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Solving the inverse Ising problem by mean-field methods in a clustered phase space with many states
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In this work we explain how to properly use mean-field methods to solve the inverse Ising problem when the
phase space is clustered, that is, many states are present. The clustering of the phase space can occur for many
reasons, e.g., when a system undergoes a phase transition, but also when data are collected in different regimes
(e.g., quiescent and spiking regimes in neural networks). Mean-field methods for the inverse Ising problem are
typically used without taking into account the eventual clustered structure of the input configurations and may
lead to very poor inference (e.g., in the low-temperature phase of the Curie-Weiss model). In this work we explain
how to modify mean-field approaches when the phase space is clustered and we illustrate the effectiveness of our
method on different clustered structures (low-temperature phases of Curie-Weiss and Hopfield models).
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I. INTRODUCTION

The Ising inverse problem has been the subject of a large
amount of works recently [1–5]. Although this problem is
known since many decades under the name of Boltzmann
machine learning (BML), many recent applications and de-
velopments in different fields (e.g., biology [6–8], computer
science [9], and physics [10–12]) have renewed the interest
in studying such problems. The BML can be investigated
under two very different approaches. In the first one, which
concerns this work, a set of data is generated according to
the Gibbs-Boltzmann measure of a generic Ising model. The
input data for the inverse problem are therefore independent
and distributed accordingly to the Boltzmann distribution of
the system [13]. In a second case, the data are generated
according to a stochastic dynamical process which correlates
configurations close in time, and these correlations in the
input data are exploited in solving the inverse problem [14].
In both cases, the traditional Bayesian approach consists of
maximizing the likelihood function of the data. In this work,
we focus on the first case which is commonly named “static
inverse Ising problem” and is harder than the second case.

In the static case, maximizing the likelihood is a compli-
cated task, because it directly depends on the partition function
which is impossible to compute efficiently (in the general
case, its complexity grows exponentially with the system size).
However, it is still possible to maximize the likelihood by the
expectation-maximization method using a Monte Carlo (MC)
algorithm and doing a Boltzmann learning procedure [13].
The MC algorithm is used to evaluate the average value of
the observables of the system (here the magnetizations and the
correlations) and to update the value of the magnetic fields and
the couplings by doing a gradient ascent. Yet, it is known that
MC estimates do not converge quickly in many cases and may
require many steps to obtain accurate mean values. It means
that the MC algorithm should be run for a long time at each step
of the BML procedure making the method quite slow. For this
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reason, faster methods based on mean-field approximations
are commonly used in practical applications.

In a recent work [11] Nguyen and Berg have revisited the
problem of finding a good mean-field (MF) approximation
for the inverse Ising problem. It was already known that
MF methods fail to provide a good couplings reconstruction
at low temperatures even for ferromagnetic systems (see
Fig. 1 for an example on a ferromagnet and [15] for an
example on a MF spin glass). Worse than that, this problem
in coupling reconstruction occurs also in cases where the
MF approximation is exact in the thermodynamical limit
(e.g., the Curie-Weiss model). This failure in reconstructing
couplings in ferromagnetic systems can be understood by
looking at the input configurations at low temperatures:
below the ferromagnetic transition, indeed, configurations are
clustered in two groups of respectively positive and negative
magnetization. The naive MF (nMF) approximation is based
on the self-consistency equations for the magnetizations,
mi = tanh(β

∑
j Jijmj ), with β being the inverse temperature,

which have three solutions for β > βc: it is well known that
the mi = 0 solution is unphysical, while the two solutions with
mi �= 0 are thermodynamically stable. However, considering
all the input configurations together, the average magnetiza-
tions are zero by symmetry. Therefore, a naive use of MF
equations infer the couplings using the unphysical mi = 0
fixed point, and lead to a very poor result. Please notice
that the same problem arises if one computes correlations
in a naive way: using all input data connected correlations
would not decay at long distance. Therefore, in order to use
properly the nMF equations, it is mandatory to look at the two
other solutions characterized by nonzero magnetization. These
solutions arise naturally when considering the decomposition
of the Gibbs-Boltzmann measure in the configuration space.

