/cata = By (15)
0 if (55 data < OF-

We remark that, if the empirical variance given by the data
is smaller than the prior variance of the visible variables the
corresponding mode is filtered out. The evolution of the ma-
trices u% and v® can also be obtained®*”! from the following
expression in the present case (Actually these equations are
given with a wrong sign in Ref. [37] which is corrected here):

du*\T
u o — B
=)
——(1-8)a3
v :(dUOt)Tvﬁ
ap =\ dr

—~(1-8up)of

WB—Wq _ wp +wq

) <sasﬁ>data7 (16)

wa—l—wﬁ Wa—Wg

WB—Wq Wp+Wqg

Wo+wg wa—w[;) Sasplana (17
of the infinitesimal rotations of the vectors u® and v%. In the
particular case of the Gaussian—Gaussian RBM, we can note
the absence of term averaged over the model (.)3;. This is
due to the fact that the SVD corresponds to the eigendecom-
position of the RBM measure (that is, the Gaussian measure
factorizes over the singular modes) and that Eqgs. (16) and (17)
involve correlation between modes & # 3 which are zero here.
From Egs. (16) and (17), we see that a steady state is found
when a direction 4 is found that diagonalizes the empirical
covariance matrix of the dataset.

In short, the Gaussian—Gaussian RBM learns the princi-
pal components of the dataset and for each principal axis the

weight matrix is adjusted until the strength of the correspond-
ing modes w, reaches the value given by Eq. (15). Of course,
modes above threshold acquire a variance which matches the
variance of the dataset in this direction (s2,)7; = (s2)data. We
can somehow say that the Gaussian—Gaussian RBM is per-
forming a sort of SVD of the dataset, keeping only the modes
above a given threshold. It is worth noting that an analysis has
been done in Ref. [35] where it is shown that updating the pa-
rameters of the model using the kCD approximation converges
toward the same solution as the one obtained by maximizing
the likelihood of the model.

We can illustrate the learning mechanism in simple cases
where it is possible to solve explicitly the dynamics. First as-
sume that the RBM has found the principal axes, i.e., consider
the matrices w and v to be fixed. In this case the quantity
(s%>data remains constant. Letting

<§%5>Data - G\%

Xq = 620fw?, and 8y = o2
\4

)

and rescaling time as tcvzcﬁ — t, equation (14) then is rewrit-

xa_Zxa<5a1xax >,
%

and we obtain a solution of the form

ten as

xa(t) = fo ' (8at),

with
by 1 Yo — X
=lo — lo ,
fa(x) gxa(o) 1+8(x g ,ya —Xa(o)
Oa
Yo =17 8o

For 8, < 1 we get a sigmoid type behavior

xo(t) 8y €%
xq(0) 5a+xa(0)(65a’ —1)

To illustrate the rotation of the modes, consider now the situ-
ation where there are 2 modes uy, @ = 1,2 which are a linear
combination of two dominant modes of the data {i,,} with
identical orientation taken in this order, all other modes are
considered to be already properly aligned with the data. Let
then O represent the angle between u; and i; (and also be-
tween u, and i, see Fig. 2). Equation (16) for this pair of
modes is then rewritten as

2 2

de Wo T W
o= o (25) (5152)Dara (1),

Wa _Wﬁ

with
<Sls2>Data(t) =cosfsinb (<S%>Data - <S%>Data) y

<s%)Dam(t) =cos’ 0 <s%>Data +sin’ 0 <s%)Dm,
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(s%}Data(t) =sin’ 6 (s%}Data +cos’ 6 (s§>Dma,

so that finally we get a dynamical system of the form

ad ) (18)

X1 =2x (51 cos? 0 + & sin”> 6 —

1—x1
. ) 2 X2
Xy =2x9 (51 sin” @ + &, cos” 0 — > , (19)
l—xg
. 1 X1 +x2 .
] 2(51 62)x1 - sin(20) (20)

Note that at fixed x; and x, the dynamics of 6 corresponds to
the motion of a pendulum w.r.t the variable 8’ = 46 shown in
Fig. 2.

6 =20=1

us(t)

Fig. 2. Angle between the reference basis given by the data and the mov-
ing one given by the RBM shown on the up left panel. Equivalence with
the motion of a pendulum is indicated on the left bottom panel. Solution of
Eqgs. (18)—(20) of two coupled modes in the linear RBM (right panel).

3.2. Gaussian-spherical

The Gaussian—Gaussian case is interesting as a solvable
model of RBM but of limited scope, since p(s) reduces in
the end to a multivariate Gaussian. Next, a simple non-linear
RBM which remains exactly solvable is based on the so-called
spherical model.3%31 For this model, it is possible to compute
the phase diagram and the equilibrium states once the coupling
matrix is given — more precisely, when the spectral density of
the coupling matrix is given. Here we choose the following
priors to impose a spherical constraint on the hidden nodes:

i

1 2
wo)= o (5.
gn(T) =8 <Z -6 NhNV> ,

a

where & is a parameter of the model.[*?! The interest of such
an RBM is first that the spherical constraint can be dealt with
analytically.[*%4!l Secondly the model can exhibit a phase
transition unlike the Gaussian—Gaussian case. Absorbing the
parameter 62 in the definition of the weight matrix, to follow
the computation of Ref. [40], a simple analysis in the ther-
modynamic limit tells us that the phase transition takes place
when the parameter & exceeds the value o, where o, depends
on the value of the highest mode wp,,x and of the form of the
spectrum of w (typically, 62 o< 1/w2,,., where the pre-factor

depends on the form of the spectrum). The condensation along
this mode of the visible (resp. hidden) magnetization is then

1 _ /2 _
My = N/ E,' ul(s;)21 = Wmax 61/ 6% — G2,
1 F
-2 _ o _ 2 2
me, = —=Y v¥{1,)y =1/62— 62,
o \E; a< d>7‘l c

where we have defined L = +/NyN,. This type of RBM is
again of limited scope to represent data. In the thermody-

given by

namic limit a finite number n = O(1) of modes can condense.
They necessarily accumulate at the top of the spectrum of the
weight matrix and represent a distribution concentrated on an
n-dimensional sphere in absence of external fields while other
non-condensed modes are responsible for transverse Gaussian
fluctuations. The dynamical aspect of this model will be dis-
cussed in Section 5.

To end up this section let us also mention that the finite
size regime is amenable to an exact analysis when restricting
the weight matrix spectrum to have the property of being dou-
bly degenerated (see Ref. [40] for details).

3.3. Gaussian-softmax

The case of the Gaussian mixture if rarely viewed like
that, fits actually perfectly the RBM architecture. Consider
here the case of Gaussian visible nodes and a set of discrete
{0, 1} hidden variables with a constraint corresponding to the

softmax activation function!#2

1 51'2
qV(si) = \/27177636)(13 <_ 20_3) )
an(T) = [ [ (82,0 + 82,.1) 8y, 5,.1-

a
With this formulation, we indeed see that the conditional prob-
ability of activating a hidden node is a softmax function
p(Ta — 1|s) — 28y (Ziwiasi + na) )
Ypexp (X wipsi + M)

It is easy from this expression to recognize the equations of the

Gaussian mixture model (GMM),[*3*4 where the latent vari-
able 7, indicates if a sample belongs or not to the center a. The
position of the associated center is given by the vector w,. It is
even clearer when writing the marginal over the visible nodes
after summing over the hidden nodes in Eq. (3)
1 s%

p(s) =~ ZSXP (na + Z —5 5 +0isi+ SiWia)
zZ= ~ 20y

1 1
= EZexp(nﬁZfﬁ (si — sz[wiaJrOi]z)z

1
+ EG\% [W,‘a + GiD

1 1 2
= ?;paexp(z—r‘g (Si— G\%[Wia+ ei]z) )

i
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by identifying

exp (Ma+Li (02wia+026,)°)
Y, exp (le +Xi (o2wip + 6361-)2> ’

2

Pa

the weight of the mode a in the Gaussian mixture centered in
w,. Now we can see that the extra parameter 6; can be ab-
sorbed in the definition of the weight matrix wﬁa = wis + 6.
It turns out that the positive term of the gradient in Eq. (4)
(ignoring p,) corresponds to the gradient that is obtained in
the GMM. This can be reformulated into the expectation max-
imization (EM) update by considering that p(t,|s) does not
depend on w;,, hence doing the “expectation” step

1 d
(8iTa)data = MZ (s,( ) G\%Wia) p(Ta|5(d>)~ (22)
d
If we impose that the gradient is zero, doing now the “maxi-
mization” step, we obtain
d
(1+1) _ ZdSE  p(1al5“)
“ G\%de(fa|5(d>) ’

where the 1.h.s. is to be understood as the new values for the

(23)

parameters w;, while the conditional distribution on the r.h.s.
(t)

depends on w;, . For an RBM, one would also compute the
negative term of the gradient, involving the derivative of p,

w.r.t. wi,. We obtain the negative term
1
<siTa>’H = G\?Wia p(Ta|S(d)) —Pal - (24)
M
d

Again, we can recover with Eq. (24) the EM update for the
density of the Gaussian mode a in the GMM, by first consid-
ering that the conditioned distribution p(1,|s(?)) does not de-
pend on w;, (expectation step) and by putting the 1.h.s. to zero
(maximization step). The fact that when using the RBM for-
malism we do not obtain directly the same EM equations as in
the GMM is due to the different parametrization of the param-
eters. In the GMM, the density of each Gaussian is defined
right from the beginning as an independent parameter while
when using the RBM, the density of the Gaussian depends on
other parameters such as the weight matrix w.

