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Abstract – The restricted Boltzmann machine (RBM), an important tool used in machine learn-
ing in particular for unsupervized learning tasks, is investigated from the perspective of its spec-
tral properties. Starting from empirical observations, we propose a generic statistical ensemble
for the weight matrix of the RBM and characterize its mean evolution. This let us show how in
the linear regime, in which the RBM is found to operate at the beginning of the training, the
statistical properties of the data drive the selection of the unstable modes of the weight matrix.
A set of equations characterizing the non-linear regime is then derived, unveiling in some way how
the selected modes interact in later stages of the learning procedure and defining a deterministic
learning curve for the RBM.

Copyright c© EPLA, 2017

Introduction. – A restricted Boltzmann machine
(RBM) [1] constitutes nowadays a common tool on the
shelf of machine learning practitioners. It is a generative
model, in the sense that it defines a probability distribu-
tion, which can be learned to approximate any distribu-
tion of data points living in some N -dimensional space,
with N potentially large. It also often constitutes a build-
ing block of more complex neural network models [2,3].
The standard learning procedure called contrastive diver-
gence [4] is well-documented [5] although being still a not
so well-understood fine empirical art, with many hyperpa-
rameters to tune without much guidelines. At the same
time an RBM can be regarded as a statistical physics
model, being defined as a Boltzmann distribution with
pairwise interactions on a bipartite graph. Similar mod-
els have been already the subject of many studies in the
1980s [6–9] which mainly concentrated on the learning ca-
pacity, i.e., the number of independent patterns that could
be stored in such a model. The second life of neural net-
works has renewed the interest of statistical physicists for
such models. Recent works actually propose to exploit its
statistical physics formulation to define mean-field–based
learning methods using Thouless-Anderson-Palmer (TAP)
equations [10–12]. Meanwhile some analysis of its static
properties, assuming a given learned weight matrix W ,

(a)E-mail: aurelien.decelle@lri.fr

have been proposed [13,14] in order to understand collec-
tive phenomena in the latent representation [15], i.e., the
way latent variables organize themselves to represent ac-
tual data. One common assumption made in these works
is that the weights of W are i.i.d. which as we shall see is
unrealistic. Concerning the learning procedure of neural
networks, many recent statistical-physics–based analysis
have been proposed, most of them within teacher-student
setting [16] which imposes a strong assumption on the
data, namely that these are generated from a model be-
longing to the parametric family of interest, hiding as a
consequence the role played by the data themselves in the
procedure. From the analysis of related models [17,18],
it is already a well-established fact that a selection of the
most important modes of the singular value decomposition
(SVD) of the data is performed in the linear case. In fact
in the simpler context of linear feed-forward models the
learning dynamics can be fully characterized by means of
the SVD of the data matrix [19], showing in particular the
emergence of each mode by order of importance regarding
singular values.

In this work we follow this guideline in the context of a
general RBM. We propose to characterize both the learned
RBM and the learning process itself by the SVD spectrum
of the weight matrix in order to isolate the information
content of an RBM. This allows us then to write a deter-
ministic learning equation leaving aside the fluctuations.
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This equation is subsequently analyzed first in the linear
regime to identify the unstable deformation modes of W ;
secondly at equilibrium assuming the learning is converg-
ing, in order to understand the nature of the non-linear
interactions between these modes and how these are de-
termined from the input data. In the first section we re-
call the RBM model and associated learning algorithm.
In the second section we show how this algorithm can be
described by a generic learning equation. Then we first
analyze the linear regime and thereafter we describe what
happens with the binary RBM. A set of dynamical param-
eters is shown to emerge naturally from the SVD decom-
position of the weight matrix. The convergence toward
equilibrium is analyzed and illustrated later with actual
tests on the MNIST dataset.

The RBM and associated learning procedure. –
An RBM is a Markov random field with pairwise inter-
actions defined on a bipartite graph formed by two lay-
ers of non-interacting variables: the visible nodes and
the hidden nodes representing, respectively, data config-
urations and latent representations. The former noted
s = {si, i = 1, . . . , Nv} correspond to explicit represen-
tations of the data while the latter noted σ = {σj , j =
1, . . . , Nh} are there to build arbitrary dependences among
the visible units. They play the role of an interacting field
among visible nodes. Usually the nodes are binary-valued
(of Boolean type or Bernoulli distributed) but Gaussian
distributions or more broadly arbitrary distributions on
real-valued bounded support are also used [20], ultimately
making RBMs adapt for more heterogeneous data sets.
Here to simplify we assume that visible and hidden nodes
will be taken as binary variables si, σj ∈ {−1, 1} (using
±1 values has the advantage of symmetrizing the equa-
tions hence avoiding to deal with “hidden” biases on the
variables when considering binary {0, 1} variables). Like
the Hopfield model [6] which can actually be cast into an
RBM [21] an energy function is defined for a configuration
of nodes