The authors of Ref. [11] consider the nMF equations for
both states (of positive and negative magnetizations) at the
same time. In this way they obtain an overconstrained system
of linear equations to be solved. They manage to find a solution
by using the pseudoinverse of a matrix (see [11] for further
details). We will see that this approach can be considerably
simplified in the case of the Curie-Weiss (CW) model, and
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FIG. 1. Inference of couplings in the CW model with N = 100
and two different values of the number M of input configurations.
We see that the nMF method with all the input data is good only
for β < βc = 1. For β > βc the phase space separates into two states
and the nMF method with two clusters gives much better performance
(although it fails badly at high temperature). Inference methods, like
PLM and nMF with density clustering, that take correctly into account
the clustering of input configurations provide the best estimate in
the entire temperature range, both above and below the transition
temperature. In the left inset, we show how the inferred magnetic
field at β = 1.6 decreases when increasing the number of samples
(M ∈ [103,106]) used for the inference process via nMF with K-
means clustering and K = 2. In the right inset the same inferred
magnetic field is plotted vs β, for M = 104,105.

then generalized to models with many free-energy minima.
In Ref. [11] also the case of the Sherrington-Kirpatrick (SK)
model is considered as a case study with a clustered phase
space at low temperatures. We would like to emphasize,
however, that the division in metastable states of the SK model
is somehow problematic for this approach. The metastable
states of the SK model in the glassy phase are highly nontrivial
and therefore it is very difficult even to define them properly in
a system of limited size. Therefore we claim that the inference
algorithm of Ref. [11] as well as the one presented in the
present work are not suitable for this kind of model, for
which more elaborate techniques (such as the pseudolikelihood
method [4,16]) are required.

In the present work we show that couplings can be well
inferred using nMF equations also in the low-temperature
phase if input configurations are previously clustered and
the nMF inference algorithm is applied separately to data in
each cluster. We show that our inference procedure based
on solving the nMF or Thouless Anderson Palmer (TAP)
equations inside each cluster separately is much simpler than
the method proposed in Ref. [11], where self-consistency
equations for each cluster need to be solved simultaneously.
Therefore the use of complicated numerical algorithms such
as the pseudoinverse is not necessary. In addition, we show
that, at variance to what is claimed in Ref. [11], using the
present inference procedure one does not estimate wrongly the
magnetic fields. It is worth mentioning that, when using one
of the MF fixed points with mi �= 0, a spurious magnetic field
unavoidably appears due to errors on the inferred couplings.

However, this magnetic field is very small and decreases when
increasing the number of input data.

In order to prove that our method is very efficient we apply
it to different kind of models. First we show that in the CW
model the results are as good as those from more elaborate
methods, like the pseudolikelihood method. Then we focus on
the Hopfield model where the number of different free-energy
minima can be controlled and made larger. We show that it
is possible to improve the results on the inference process
by clustering the set of input configurations and to infer the
right number of clusters to be used. We should mention that a
previous attempt to infer the couplings in the (sparse) Hopfield
model from data collected in a single state was done in [17].
However, in that work, the interaction network was assumed
to be known and only coupling intensities were inferred, so a
direct comparison with our results is not possible.

II. PROBLEM DEFINITION AND INFERENCE
ALGORITHMS

In the static inverse Ising problem one aims at inferring the
value of the couplings between the variables and the eventual
magnetic fields, given a set of M equilibrium configurations.
More precisely we consider an Ising model with N spins
defined by the Hamiltonian

H(s) = −
∑
i<j

Jij sisj −
∑

i

hisi, (1)

where i,j = 1, . . . ,N . In the static case, the inference process
is done by using input data distributed according to the Gibbs-
Boltzmann measure

PGB(s) = e−βH(s)

Z
where Z =

∑
s

e−βH(s). (2)

We remind here that the M sampled configurations are
assumed to be independent.

In the following we will consider two different families of
inference methods. For mean-field methods, we shall consider
the average magnetizations and correlations of the data,

m̄i = 1

M

M∑
a=1

sa
i , (3)

c̄ij = 1

M

M∑
a=1

sa
i sa

j − m̄im̄j . (4)

These observables are the only information needed to infer
the parameters of the models when using mean-field methods.
We will also consider the pseudolikelihood methods for which
the entire sampled configurations {sa

i } are needed. Let us now
describe how these methods work and how we will use them
in the context of a clustered phase space.

We first consider the naive mean-field approach where the
equations can be simply derived by considering the solution
of the Curie-Weiss model (where Jij = 1/N ). For this model,
the magnetizations and the correlations are given by

mi = tanh

⎛
⎝β

∑
j �=i

Jijmj + βhi

⎞
⎠, (5)
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cik ≡ ∂mi

∂hk

= β
(
1 − m2

i

)
⎛
⎝∑

j �=i

Jij cjk + δik

⎞
⎠. (6)

By inverting Eq. (6) we can reconstruct directly the couplings
J ∗

ij . Then, by using the J ∗ and Eq. (5) we can infer the magnetic
fields h∗

i ,

J ∗
ij = −(c−1)ij + δij

β
(
1 − m2

i

) , (7)

h∗
i = β−1

⎡
⎣atanh(mi) −

∑
j �=i

J ∗
ijmj

⎤
⎦. (8)