Phase transition in the learning process An interesting
phenomenon occurs in this model when learning position of
the centers of the Gaussian while submitting the variances oy,
of the Gaussian to an annealing process.*! First of all, start-
ing from a very high variance (equivalently, very high temper-
ature), we can convince ourselves that the learning will end up
finding the center of mass of the dataset. Let us therefore con-
sider that we centered the dataset beforehand: ), s,(d) =0, Vi.
Then, reducing slowly the variance of each component of the
mixture, we can look for the moment at which point the de-
generate solution corresponding to all the centers placed at the

center of masses of the dataset becomes unstable. Lineariz-
ing the EM equations (23) around this point with 1, = 0 and
wiq = 0+ &4, where the € are small perturbations, we can de-
rive the threshold where the linear perturbations get amplified.
The linear stability analysis leads to the following equations
for the perturbation €:

d d d
(+1) stl( )(1+Zj55' )8,5';) _NLthbsﬁ‘ )SJ(-;))
“ o7 La(l +Z.,-s5.d>£j(.;) — Nihzj,,sg.d)sj(‘;))
! O_ 1 y,.0
v

where ¢;; is the covariance matrix of the dataset. From this

expression, one sees that when the variance is higher than the
largest eigenvalue Ac of ¢, i.e. ,0‘3 > Ac, the solution w;, =0
is stable. Then, when 0'3 < Ac, the solution is unstable and
the system starts to learn something more about the dataset
besides its center of mass. It is interesting to note that this
threshold is very similar to the one obtained in Eq. (15) for the
Gaussian—Gaussian RBM. In this model, it is then possible to
study the cascade of phase transition, occurring in a hierarchi-

[46.47] We stress here that, even

cal way on structured datasets.
if it is possible to project the learning equations on the SVD of
the weight matrix as in the two previous analysis, it does not
provide much more insight since this case cannot be solved
exactly by this transformation.

It is also interesting to investigate the behavior of the ex-
act gradient (not using EM) in the presence of a learning rate
Y. When using the gradient, the update equations are given by
) = )

w + YAwj,. In that case we obtain the following

equation for the linear stability:

(t+1) _ O, Yy [0 1 yv.0
& =(1-7¢, "’G*Vz;% <£ja M Zb:sjb> .

Interestingly, the threshold does not depend on the value of y
in that case, meaning that the instability is a generic property
of the learning dynamics. The only change is the speed with
which the instabilities will develop.

3.4. Bernoulli-Gaussian RBM

The next case is the Bernoulli-Gaussian RBM where we
consider the following prior:
1

2 (63,',0 + 5.3‘,',1) 9

qv (Si) =
1 2
gn(Ty) = ———=exp (— “2) )
\/27o} 20
Again, a Gaussian prior implies that the activation function is
Gaussian. It is interesting to consider this version of the RBM

through its relation with the Hopfield model® was realized
in Ref. [48]. Since the hidden variables are Gaussian they can
be integrated out, which leads to a simple analytical form for
the marginals of the visible variables. In some recent works,
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the opposite approach has been done, starting with a Hop-
field model and expressing it as an RBM using the Hubbard-
Stratonovitch (HS) transformation (expressing the exponential
of a square as a Gaussian integral) to decouple the interactions
between spins.[*°01 After integrating over the hidden nodes
in Eq. (3), we end up with the following distribution:

1 o’
pls)= ECXP (211 ZSiSj [Zwiawjail) .
ij a

We recognize a Hopfield model where the patterns are given
by the weights w;, of the RBM and the effective coupling be-
tween two variables i and j is J;; = ), wiswj,. We can also
consider that the variances of the hidden nodes are related to
the temperature of the model.

Some experiments have been conducted in Ref. [51] in or-
der to compare the learning process of the Hopfield model ver-
sus the Bernoulli-Gaussian RBM on artificial data generated
from an Hopfield model with dicrete patterns. It is interesting
to note that, when assuming discrete patterns, the inverse pro-
cedure can be formulated in terms of an approximated Hop-
field model. Thus, the inference of the pattern can be done
directly using a set of TAP equations of the Hopfield model,
and it has been shown that the artificial patterns were inferred
exactly. When using the RBM’s formulation, in the absence
of information over the patterns, only the subspace covered by
the patterns was retrieved with a weak overlap with the true
patterns. In fact, in that case the marginal over the visible
nodes is a function of ww?, which is invariant by rotation of
the v matrix. It explains why the learned weight matrix in the
RBM context does not overlap with the true patterns.

With this machine, it is also possible to impose a maxi-
mum rank in order to reduce the number of parameters needed
to describe the dataset giving the possibility of a trade-off be-
tween a good description of the dataset and the number of
parameters. This property has been used in Ref. [50] to find
global patterns in protein foldings, using the RBM version of
the Hopfield model with g discrete states.

3.5. Gaussian-Bernoulli RBM

At this point we now focus on models where the hidden
layers will have a stronger impact. The integration of the hid-
den layer will not end up in a simple analytical form and there-
fore will make it difficult to understand the effect of the fea-
tures and to characterize properly the learning dynamics. We
first mention the Gaussian—Bernoulli case dealing with the fol-
lowing priors:

1 sl2
qV(Si) = mexp < 20_3) ) (25)
1
qh(Ta) = E (6Ta~0 + 6Ta71) . (26)

When using the discrete {0, 1} variables, we obtain the sig-
moid activation function for the hidden nodes

_ 1

 Ltexp(— Xiwiasi +1a)”

p(ta =1s)

With this parameterization, it is natural to interpret a hidden
node 7 as an active feature when 7 = 1 and an inactive one if
7 = 0. When responding to a given input through the condi-
tional probability p(7|s), the machine is turning on the hid-
den nodes corresponding to overlapping features with the in-
put. Therefore, the input undergoes a non-linear decomposi-
tion on the learned features. Saying it that way, it is somewhat
reminiscent of the independent component analysis (ICA)!>?!
where a matrix X is factorized on a set of independent sources
or components y: & = Ay. The sources here are independent
in the sense that they are independently distributed. In the con-
text of ICA, the goal is to find the inverse of the mixing matrix
in order to recover the sources from the received signal. Con-
cerning this particular RBM, it is proven[®! that under some
assumptions — (i) having the same number of visible and hid-
den nodes, (ii) that the signal comes from a set of independent
sources, and (iii) that the variance of the visible variables is
much smaller than the mean of the signal — there exists a
stable solution for the learning dynamics where the learned
weight matrix corresponds to the un-mixing matrix of the sig-
nal. In this regime, the RBM acts as an ICA. In other words, if
the signal s¢ used as an input for the RBM can be written as a
mixture of sources: s = Ay, a stable solution of the learning
process consists in recovering the inverse mixing matrix in the
weight matrix: w = AL,

To end up with this variant of the RBM, it is interesting
to note that the prior variance of the visible variables here is
in principle a fixed parameter. It has been noted that when
using the prior (25)-(26) the mean of the conditional distri-
bution over the visible p(s;|7) is stretched by the variance
oy. It might be useful to remove this effect by renormaliz-
ing the weight matrix and the visible biases as in Ref. [14]:
w — w/c? and 6; — 6;/c2. Using this parametrization, we
obtain

psilT) R N(6;+ Y wiaTa, 07),
a

where A represents the normal distribution. Note that it is
possible to include the learning of these parameters in the like-
lihood ascent as in Ref. [14]. It is however important to stress
here that even if appealing, the possibility to tune the variance
of each visible node does not solve the problem of learning in-
dividual variances of separated clusters in a dataset. Indeed,
consider the problem where the dataset is formed of many
well-separated clusters with distinct variances. For a given
visible node i, its variance computed over the whole dataset
or instead over a given cluster has no reason to coincide. And
the the prior variance if properly learned will only account for
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the global variance of this node. This should involve a more
complex setting of the RBM which we will not discuss here in
order to account for individual variances of clusters in a com-
plex dataset.

3.6. Bernoulli-Bernoulli RBM

The last model here is traditionally the one which is im-
plied when speaking of RBM. In that case both the visible and
hidden nodes are in {0, 1} with the following priors:

1
0v(s) = 5 (804 8,).

1
qn(Ta) = 3 (8,04 0z,1)-

The activation functions are sigmoid functions, for both the
hidden and visible nodes

1
C14exp(— Yo WiaTa+6)’
- 1

14exp(— X wiaSi +Na)”

p(si=1]T) 27

p(ta=1]s) (28)
In that case, the prior distribution has the advantage of not
having any free parameter to be determined. In practice this
model is used when dealing with a discrete dataset while the
Gaussian—Benoulli is for continuous ones. This model can
also be generalized to the case where the hidden nodes take
more than two states, see Ref. [53] for more details on this
approach.

Rectified linear units (RELU) Let us briefly mention
how the Bernoulli prior on the hidden nodes can be linked to
the RELU activation function®* for the RBM. In a work by
Teh et al.,>) one important shortcoming with Bernoulli prior
was highlighted. With the hidden variable in {0,1}, a given
pattern can be expressed T = 1, or not T = 0. Therefore the
influence of a feature is binary, either 0, either a fixed amount
given by the value of w: it is not possible to tune this amount
as a function of how strongly a hidden node responds to a vis-
ible configuration. Of course it is possible for the machine to
learn many times the same pattern, but this does not seem very
efficient. A simple idea to correct this problem is to duplicate
many times a hidden node, keeping the same features and bias
values. Then, if the probability of turning on this hidden node
is p, the average number of activated hidden nodes for this fea-
ture will be Np giving the possibility to tune the intensity of
the feature.

Generalizing this idea, it is possible to construct an infi-

nite number of replica,>®!

adjusting the bias for each of them
such that in order to activate more and more neurons it is nec-
essary that the signal }; w;s; is stronger and stronger. Let us
focus for a moment on a single hidden node with a feature w;
and a bias 1 along with its replicas @’ = 1,...,N;. We denote

r =Y ,w;s; + 1 the potential associated with this neuron given

the signal s. The number of activated replica will be given by

1 Ni—1

7 Y sig(r(1=d'/VNy)) = log(1+exp(r), (29)
T g/=0 T

where we have defined the sigmoid function sig(x) = (1 +
exp(—x))~!. The rh.s. of Eq. (29) is very close to the RELU
activation function RELU(x) = max (0, x), hence showing that
having all these replicas gives a similar activation function as
RELU. In practice, it is not very efficient to have a large num-
ber of sigmoids for the training algorithm. An approximation
is found by using the truncated Gaussian distribution. The av-
erage number of activated replica is then given by

7, = max(0,r + N (0,0y)), (30)

where now 7, is a RELU hidden node and o, is the variance
associated with the number of activated replicas for the hidden
node a. Equation (30) can now be seen as an approximation of
the truncated-Gaussian prior for the hidden nodes

‘L'2
qh(Ta) o< 5@,>0 €xp (— 2;}1) . (31)

In the following section, we will focus mainly on the
Bernoulli-Bernoulli setting, its equilibrium phase diagram and
its learning dynamics in the mean-field regime.

4. Phase diagram of the Bernoulli-Bernoulli
RBM

In this section, we discuss various aspects of the phase
diagram of the Bernoulli-Bernoulli RBM. In the rest of the
section we will use {41} instead of the usual {0, 1} for com-
modity. There are (at least) two series of works dealing with
the RBM in the thermodynamic limit, each of them making
different hypothesis on the statistical ensemble from which
the RBM is taken. In the first one®”-38 the weight matrix
is taken from a simple statistical ensemble with iid elements
and possibly additional sparse constraints on the patterns as
will be explained in Subsection 4.1. In the second one3%37]
it is assumes that the weight matrix contains a structured part
of rank K = O(1) in addition to a random matrix correspond-
ing to noise; the main results of this approach will be exposed
in Subsection 4.2. Both approaches are based on the replica

[30]

computation'”*! of the free energy. For systems with quenched

disorder, this is a classical approach (the replicas or its equiv-

alent formulation) to find the macroscopic behavior.37-59-621

4.1. Mean-field approach, the random-RBM

This MF approach to the macroscopic behavior of the
RBM is based on statistical ensembles with iid elements of the
weight matrix. Here, a random ensemble for the weight matrix
is defined as follows. The weight matrix will be constructed
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using binary pattern: wi, = &;u/+/Ny. Now, each pattern is
selected to be

07 Pr~ 1_pi7
Sia=1< +1, pr~pi/2, (32)
=1, pr~pi/2.

Using this definition, the degree of sparsity of the system is
p =Y, pi/Ny. The term random-RBM was coined by Tubiana
et al.,'8] but Agliari et al. [63.64] worked on a similar model
although with a different theoretical approach. In particular,
they computed the phase diagram in Ref. [57]. We start by re-
producing here the argument of Agliari that was developed for
the RBM with a finite number of patterns before switching to
the replica computation done in Tubiana’s thesis. ]

Parallel retrieving The usual definition of the Hop-
field model (which we recall here is analogous to a Binary—
Gauss RBM, see Section 3), consists in using extensive pattern
El=+1/y/N, foralli=1,.. , P, with P
being the number of patterns. The Hopfield model in the low

.,Ny, wherea=1,...

storage regime, where the number of patterns is fixed or scales
logarithmically with the system size, is characterized by a low
temperature regime made of configurations with an extensive
overlap with one of the patterns. This model can be recov-
ered from a binary—binary RBM where the number of hidden
nodes has the same scaling. Hence, having M, ~ log(Ny), we
can write exactly the partition function of the binary—binary

RBM in the limit of large system size

exp (B Z SiWiq Ta>

i,a

- ¥

{shir}

= COS L WiqS;
S CRI 0 )

2
~ Y exp ( L Zzw,aw,asls,>

{s} Vijoa
N, B2
= Zexp ( ZB Zma(s)2> ,
{s} a

recovering the Hopfield model with a square inverse temper-
ature, where we define the magnetization along the pattern a
as mgy(s). In Ref. [63], the authors considered a weight dilu-
tion as in Eq. (32) applied to the above binary—binary RBM, or
equivalently to a Hopfield model with a rescaled temperature.
It is important to mention that it is a different procedure than
diluting the network itself, see Ref. [65] for more details on
the other case. Having sparse patterns allows the network to
retrieve more than one pattern at a time. In particular, global
minima of the free energy can have an overlap with many pat-
terns and locally stable states can be composed of a complex
mixture of patterns. We reproduce below in Fig. 3 the plot
from Ref. [63] showing the overlap over three and six patterns
in the (almost) zero temperature limit. We observe in the left

panel that one pattern is fully retrieved when the dilution is
low. Then, when increasing p;, more and more patterns are re-
trieved together until the system enters a paramagnetic phase
at high dilution.

1 0.16
—_—Tn —_—ny
mo msy
m3 m3 10.14
—_
0.8 ms
me 10.12
0.6 01
g 0.08 £
0.4 0.06
0.04
0.2
0.02
0 0
0 0.5 1 0.85 0.9 0.95 1

d d

Fig. 3. From Ref. [63]. Overlap with different patterns when varying the
dilution factor p (named d on the figure) at low temperature. Left: a case
with 3 patterns where we can observe how at small dilution, only one pattern
is fully retrieved while the second and third ones appear for larger dilution.
Right: a case with 6 patterns where the figure is zoomed in the high dilution
region where the branching phenomenon is occurring and all the overlaps
converge toward the same value.

Replica approach of the random-RBM We will now
follow the approach of Tubiana et al.%9! and give more de-
tails on the derivation. This approach is based on a Bernoulli-
RELU architecture giving the possibility to have continuous
positive value for the hidden variables.