We refer to this method as nMF in the rest of the article.
A second approximation commonly used is to consider

the pseudolikelihood method (PLM). PLM is based on the
maximization of the marginals probability of one spin si given
that the rest of the spins are fixed: p(si |sj\i). The PLM consists
of maximizing the sum of all the log-pseudolikelihood [4,16],

PL = 1

NM

∑
i,a

ln
[
p
(
sa
i

∣∣sa
j\i

)]
. (9)

In this method, we need to have access to all the configurations
{sa

i }. The advantage of this method is that it deals also
with high-order correlations and thus provides much better
performances on finite dimensional systems [12,18], but it also
can handle directly clustered phase space. Moreover it has a
polynomial complexity at variance to using the true likelihood
of the data.

Clustering methods and inference with clustered phase space

Here we describe the clustering algorithms that we use
to divide configurations in clusters before applying the nMF
method. These clustering algorithms group configurations
together based on their distances: configurations are put in
the same group if they are “close” enough and “far” from the
other clusters, where the concepts of close and far usually
need to be determined in a self-consistent way. We use the
Hamming distance defined by dab = 1/(4N )

∑
i(s

a
i − sb

i )2. In
the present work we use two different clustering methods.
First we consider the soft K-means clustering [19]. This
method clusterizes the space of configurations by assigning
each configuration to the closest of the k centers “softly” (a
configuration is assign to a center with a given probability).
Then the position of the k centers is updated accordingly
to the position of the configurations inside each cluster. The
procedure is repeated until convergence. This method is very
fast, the complexity scale as O(M), but the results can depend
strongly on the initial conditions (i.e., on how the k centers are
chosen at the beginning).

A second method is based on density clustering. The density
clustering algorithm we consider [20] first defines the density
around each point. In our case the density is the number of
configurations within a given range. Then, each data point is
associated to its closest neighbor with higher density. This
process naturally separates the phase space into a number
of clusters which depend on the range used for defining the
neighborhoods. Therefore by using this algorithm we do not
need to specify the number of clusters. Thus this second

clustering algorithm has the advantage of finding by itself the
number of clusters. It suffers however of a larger complexity,
scaling as O(M2).

After clustering the configurations we have to use them
properly to infer the parameters of the model. We define the
observables of the kth cluster by

m̄
(k)
i = 1

Mk

∑
a∈Ck

sa
i , (10)

c̄
(k)
ij = 1

Mk

∑
a∈Ck

sa
i sa

j − m̄
(k)
i m̄

(k)
j , (11)

where Ck is the set of indices of configurations belonging to the
kth cluster and Mk = |Ck|. We now apply the nMF equations
separately for each cluster and obtain a different estimate of
the parameters for each cluster J

(k)
ij . Finally, to obtain the best

estimate for the couplings we take the weighted average of all
the different estimates,

J ∗
ij = 1

M

∑
k

MkJ
(k)
ij . (12)

To estimate the magnetic field, we first compute them within
each cluster: h

(k)
i is obtained from Eq. (8) with the estimates

J
(k)
ij . The final estimate for the magnetic fields is again given

by the weighted average over the clusters,

h∗
i = 1

M

∑
k

Mkh
(k)
i . (13)

III. RESULTS ON THE CURIE-WEISS MODEL

The Curie-Weiss (CW) model is a fully connected ferro-
magnet with Jij = 1/N , ∀i �= j . The model has a paramag-
netic phase (mi = 0) at high temperature β < βc = 1 and a
ferromagnetic phase (mi �= 0) above βc. In the ferromagnetic
phase, two states of positive and negative magnetizations
coexist. In the limit of very large system sizes (N → ∞)
magnetizations and correlations can be computed analytically
by Eqs. (5) and (6), which are exact up to O(1/N) corrections.
It means that, by using Eqs. (7) and (8) one should obtain
the best possible estimate of the parameters Jij and hi , but
in the ferromagnetic phase, only the solution with nonzero
magnetization of Eq. (5) should be considered (as discussed
in the Introduction). We evaluate now how the following three
inference algorithms perform in the estimate of couplings in
the CW model: (i) the nMF method used naively, without
clustering the configurations; (ii) the nMF method on con-
figurations clustered using two clusters; (iii) the PLM on the
original configurations.