The characterization of the phase diagram is based on
the determination of the free energy in thermodynamic limits.
Given the weight ensemble (see Eq. (32)), the weight matrix is
now made of independent and sparse elements. In this context,
the replica analysis can be used to perform the quenched av-
erage. The replicated interaction term can be first easily com-
puted and gives

Ew lexp( Zs wm’cp>] R~ exp (pzlﬁ

2
Pdrpq
N Z%%%%)
Pq

for the interaction term (ia). The interaction between the visi-
ble and hidden nodes can be decoupled using the HS transfor-
mation

232 dg,,dg
exp Plﬁ ZSfS?Tng /H CIM 9pq

2N o
_ P +4
Zﬁprll Ta)) b

introducing the spin-glass order parameter over the replicas
(we denote by p,q,...

_ pi
X exp (Nﬁ (dpqdvg — dpq ;’Sf s —

the replica index)
Gpq ~Enl{TdTh)],
pq NEWK(P:’/P)S?S?”a

where we note that the parameters over the visible nodes are
weighted by the sparsity of the network. Using the replica
symmetric ansatz, the quenched free energy can be computed
and from it a set of order parameters emerges. A new order
parameter is introduced in their derivation: the number L of
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hidden nodes that have a macroscopic activation ~ O(m\/ﬁ ),
while the other ones remain silent (of order 1). This param-
eter is reminiscent from the replica approach of the Hopfield

[24-26] In this approach, the number of patterns that can

model.
be expressed is fixed, in order to investigate the stability of re-
trieving one or more patterns. The important difference here
is that the sparsity p imposes that the diluted weights can let
many patterns be expressed at the same time. Hence, the phase
diagram will be characterized by the value of the weight spar-
sity p and the number of activated hidden nodes L. The phase
diagram is computed numerically by scanning the possible
value for the order parameters (see Ref. [60] for more details).
It is found that when

» p=1and L= 1: no sparsity and only one hidden node is
activated. At low temperature, it gives back the behavior
of the well-known Hopfield model having a recall phase
of the patterns. An interesting additional result when us-
ing ReLu activations is that the capacity of the network
can be increased by playing with the bias on the hidden
nodes, at the cost of reducing the basin of attraction of
the patterns.

* p < 1, a ferromagnetic transition is found when impos-
ing L = 1, where one pattern is recalled at a time.

* p < 1, when all the hidden nodes are all weakly acti-
vated, a SG phase is found.

e p<land Lissuchthat l €« L < Ny; a compositional
phase is numerically identified. It is characterized by an
intermediate number of hidden nodes strongly activated.

In this analysis, it is demonstrated that in the possi-
ble equilibrium behaviors of the random-RBM, an interest-
ing phase mixing many patterns is present that characterizes in
some way the efficient working regime of a learned RBM. It is
of course a simplified case where the patterns are {+1} with
a certain dilution factor. Now, the fact that there exists a fam-
ily of weights where this phase exists is quite different from
showing that the learning dynamics converges toward such a
phase and how. In Tubiana’s thesis, a stability analysis of the
different phases is done showing that for a range of parameters
of the RBM, the compositional phase is indeed the dominant
one. Then, a certain number of numerical results are provided
on the MNIST dataset which tend to confirm that the behavior
of the learned RBM looks similar to a “compositional phase”.
It would therefore be of great interest to characterize the learn-
ing curve theoretically in order to understand how this phase is
reached. It is also interesting to mention a recent work inves-
tigating the role of the diluted weights[%®! during the learning
in a RBM with one hidden node. In this article, it is shown
that the proportion of diluted weights tends to vanish during
the learning procedure. This might be a signal that when the

number of hidden features is very low, the RBM automati-
cally adjusts itself in the ferromagnetic phase described above,
learning a global pattern of the dataset.

4.2. Mean-field approach using rank K weight matrix

The difficulty with the RBM is to be able to study the
phase diagram of the model without discarding the fact that
during the learning, the weights w;, become correlated be-
tween each others: starting from independently distributed
Wiq, We can observe how the spectrum of the weight matrix is
modified during the learning (see Fig. 11 for instance). Clas-
sical approaches in statistical mechanics consider a set of in-
dependent weights, all identically distributed, before trying to
compute the quenched free energy of the system by the replica
trick (in few words, considering the quantity Z" for a given (in-
teger) n, where Z is the partition function, for small n, we can
develop Z" ~ 1 +nlog(Z). The key point here is that it is gen-
erally possible to compute the quenched Z" and then make a
small n expansion). In the present case the hypothesis of inde-
pendent weights cannot hold, as can be seen by looking at the
spectrum of the weight matrix at the beginning of the learning
and a few iterations later. The absorption of information by the
machine prompts the development of strong correlations. This
phenomenon is illustrated in Subsection 5.3 and in Fig. 11. In
order to understand how these eigenvalues affect the phase di-
agram of the system, it is reasonable to assume a particular
statistical ensemble of the weight matrix of the form

K
Wia = Y ufwavy + ria, (33)
a=1

where K < Ny, assuming a low-rank decomposition of the
weight matrix plus some random noise rj,. Here r is a ran-
dom matrix with iid centered Gaussian elements with variance
o. With this decomposition we assume that the eigenvalues
wq correspond to some intrinsic property of a learned dataset,
while the matrices =, u, and v can be treated as quenched
disorder and averaged over. The set of vectors u* and v®
correspond approximately to the left and right eigenvectors of
the matrix w. We can thus start to average Z" over all these
variables. Starting with the average over the random matrix r,
it introduces the following interaction term Y, ., s's? 7} 74,
where p,q run over the n replicas. In this term, it is possible
to decouple the interaction between the visible and the hidden
nodes by introducing the overlap parameters

Opg ~Ervul(dTh)], 34)
Opq ~Ervul(sish)]. (35)

Then, the form of the weight matrix, Eq. (33), leads to the
following change of variable:

1
So = ﬁ;siufx,
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1
Ta = ﬁ;‘tgvg,

v/NyM,. It corresponds to the projection of the vis-
ible and hidden variables over the matrices uw and v coming
from the SVD of w. With this projection we will be able to

where L =

define the order parameters of the system as the condensation
of the visible and hidden nodes over the SVD modes of w.
Using again the Hubbard—Stratanovitch (HS) transformation
in order to define the replicated magnetization

exp (Zs w,arp> = exp (Zwasara)

a
dmg dm
« [ TT 2 a8% crp (LY ottt )
o T o

we obtain two additional order parameters

namely, the condensation of the visible (resp. hidden) nodes
along the SVD modes of w. After some computation, the
replicated free energy is obtained as

dmb dm? d do
E, ., [Z"] = /H o dnig H QpqdQpq

p#q 2
X exp{ (Z Wamgcmoc Z ququ
12 p#t]
L4 VB[, Q 36
- [m,Q] — V. [m,Q])}, (36)

where E indicates an average over the variables that are in sub-
scripts and kK = N, /Ny. The quantities A and B are given by

Alm, Q]

2 1 )
=log [ Z E, (e e Y g OpgSPSUHKA Xy o (Wamby—no Ju®SP )]
Sae{-1,1}

(37
Blm, 0]
=log [

SPe{—1,1}
(38)

In order to avoid more cumbersome computations we
will skip the details, the interested reader being referred to
Ref. [36]. The phase diagram of the model is based on the
behavior of the order parameters Q, 0, m, and m. After taking
the saddle point of the free energy in the limit L — oo keep-
ing Kk fixed, using the replica symmetric ansatz, and letting
the number of replica go to zero, it is possible to distinguish
different phases according to the values of the order param-
eters solutions to the saddle point equations. The order pa-

rameters of the systems in the replica symmetric phase are the

2 _ _1
Z Ey (e \/ETG Ypq Opg ™ THK 4 X o (Waritg—0a)v* 17 ):| .

condensation over the SVD modes (both for the visible and
hidden nodes) 714 and m and the overlaps ¢ and g. The sad-
dle point equations of the free energy lead to the following
self-consistent equations for the order parameters:

p— E,x {v“ tanh (h(x, v))} ;
g=E,, [tanh2 (E(X,V))} , (39)
g = K 3By {u“tanh (h(x,u))} 7

G=E,, [tanh2 (h(x, u))} : (40)

where

1

W) = x4 (o Gt Y (wmy - ),

h(x,v) =K (c Qx—k;(wyﬁzy— Gy)v").

A first look at the equations for the magnetization over the
mode « tells us that they correspond to the usual mean-field
equations of the Sherrington—Kirkpatrick model(®”! projected
on the SVD decomposition of the weight matrix. The same is
true for the overlap, with the difference that we have an over-
lap parameter for each layer. Analyzing these equations, we
can distinguish three phases.

* A paramagnetic phase,
where ¢ =0, § =0, mg = 0, and 71 = 0. In the high

it corresponds to the case

temperature phase there exists only one minimum to the
free energy.

¢ A ferromagnetic phase given by ¢,q,mg,mg # 0. In
this phase, the magnetization of the system is polarized
toward one or many modes Q.

”;\’la = 0.
In this phase, the system is trapped into one of the many

* A spin glass phase, where ¢,§ # 0, but my =

minima of the free energy that are completely uncorre-
lated with the SVD modes of the weight matrix.

The left panel of Fig. 4 shows the phase diagram as a
function of 1/06 and of w,x /0, the ratio of the strongest mode
of w to the variance ¢ of the noise.

From the learning perspective, the interesting phase is the
ferromagnetic one. It seems also important that the learning
avoids entering into the spin glass (SG) phase. The SG phase,
apart from being uncorrelated with the SVD of w, can affect
very badly the MCMC that is used to compute the gradient.
By inspecting the phase diagram in the left panel of Fig. 4,
we understand that at the beginning of the learning it is im-
portant to start with a weight matrix with a small variance ¢
in order to avoid starting from the SG phase. Then, we ex-
pect during learning that one or many eigenvalues w¢ will be
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expressed and that the trajectory will drift toward the ferro-
magnetic phase.

T T
102+ -
s . -
3 s
109 MNIST ——
— Synthetic e
2 25 35 4 100 10
el We /o

Fig. 4. Left: the phase diagram of the model. The y-axis corresponds to the
variance of the noise matrix, the x-axis to the value of the strongest mode of
w. We see that the ferromagnetic phase is characterized by having strong
mode eigenvalues. In this phase, the system can behave either by recalling
one eigenmode of w or by composing many modes together (compositional
phase). For the sake of completeness, we indicate the AT region where the
replica symmetric solution is unstable, but for practical purpose we are not
interested in this phase. Right: an example of a learning trajectory on the
MNIST dataset (in red) and on a synthetic dataset (in blue). It shows that
starting from the paramagnetic phase, the learning dynamics brings the sys-
tem toward the ferromagnetic phase by learning a few strong modes.

The nature of the ferromagnetic phase It is instructive
to look more in details at the ferromagnetic phase to under-
stand the behavior of the RBM. We can distinguish two cases:
in the first one only one eigenvalue wy, is learned (wy > O)
and the other ones are close to zero; in the second scenario,
many eigenvalues are expressed. In fact the first case is quite
simple. Since only one mode has been learned the system will
condense along this mode and it will be very similar to a fer-
romagnet. In the second scenario, we may have many wy, that
have been learned, i.e., which are above the noise threshold.
The question then is whether the system will preferentially
condense along one single mode taken out of the learned ones
or whether it will be able to make compositions by condens-
ing on several modes at the same time. In order to analyze this
second scenario, it is important to recall that in order to derive
the phase diagram one has to perform the quenched averag-
ing over the matrices © and v. The results will depend on the
distribution that is used for the averaging. In Ref. [36], it is
shown that depending on the kurtosis of the distribution taken
over u and v, the system can behave in different ways. Denot-
ing with 7 the relative kurtosis (w.r.t. the normal distribution)
three different behaviors are identified:

* ¥=0, e.g., the Gaussian distribution. In this case, only
the strongest mode is stable, and the weaker ones are
unstable w.r.t. to the strongest one. Here, the system
will condense along the strongest mode only.

e ¥ <0, e.g., the uniform or the Bernoulli distribution.
Here the weaker modes can be metastable if they are
not “too far away” from the strongest one. However the
system will condense only toward one mode.

* ¥> 0, e.g., a sparse Bernoulli, or the Laplace distribu-
tion. In this case, the strongest mode is unstable w.r.t.

weaker ones, leaving the possibility to have condensa-
tion over many modes at the same time. This corre-
sponds to a dual compositional phase, by reference to
the terminology introduced in Ref. [58] which corre-
sponds to combination of features instead of modes.

Hence depending on the form that will take the matrices
u and v during the learning, different types of condensation
may appear. This give us some insight on the way the statis-
tical properties of the SVD of the weight matrix are reflected
on the recall phase. In some cases the system might recall one
macroscopic state, in another one an equilibrium state can be
made of a mixture of modes. We illustrate in the right panel
of Fig. 4 the learning trajectory on the phase diagram obtained
both on artificial and MNIST data.

5. Learning RBM

Let us now discuss possible mechanisms at work during
the learning of a RBM, which as we expect should have some-
thing to do with pattern formation mechanisms.®8] We start
by summarizing what is understood in exactly solvable mod-
els such as the Gaussian—Gaussian and Gaussian-spherical
RBMs. Then we will review a recent work!%! showing how
the learning dynamics on a simple dataset for the Bernoulli—
Bernoulli RBM with one hidden node can be cast into a spa-
tial diffusion equation. Then we will investigate numerically
the behavior of the RBM on the MNIST dataset.
ticular, how the learned features at short time can be inter-

In par-

preted using the SVD of the weight matrix and how, at later
time, they seem to change completely. Then leaving aside
the classical approach based on the Monte—Carlo computation
of the gradient — contrastive divergence,!® persistent con-

g[60,70,71} — we will

trastive divergence,[*?! parallel temperin
show how to use the MF self-consistent equations in order to
compute the negative term to perform the learning. Finally,
we will focus on the ensemble average equations for the learn-
ing, where we show how the MF theory developed in Subsec-
tion 4.2 can be integrated numerically and lead to the learning

curve of the weight matrix w.

5.1. Learning dynamics for exactly solvable RBMs

Gaussian—Gaussian RBM We have already seen in Sub-
section 3.1 that the gradient of the Gaussian—Gaussian RBM
can be computed exactly and how to characterize the growth
of the eigenmodes of the weight matrix when freezing the ro-
tation of the matrices u® and v*. We put additional results
here, operated on an artificial dataset'>’! containing 4 well-
separated Gaussian clusters. Recall that the modes of the SVD
of the dataset that are higher than the intrinsic variance of the
visible modes 63 will be expressed, and the vectors of rotation
u® will aligned themselves with the principal directions of the
dataset owing to Egs. (14), (16), and (17). We can observe
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in Fig. 5 the learning curve obtained for the first eigenmodes
of the system coming out of the bulk. We can also see that
the first eigenvectors u%, associated to the expressed eigenval-
ues of w, are aligning with the first principal directions of the
SVD of the dataset. In parallel, we see that the likelihood —
that can be computed exactly here — of the system increases
stepwise after each new mode is learned.

Gaussian-spherical RBM In the case of the Gaussian-
spherical case, it is again possible to obtain an exact analytical
expression for the response function of the RBM (sarﬁ>[40]
for both the positive and negative terms, where the average is
performed respectively over the dataset and the model distri-
bution. The qualitative pictures is very similar to the previ-
ous one. As for the linear model, linear correlations between
different modes vanish and therefore the matrix w has to ro-
tate until it is properly aligned with the principal directions
of the dataset. At the same time singular values get either
amplified or damped. In contrary to the linear case they do
not evolve independently. Instead, as seen in the left panel of
Fig. 6 lower modes willing to condense exert some pressure
on higher modes and accumulate at the top of the spectrum,
hence pushing the whole spectrum upward. In the right panel

Singular values
T

0 E — —
1000 2000 3000 4000
t

of Fig. 6, to illustrate the result of mode condensation, we
show a scatter plot containing data from the training dataset
and data generated on the trained model when two modes con-

dense.
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Fig. 5. On this artificial dataset, we observe that eigenvalues that follow
(sq)? > o2 are learned and reach the threshold indicated by Eq. (15). In the
inset, the alignment of the first four principal directions of the matrix u®
of the SVD of w and of the dataset. In red, we observe that the likelihood
function is increasing each time that a new mode emerges.
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Fig. 6. Left: the learning curves for the modes wq using an RBM with (Ny,N,) = (100, 100) learned on a synthetic dataset distributed in
the neighborhood of a 20d ellipsoid embedded into a 100d space. Here the modes interact together: the weaker modes push the stronger
ones higher, and they all accumulate at the top of the spectrum, as explained in Subsection 3.2. Right: a scatter plot projected on the
first two SVD modes of the training (blue) and sampled data from the learned RBM (red) for a problem in dimension N, = 50 with two
condensed modes. We can see that the learned matrix w captures relevant directions and that the RBM generates data perfectly similar to

the one of the training set.