In Fig. 1 we report the error achieved by different methods in
the temperature range β ∈ [0.1,2] with M = 104 and M = 105

in inferring the couplings using the following definition:

ε2 = 2

N (N − 1)

∑
i<j

(Jij − J ∗
ij )2. (14)

For β < βc the paramagnetic fixed point is correct and
therefore the reconstruction achieved by nMF is the best
possible. However, for β > βc the nMF error (red curves)
suddenly rises, because the mi = 0 fixed point is no longer
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the physical one. On the contrary, using the nMF method on
the data clustered with exactly two clusters (green curves),
provides a small error in the ferromagnetic phase, but fails
badly in the paramagnetic phase. The inference methods that
provide the best estimate in the whole temperature range are
the PLM (blue curves) and the nMF with data clustered via
density clustering (purple curve), that automatically split the
input data in one or two clusters, depending on symmetries
in the input data. It is worth stressing that these two methods
have essentially the same error at any temperature: that is even
the nMF approximation provides the best possible estimates if
applied to properly clustered data.

In Fig. 1 we show results obtained with M = 104 and M =
105 in order to make evident whether the uncertainties in the
couplings estimates are due to the noise in the input data or to
an intrinsic limitation of the inference algorithm. For example
deep in the ferromagnetic phase the nMF method has an error
decreasing only slightly when M increases, because the error
is mainly due to a limitation of the method. On the contrary,
PLM and nMF with properly clustered data provide a result
whose uncertainty is mainly due to noise in the input data:
indeed the error decreases as 1/

√
M .

To confirm the correctness of the inference algorithm based
on data clustering and nMF equations, we also looked at the
inferred value of the magnetic field by using Eqs. (8) and
(13). We see clearly in the insets of Fig. 1 that, in the low-
temperature phase, the clustering + nMF method does not
predict any anomalously large magnetic field, thanks to the
fact that, clustering the input data, we are actually using the
magnetized solutions of Eq. (8). In our numerical experiments,
we have found too large inferred magnetic fields only if either
system size was too small or the input data were too noisy:
in the former case the problem resides in the fact Eq. (8) is
crudely approximate, while in the latter case it is a consequence
of large errors in couplings reconstruction.

IV. RESULTS ON THE HOPFIELD MODEL

We now extend our analysis to a more complicated case by
considering the Hopfield model. The Hopfield model has been
introduced long time ago [21] to model neural networks: it is
a fully connected Ising model, whose couplings can be chosen
such that the model free energy has 2P different minima (that
act has attractors for the pattern recovery dynamics). In some
sense, the Hopfield model can be seen as a generalization
of the Curie-Weiss model, which is indeed equivalent to
the P = 1 case. We are interested in studying the inverse
Ising problem in the Hopfield model, because configurations
sampled at low temperature in the Hopfield model are typically
clustered around the 2P free-energy minima: consequently
naive MF methods face even more severe limitations than in
the low-temperature phase of the CW model, and we want to
study how much MF methods for the inverse Ising problem
can be improved by clustering input configurations.

The Hamiltonian of the Hopfield model reads

H(s) = − 1

N

∑
ij

1

P

P∑
α=1

ξα
i ξα

j sisj , (15)

where the P patterns ξα identify the directions of the free-
energy minima. In the standard Hopfield model, the ξs are
drawn from the bimodal distribution, that is ξα

i = ±1 with
probability 1/2 independently. In our study we also consider
the case where the pattern ξ are correlated by setting 10% of
their components equal (ξα

i = ξ
β

i ∀α,β), and anticorrelated
(only when P = 2) by setting 10% of their components in an
opposite way (ξ 1

i = −ξ 2
i ). This model presents a paramagnetic

phase at high temperature, and an ordered phase at low
temperature defined by the states around the patterns {ξ} if the
number of patterns is not too high [22]. The ordered phase is
characterized by a Gibbs-Boltzmann measure clustered around
one of the 2P available states (for a given P there will be 2P

stable states in the low-temperature region due to the spin-flip
symmetry).

We show now our results on inferring the Hopfield
couplings by using MF methods on clustered data. In Fig. 2 we
consider systems with N = 100 spins, P = 2 (therefore four
states) in all the three possible cases (standard, correlated,
and anticorrelated patterns). We observed that MF methods
with the right number of clusters perform similarly to the
PLM, which is at present the best possible algorithm to
solve the inverse Ising problem. The right number of clusters
can be obtained either by density clustering or by maximiz-
ing the likelihood of the clustering obtained by K means
[see Fig. 2(a)].

As in the CW model, also for the Hopfield model the
magnetic fields inferred by MF methods on clustered data
are very small, and independent on the eventual long-range
order present in the model [see inset in Fig. 2(c)].