5.2. Pattern formation in the 1D Ising chain

In a recent work,[® the formation of features is stud-
ied analytically on a RBM with one hidden node. The train-
ing dataset is generated from a 1D Ising chain with a uni-
form coupling constant and periodic boundary conditions. The
model used for generating the data has a translational symme-
try which is exploited to solve the learning dynamics exactly.
There is indeed available a closed form expression for the cor-
relation function. Thanks to the translation invariance this de-
pends only on the relative distance between the variables. Nu-
merically, it is found that

* the weights w function of the visible node index has a
peak value for one of the visible nodes and decays with
the distance to this node. Since the position of the center

breaks the translation symmetry it tends to diffuse over
the system during the learning.

» Using more hidden nodes (but still few), it is observed
that each feature is peaked at different places and repels
each other to encode the correlation patterns of the data.
Again, the positions of the peaks diffuse with time even
though some repulsive interaction seems to forbid them
to cross. See Fig. 7 taken from Ref. [69] illustrating this
phenomenon.

Now in Ref. [69], the author computed the gradient of a
system with one hidden node
dlogL
aoji = ( s;tanh [ B zi:sjwj — tanh(w;).

data
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This expression can be developed up to the fourth order in w
(and fB), giving in the case of the 1D Ising chain
dlog L
ow;

It is easy to identify in the first two terms the 1D discrete spa-

~ B(wir1 +wi—1) fw,-Zwi +wi + 0w Bw?).
k

tial diffusion. This equation can be cast into a spatial diffusion
equation with additional term in the continuous time limit (see
Ref. [69] for more details). From this small coupling expan-
sion it is also possible to study the stationary solution in the
one hidden node case and show that it is consistent with ex-
perimental results: it describes a peaked function decreasing
rapidly as the distance from the center increases. An approxi-

mated weak coupling equation can also be derived in the case
of two hidden units. In this case, an effective coupling between
the two features vectors wi and wy is present and responsible
for a repulsive interaction between the two peaks.

This illustrates nicely how the features learned by the
RBM tend to describe local correlations between variables.
In addition, these features diffuse over the whole system dur-
ing the learning to restore the translational symmetry without
crossing thanks to a repulsive interactions between them. In
the next section, we will focus on the learning behavior on the
MNIST dataset and see that in that case, the learned features
similarly describe local correlations.
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Fig. 7. Left: figure from Ref. [69], the value of w; for each visible site of a RBM with 3 hidden nodes trained on the dataset of the 1D homogeneous
Ising model with periodic boundary condition. We see three similarly peak shaped potentials with a decreasing magnitude of similar order for the three.
Each peak intends to reproduce the correlation pattern around a central node, and therefore cannot reproduce the translational symmetry of the problem.
Right: figure from Ref. [69], the position of the three peaks as a function of the number of training epochs. We observe that the peaks diffuse while
repelling each others. The diffusion aims at reproducing the correlation patterns of the translational symmetry, while the repelling interaction ensures

that two peaks will not overlap.

5.3. Pattern formation in MNIST: from SVD to ICA?

The pattern formation mechanism can be studied numeri-
cally on the MNIST dataset. MNIST!®! is one of the most used
real dataset in machine learning, it contains 60000 images of
black and white handwritten digits of 28 x 28 pixels, ranging
from 0 to 9. The digits are about all the same size and are at
the center of the image. They are illustrated in Fig. 8.
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Fig. 8. A subset of the MNIST dataset.

To investigate how the patterns emerge from the learn-
ing process, we inspect the features during the learning on
the Bernoulli-Bernoulli RBM. The first phase of the learn-
ing can be understood thanks to a standard linear stability
analysis.[3%37] For this let us recall the learning behavior of
the Gaussian—Gaussian RBM analyzed in Subsection 3.1. In
this simple case, the learning is triggered by the SVD of the
dataset, and the growth of the modes wy, is controlled by how
strong is the mode projected in the principal direction of the
matrix u. Consider now the Bernoulli—-Bernoulli RBM with
{£1} visible and hidden variables (to simplify), and expand
the log-likelihood gradient in the limit of small w (putting the
local biases to zero)

oL

Ly @ (@)
= ~/ tanh . o | — (8iT4
Twe M Ed s, tan Ej S;Wj (8iTa)

1 i d
o Zsl(‘ ) 255 W = Wia
d i
=Y Gijwja—Wia.
J

If we project these equations on the SVD modes of w as in
Subsection 3.1, we obtain the learning dynamics

dwg/dt = wqy [<§(ZX> — l] ,

identical at first order in wy to Eq. (14) in the Gaussian—
Gaussian case, when ¢, = oy, = 1. Hence, at the beginning
of the learning, this RBM follows the same trajectory as the
Gaussian—Gaussian one, where the mode wy, is amplified by
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the principal modes of the dataset. Similarly, it can be shown
that the matrix v will start to align with the principal direc-
tion of the dataset. To see how the features evolve in the non-
linear regime, we train an RBM with a very low learning rate
and 500 hidden nodes on MNIST. In Fig. 9 we observe as ex-
pected from the linear stability analysis, that at the beginning
of the learning the first modes of the weight matrix are almost
identical to the one of the SVD of the dataset. We see in par-
ticular that the features themselves correspond to modes of the
dataset, meaning that the RBM starts by learning global fea-
tures.

Additionally, at this stage of the learning the MC samples
obtained from the RBM are typically prototypes: each sam-
ple is almost identical (or has a large overlap) with a learned
feature. In fact, during the training, if we monitor samples at
each epoch (keeping a low learning rate), we can see that the
samples have a high overlap with one mode at the beginning,
then later on with combinations of modes. To be more pre-
cise, we can distinguish different stages of the learning by in-
specting the features, the produced samples, and the distance
between the discretize features (taking the sign of each fea-
ture and computing the overlap). We illustrate these different
stages in Fig. 10.

Finally at the end of the learning we recover localized fea-
tures as in the study-case of the previous section. It has been
noticed many times that these localized features are very simi-
lar to the ones given by an ICA. To which extent this aspect of
learning is affected by the dataset that is considered is an open
and interesting question. If we push further the learning, we
observe that the RBM keeps learning more and more modes.
It is not clear if the system enters into another phase (spin-
glass or something else) or if it just overfits the dataset. To end
up with these numerical experiments, let us look at the spec-
trum of w, at the beginning, at an intermediate stage, and at
the end of the learning. In Fig. 11, we see that starting from a
Marchenko—Pastur law, coming from the spectrum of a Gaus-
sian random matrix, quite quickly, many eigenvalues get out

10 20 0o 10 20 0 10 20 10 20

of the bulk as they are learned by the machine.
To summarize we have identified the following stages:

100

150

200

250

Stage 1: at initialization, the features are completely
random and therefore the histogram of distances is
Gaussian and centered at zero. The spectrum of w
follows the Marchenko—Pastur distribution. The RBM
starts from the paramagnetic phase.

Stage 2: the RBM enters the ferromagnetic phase, the
first strongest mode of the SVD is learned by all fea-
tures, giving a high positive or negative overlap in
the inter-features distances while the generated samples
have a high overlap with the learned features.

Stage 3: where many modes have emerged, but the
learned features remain global and close to the modes of
the dataset. The histogram of distances becomes much
broader but the generated sample corresponds basically
to the learned features with few variety. The RBM is in
a pure Mattis phase analogous to the recall phase of the
Hopfield model.

Stage 4: finally, after a much longer period, we observe
that the learned features are much alike an ICA decom-
position while the distances between features are still
centered in zero but with a much smaller variance. Fi-
nally the generated samples look very similar to the pro-
vided dataset. The RBM is in a compositional phase,
both regarding the features and the modes (the dual
one).

Stage 5: empirically, we observe that the learning of
the modes of w never stops. Hence, a macroscopic
number of modes is expressed and it is not clear any-
more what would be the behavior of the machine in
this regime, whether this corresponds to a standard spin-
glass phase®%! or another unknown disordered phase.

0 50

100 150 200 250

Fig. 9. Left: the first 10 modes of the MNIST dataset (top) and the RBM (bottom) at the beginning of the learning. The similarity between
most of them is clearly visible. Right: 100 random features of the RBM at the same moment of the learning. We can see that most features
correspond to a mode of the dataset when comparing with the left-top panel.
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Fig. 10. The column represents respectively (i) the first hundred learned features, (ii) the histogram of distances between the binarized features:
W1 = sign(W), and (iii) 100 samples generated from the learned RBM. The first row corresponds to the beginning of the learning when only one
feature is learned. Looking at the histogram, we see that most of the features have a high overlap. Also, the MC samples are all similar to the learned
features. On the second row, the RBM has learned many features, and therefore the histogram is wider but still centered at zero. The MC sampling
however is only capable of reproducing one of the learned features. On the last row the learning is much more advanced. The features tend to be very
localized and the samples correspond now to digits.
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Fig. 11. (a) Singular values distribution of the initial random matrix compared to the Marchenko—Pastur law. (b) As the training proceeds we observe
singular values passing above the threshold set by the Marchenko—Pastur law. (c) Distribution of the singular values after a long training: the Marchenko—
Pastur distribution has disappeared and been replaced by a fat tailed distribution of eigenvalues mainly spreading above threshold and a peak of below-
threshold singular values near zero. The distribution of eigenvalues does not get close to any standard random matrix ensemble spectrum.

In future works, it could be interesting to understand the
mechanism leading to the localization of the features, in partic-
ular whether this is related to some specific tail distribution of
the weight matrix spectrum. An aspect of RBMs completely

absent from the previous description of the learning process

is the behavior of the biases associated to the hidden nodes.
These are very important since they determine the threshold
above which the features are activated and their learning dy-
namics is quite intertwined with the modes dynamics. This

aspect of the learning could be worth studying especially to
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improve present learning algorithms.

5.4. Learning RBM using TAP equations

The difficulty of learning an RBM comes as already said
from the negative term which requires to compute the thermal
average of correlations between a visible and hidden nodes.
In particular, when the machine starts to learn many modes,
it becomes more and more difficult to estimate this term cor-
rectly using Monte—Carlo methods due to the eventually large
relaxation time. In addition, to get a precise measurement, it
is necessary to get many statistically independent samples in
order to reduce the statistical error.

In this section we will derive the mean-field self-
consistent equations that can be used to approximate the nega-
tive term by using a high-temperature expansion of the Boltz-
mann measure. We illustrate the method showing the result of
Gabrié et al."!l where an RBM has been trained by using the
TAP equations. An interesting derivation using a variational
approach in the case of the Gaussian—Bernoulli case has also
been done in Ref. [72].

High-temperature (Plefka) expansion We review here
a famous approach using a high-temperature expansion of the
system in order to compute the mean-field magnetization. This
method is both very simple to implement and also provides
a way to approximate the free energy of the system in the
weak couplings regime. Recent successful approaches!’?74l
showed how it is possible to train an RBM using these mean-
field equations. For this subsection, we will use {+1} binary
variables for simplicity.

For the Ising model, it is well-known that the (naive)
mean-field (nMF) approximation can be written as a set of
self-consistent equations on the magnetizations, and the as-
sociated approximation of the free energy can be computed as

a function of these magnetizations

m; = tanh (Z]{jl’l’lj~kh,’> , Vi

J

o[ () () (12)

ZJ,Jm mj— Zm, i

i<j

These equations can be translated directly to the case of the
RBM, with the only need to specify clearly which variables
are the visible and hidden ones. One gets the following:

m; = tanh <Zw,~ama+6i> ,
a

m, = tanh <Z Wiami+na> ,
i

o))

1—-my, 1—m, 1+m, 1+m,
1 1
B[ e (5 )+ (5 e (5
=Y wiamima =Y min; =Y m,6,
i,a i a

Here, we remind the reader that we use the indices i, j, k for the
visible nodes, and a, b, ¢ for the hidden ones. We recognize in
the first two lines of the free energy the entropy terms S(m;)
and S(m,) of the model for respectively the visible and the hid-
den nodes. Note first that the nMF approximation corresponds
to a first order development in 8 (or in small w), but it can be
generalized to higher orders, recovering the so-called TAP!">]
equations at the second order. Second, we can generalize this
scheme to any order using the Pfleka expansion.!”®’7] Let us
demonstrate first how to obtain the first and second order ap-
proximations in the case of 1 variables. To simplify the com-
putation, we center all the terms around their mean values and
make the computation for a case without local bias

H= —ZS'WiaTa
Z—Z Ta—ma) = L (1= m) L Wiala
i
— Z Ta—Ma) Y Wialti — Y MiWiaM,.
a i ia

Using this expression, we can follow!”’! and compute the mag-

ml Wta

netization in the infinite temperature limit of the following free
energy:

—BA = log [Z exp( [3?—[+Zl —m;)
{s.7}

L AP )

The relation between the magnetization and the Lagrange mul-
tipliers A is obtained by imposing m; = (s;)g—o = A:(0) and
similar constraints for the hidden nodes. Then, we expand the
free energy in a high temperature series

BA— 9IpA /32‘92[“‘
pa= ﬁA’ﬁ -0 B lgg 2 9IB? 5:0+ '

With our Hamiltonian, we can compute the first and second

orders easily

dBA
——=5 | = (H)=) mwiamg,
9B lpo %
J%BA
— Z —m7)(1—m
aﬁz B0 g ia )

where we have used the following identities for the second or-
der computation:

J%BA

8ﬁ8ml 5o _;Wiamav
9’BA
3Bams 5, = —;wmmi.

As show in Ref. [73], the expansion can be easily extended

040202-19



Chin. Phys. B Vol. 30, No. 4 (2021) 040202

to the third order without a big computational cost due to the
particular topology of the RBM. Deriving the free energy ob-
tained at this order w.r.t. the magnetization, we obtain the self-
consistent set of equations defining the TAP equations for the
RBM

m; = tanh (Zwiama — Zwizami(l — mﬁ)) , 41
a a

m, = tanh <Zwmma - Zwizama(l - m?)) . (42
i i

Hence, a solution of the TAP equations should satisfy
Egs. (41) and (42) and give us at the same time the approx-
imated free energy associated to this solution

Flm] = ZS(mi) —I—ZS(ma) — Zwiamima

Wiza 2 2
+27(1—m,-) (1—mg)*. (43)

We can now use these mean-field equations to learn the RBM.
First, we need to take into account the fact that many solutions
to Egs. (41) and (42) exist, each one with a given value of the
free energy. Hence, the partition function can be approximated
by
7— Z efF(m,(-y).,m,(]))’
Y

where the sum runs over all the possible solutions to the mean-
field equations (41) and (42), weighted by the free energy
given in Eq. (43). Using this approximation in the compu-
tation of the likelihood we obtain the following gradient:

L

T ($iTa) data — (mMimg +Wi2a(l _miz)(l _mzzz»MFv
ua

where

_ Y Oye '

(O)mF Y, oy

(44)

corresponds to the model average over all the solutions of
the mean-field equations. We can see here a notable differ-
ence with the approach developed in Ref. [73]. In their work,
Gabrié et al. runs the sums over all obtained fixed points from
the mean-field equations divided by the number of the fixed
points only. The risk is that if the mean-field equations con-
verge toward a fixed point that is suboptimal (having a high
free energy) or even spurious (being a a maximum of the free
energy) the estimation of the negative term will be polluted
by such fixed points. More details on the Plefka expansion on
bipartite Ising model can be found in Ref. [78]. As a final re-
mark, let us insist on the fact that, even if the convergence of
the TAP equations is not guaranteed, problems of convergence
are practically not met in the ferromagnetic phase. On the con-
trary, such problems occur quite often in the spin glass phase
which we wish to avoid in the context of learning the RBM.
Experiment with TAP learning We show here some re-
sults obtained on MNIST using the same parameters as above
but with the mean-field approximation taken from Ref. [73].
Here, the comparison is done using the persistent chain algo-
rithm, where a set of MC chains is maintained all along the
learning whenever using CD, nMF, or the TAP approximation
(in the case of nMF or TAP, the chain is updated using the

corresponding self-consistent equations), see Fig. 12.

0 50 100 150 200 250

Fig. 12. Top: figure taken from Ref. [73], the samples taken from the permanent chain at the end of the training of the RBM. The first two
lines correspond to samples generated using PCD, the second two lines to samples obtained using the P-nMF approximation, and the last
two, using P-TAP. Bottom: 100 features obtained after the training, we can see that they are qualitatively very similar to the ones obtained

when training the RBM with P-TAP.

First we see that the samples generated by all the three
methods are qualitatively similar. Second, the features learned
are also qualitatively similar to the PCD case. Therefore, on
the MNIST dataset the two machines are hardly distinguished

by just looking at the generated samples and learned features,

indicating that the MF/TAP approximation is working very
well. It is also important to point out here that, the advantage
of the mean-field approximation in that case does not rely on
any speed up with regard to the learning procedure. But, more

importantly, it provides complementary tools such as the fixed
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points as local maxima of the free energy and their associated
free energy. For instance, in Ref. [79] an RBM is used as a
prior distribution in the context of compressed sensing where
the mean-field equations are used to infer equilibrium values
of the variables. In Ref. [80], the RBM is used to reconstruct
images from partial observations, again using the mean-field
formulation to infer the states of the missing information.