In Fig. 3 we show the results on inferring couplings of
Hopfield models with P = 3 patterns (and thus six free-energy
minima). Again MF methods applied on input data clustered
with the right number of clusters perform very similarly to
PLM, and much better than standard MF methods applied
directly to all input data. It is worth noticing that the best
result by the clustering + nMF algorithm has been obtained by
running the clustering procedure several times with different
initial conditions (data labeled “many IC” in Fig. 3) and then
picking the clustering having the largest likelihood. This is
expected since a clustering algorithm as K means is not very
stable for large K and its outcome strongly depends on the
initial condition.

Let us finally discuss the time complexity of the three
algorithms we have used: PLM, K means + nMF and
dens.clus. + nMF. Regarding the system size dependence, all
three algorithms have a time complexity O(N3), either because
of the inversion of a N × N matrix in nMF methods, or because
of the computation of the gradient of the pseudolikelihood
(PL), which is O(N ), in a space of O(N2) variables. Their
dependence on the number M of input configurations is
different: PLM is linear in M , but the search for the maximum
of the PL, requires us to compute PL and its derivatives
many times; K means is linear in M , but often a search for
the optimal clustering requires to run it with many different
initial conditions; density clustering is O(M2), so, although it
provides a robust result, it is impracticable when the number
of samples is very high (however, we are aware that the
authors of Ref. [20] are developing a faster version of the
density clustering algorithm). Therefore, nMF methods are
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FIG. 2. Main panels: errors in inferring couplings in Hopfield
models with P = 2 uncorrelated (top), correlated (center), and
anticorrelated (bottom) patterns. The comparison is between MF
methods with clustered data (either K-means or density clustering)
and PLM. In the inset of the top panel, we show that the likelihood of
the clustering algorithm suggests to take one cluster below βc ≈ 1.1
and four clusters above βc. In the inset of the bottom panel we show
the magnetic field inferred by nMF + clustering, which is very small
in both phases.

always faster with a total complexity of O(KMN + N3)
whereas PLM is O(MN3). In practice, we observe it is better
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FIG. 3. Errors on inferring couplings in the Hopfield model with
three patterns (and thus six minima). We observe again that our
algorithm, based on MF methods applied to clustered data, achieves
its best performance when input data are split in six clusters. We
also put for comparison the results obtained when the clustering is
done many times with different initial conditions (labeled “many IC”)
and then we picked the clustering having the largest likelihood. In
this case, the error matches the error obtained when putting each
configuration in the correct cluster. We can see that our method
performs its best at almost any β value, but at few points where
it is particularly difficult to find the best clustering. In the inset we see
that likelihood maximization suggests to use one cluster for β < βc

and six clusters for β > βc.

to use PLM when the number M of input configurations
is small since it gives in general better estimates of the
reconstructed couplings. When M becomes large, nMF with
K-means clustering is clearly recommended since PLM would
be affected by the large number of samples.

V. CONCLUSIONS

In this work we have presented a very simple way to
make mean-field approximations to the inverse Ising problem
effective also in the low-temperature phase, where symmetries
get usually broken and, correspondingly, input data get
clustered. The idea is to cluster the input data and to apply
mean-field methods to each data cluster. We have tested this
clustering + nMF algorithm on the Curie-Weiss and Hopfield
models, comparing results with the most sophisticated and
state-of-the-art pseudolikelihood method.

Results are very promising and redeem mean-field ap-
proximations to inverse problems, even in those cases where
the structure of the input data is such that a straightforward
application of mean-field methods would be ineffective.

The natural followup to this work is application of cluster-
ing + nMF methods to inverse problems based on real data. It
is worth remembering that often in solving inverse problems
based on real and noisy data, the robustness of simple MF
methods is more valuable than the putative higher accuracy
of more sophisticated methods; see, e.g., the case of inferring
protein contacts [6]. It is also worth mentioning cases where
the data can be naturally divided in two or more classes,
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exhibiting different statistical properties, but this is usually
not taken into account when estimating model parameters. For
example Ref. [23] presents an impressively detailed analysis
of neuronal spiking patterns. Nonetheless the data belonging
to two different regimes (quiescent and spiking) are merged
together before doing the analysis according to mean-field
approximation. The application of the method presented in
this work is likely to improve inference and reduce errors.
Finally, the numerous recent studies on pattern recognition
using neural networks might also benefit from an approach

dealing with clusters. In those systems it is quite common to
deal with many basins of attraction that are used to improve
the neural network efficiency. Mean-field techniques would be
more than welcome since methods such as PLM cannot deal
with the large dataset size (particularly since the average over
all samples has to be done at each step of the algorithm).

From this point of view, enlarging the range of applicability
of MF methods by data clustering is certainly very useful and
may be better than developing higher-order approximations
(that strongly depends on the model used to describe the data).
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