5.5. Mean-field learning: ensemble average

The mean-field equations derived in Subsection 4.2 for
the RBM, where the weight matrix is constructed as a low
rank decomposition, can be integrated numerically in order to
learn the parameters of the RBM. By contrast to the TAP equa-
tions described in Subsection5.4, which are solved on single
instances, they correspond to the ensemble average (over the
parameters u, v and the noise), i.e., are meant to represent an
average case of learning.

In the approach developed in Ref. [36], using the statisti-
cal ensemble defined in Subsection 4.2 it is possible to have a
mean-field estimate of the response functions involved in the
gradient of the log-likelihood. For the response term on the
data we get

(SaTg)daa = (Sa(sgwp — 0p) (1 —qp[8]))data;

where the parameter gg|[s] is a variant attached to mode f8 of
the spin-glass parameter taken as a function of m in Eq. (39),
when the visible nodes are pinned to the dataset (see Ref. [36]
for details). The negative term is more complicated to com-

Singular values
1.4 T T

1.2
1
3 0.8
S 06
0.4
0.2
0

0 5000

10000 15000

04 T T T

)

-0.4 ' ' '

-0.8 -04 0
Tl

0.8

<
8

pute. It depends on the fixed points obtained through Eqgs. (39)
and (40) for a given set of model parameters. Once the fixed
points are obtained, the response terms of the RBM can be

written as
1 —Lf(mY iY.a¥ Y _ _
b= S X e O D= (i
Y
CLFmY Y .a.GY
ZMFZZC ¥ mY.q7.q7)

Y
where 7y runs over the set of fixed points, and f is the mean-
field free energy that can be derived from Eq. (36). These
response terms allow one also to compute the skew-symmetric
rotation generators of the visible and hidden singular vectors
of w through

w
o = Waf%«sawm ~ (sap)n)
w,
* 7 (o edass = g,
w
v 5 @ (<SaTB>data_<S0‘Tﬁ>H)

ap wafwf3

WB

+ 2 ((sﬁfa>data_ <SI3T“>7")'

w2 —w 5

With this at hand it is therefore possible to integrate nu-
merically the learning process of the RBM random ensemble
defined by Eq. (33), hence given the typical learning trajec-
tory. If doable in principle with any arbitrary data, this was
actually tested in Ref. [36] on a simple synthetic dataset made
of separated clusters. The result is shown in Fig. 13.

Log Likelihood / Number of fixed point

0.15 T T “’l E
40 =
0.1 30 &
=
20 ©
0.05 =
10 i
0 0
0 5000 10000 15000
t
0.8 T . T
04 + -
L 3
0L .
0.4 | % §
0.8 : ' 1
-0.8 -04 0 04 0.8
Z3

Fig. 13. Top panel: Results for a RBM of size (Ny,N,) = (1000,500) learned on a synthetic dataset of 10* samples having 20 clusters
randomly located in a sub-manifold of dimension d = 15. The learning curve for the eigemodes w¢, (left) and the associated likelihood
function (right-red) together with the number of obtained fixed points at each epoch. We can see that, before the first eigenvalue is learned
there is one single fixed point, then as modes are learned, the number of fixed points increases. Bottom panel: Results for an RBM of
size (Ny,Ny) = (100,50) learned on a synthetic dataset of 10* samples having 11 clusters randomly defined a sub-manifold of dimension
d = 5. On the left, the scatter plot of the training data together with the position of the fixed points projected on the first two directions of
the SVD of w. On the right, the projection along the third and fourth axes. The results are shown after learning 5 modes, where 16 fixed

points are found (in fact more than the number of hidden clusters.
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We see again the different eigenvalues emerging one by
one, and that each newly learned eigenvalue is triggering a
jump of the likelihood together with a jump in the number of
fixed points. At the end of the learning, the obtained mean-
field fixed points are located at the center of each cluster of the
dataset, as can be seen on the scatter plots. In Ref. [36], it is
also shown that the behavior is qualitatively similar to what is
routinely obtained when performing a standard learning based
on PCD.

5.6. Other mean-field approach

Other approaches using for instance, message-passing
technique such as BP have been developed in order to infer the
magnetization of RBM instances. These approaches usually
are correct in the limit of weak couplings, and can be used on
single instance by iteratively updating a set of messages, here
O(NyNy) until convergence (see for instance Refs. [49,81]).
In these works, it is shown how BP can be used to infer the
magnetization or the free energy in few well-chosen cases.
However, as far as practical learning tasks are concerned, it
is not clear that this can be used in general when dealing with
the ferromagnetic phase, as can be expected when consider-
ing structured data. In fact, it has been shown in many works
that BP can have very bad convergence properties in a fer-
romagnetic phase when the underlying factor-graph is not a

e!®1 (particularly if the couplings are strong). This would

tre
be most probably the case with RBMs. It is also worth men-
tioning that in the case of the inverse Ising model, BP ap-
proaches never manage to succeed because of the convergence
problems!®?! and the TAP solution is preferred when inferring

83,84 [59,85] using BP

the couplings.3341 However, some attempts
and the replica theory on a RBM with one hidden unit were
done. In that setting, it is possible to compute the marginal
over the weight matrix using BP and therefore to compute its
maximum likelihood given some observed datapoints. The re-
sults tend to show that, as the number of data increases, the
learned features become more localized as is observed in many
experiments. Managing to extend this result to the case of
many hidden nodes would open the possibility to study the
pattern formation using message-passing techniques. An even
more recent study, %! using a variational approach to approx-
imate the posterior distribution of the patterns given the RBM
and a dataset shows on artificial data that the patterns are re-
covered during the learning. Once again, the missing convinc-
ing piece in that case is the applicability to real dataset and the

ability to sample complex distribution.

6. Conclusion

With this review, we strive at showing that not only is
RBM part of a hectic field of study, but it is also an intriguing

puzzle with pieces which are missing in order to be able to un-
derstand the way these models can/could assimilate complex
information/more complex information. While the black box
nature of the learning process starts to fade away very slowly,
there are still many key aspects that we do not understand or
master for such simple models. We try to list interesting leads
for the future.

Learning quality Despite the fact that we are maximiz-
ing a likelihood function (which can not be computed) it is
very hard to obtain a good indicator for comparing two learned
RBMs. Even if many methods exist to compute the likeli-
hood approximately!3”-88] the obtained scores are in general
not commented in regard to robust statistical analysis. If for
very hard cases of image generation, it is easy to compare
the results by eye inspection, there are no general method that
manage to assess the quality of the samples in terms of how
well the learned distribution reproduces the dataset distribu-
tion. Some recent work!®! introduced the notion of “ressem-
blance” and “privacy” that test the geometric repartition of the
true data against the generated samples. This could be a first
step defining scores according to different criteria (actually,
this problem is not specific to the RBM but concerns actually
most of the unsupervised learning models (GANs, VAEs, ...).

The number of hidden nodes It is striking that we are
still unable to have a principled manner of deciding how many
hidden nodes are necessary to learn datasets which are not too
complex. For instance, on MNIST, it is possible to learn a
machine with only 50 hidden nodes and it somehow manages
to produce decent samples. The understanding on how much
hidden nodes are necessary to reach a given sample quality is
completely missing. In addition, the number of hidden nodes
influences a lot the learning behavior of the machine, again in
a way that is not fully understood.

The landscape of free energy When using statistical me-
chanics to understand RBMs, the natural question that comes
in mind is about the landscape of free energy of the learned
machine. It is easy to observe the mean-field fixed points ob-
tained in the ferromagnetic phase and that they do correspond
to prototypes of the dataset. Still, we do not know how these
many fixed points are organized: are there low free energy
paths relating them one from each others? do these paths de-
fine a network structure or instead separated clusters of low
free energy?

The landscape of learned RBMs This is a generic ques-
tion in machine learning: what is the landscape of “good”
learned machines in parameter space (here the weight ma-
trix). For supervised tasks, some consensus seems to describe
a space which is globally flat where all the good models are
next to one another. However this is true for deep models, in
the case of RBM, apart from the permutation symmetry of the
hidden nodes, we have no clue about what this landscape looks

040202-22



Chin. Phys. B Vol. 30, No. 4 (2021) 040202

like.
Link between the dataset and the learned features We

have seen that in the Gaussian—Gaussian case there is a direct

link between the eigen-decomposition of the dataset and the

learned features. However, for the non-linear model, we do

not understand how the modes of the weight matrix are linked

to the dataset, nor to the associated rotation matrices.
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