E(s,σ) = −
∑
i,j

siwijσj −
Nv∑
i=1

ηisi −
Nh∑
j=1

θjσj (1)

and this is exploited to define a joint distribution be-
tween visible and hidden units, namely the Boltzmann
distribution

p(s,σ) =
e−E(s, σ)

Z
, (2)

where W is the weight matrix and η and θ are biases, or
external fields on the variables. Z =

∑
s, σ e−E(s, σ) is

the partition function of the system. The joint distribu-
tion between visible variables is then obtained by summing
over hidden ones. In this context, learning the parameters
of the RBM means that, given a dataset of M samples
composed of Nv variables, we ought to infer values to W ,
η and θ such that new generated data obtained by sam-
pling this distribution should be similar to the input data.

The general method to infer the parameters is to maximize
the likelihood of the model, where the probability density
function (pdf) (2) has first been summed over the hidden
variables

L =
∑

j

log

(
2 cosh

(∑
i

wijsi + θj

))
− log(Z). (3)

Different methods of learning have been set up and proven
to work efficiently, in particular the contrastive divergence
(CD) algorithm from Hinton [4] and more recently TAP-
based learning [10]. They all correspond to expressing the
gradient ascent on the likelihood as

Δwij = γ (〈siσjp(σj |s)〉Data − 〈siσj〉pRBM) , (4)

where γ is the learning rate. Similar equations can be
derived for the biases. The main problem is the second
term on the rhs of (2) which is not tractable, and various
methods basically differ in their way of estimating this
term (Monte Carlo chains, mean field, TAP, . . .). For an
efficient learning the first term also has to be approximated
by making use of random mini batches of data at each step.

Deterministic dynamics of the learning. – In order
to understand the dynamics of the learning we first project
the CD equation (2) onto the basis defined by the SVD
of W . As a generalization of eigenmodes decomposition
to rectangular matrices, the SVD for a RBM is given by

W = UΣVT , (5)

where U is an orthogonal Nv ×Nh matrix whose columns
are the left singular vectors uα, V is an orthogonal Nh×Nh

matrix whose columns are the right singular vectors vα

and Σ is a diagonal matrix whose elements are the singular
values wα. The separation into left and right singular
vectors is due to the rectangular nature of the decomposed
matrix, and the similarity with eigenmodes decomposition
is revealed by the following SVD equations:

Wvα = wαuα,

WT uα = wαvα.

We consider the usual situation where Nh < Nv, which
means that the rank of W is at most Nh. W (t) repre-
sents the learned weight matrix at time t. Let {wα(t) ∈
[0,+∞[}, {uα(t) ∈ R

Nv} and {vα(t) ∈ R
Nh} such that

the following decomposition wij(t) =
∑

α uα
i (t)wα(t)vα

j (t)
holds. Discarding stochastic fluctuations usually inher-
ent to the learning procedure and letting the learning rate
γ → 0, the continuous version of (2) can be recast as
follows:(

dw

dt

)
αβ

= δα,β
dwα

dt
(t)

+ (1 − δα,β)
(
wβ(t)Ωv

βα(t) + wα(t)Ωh
αβ

)
=

〈sασβ〉Data − 〈sασβ〉RBM, (6)
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Ωv
αβ(t) = −Ωv

βα
def=

duα,T

dt
uβ =

−1
wα + wβ

(
dw

dt

)A

αβ

+
1

wα − wβ

(
dw

dt

)S

αβ

(7)

Ωh
αβ(t) = −Ωh

βα
def=

dvα,T

dt
vβ =

1
wα + wβ

(
dw

dt

)A

αβ

+
1

wα − wβ

(
dw

dt

)S

αβ

. (8)

Here everything is expressed in the reference frame de-
fined by singular vectors of W . sα =

∑
i uα

i si and σα =∑
j vα

j σj represent spin configurations in this frame. Note
that one has to keep track of the original reference frame
to be able to evaluate the data and RBM average in par-
ticular when the basic variables are discrete. We have in-
troduced the skew-symmetric rotation generators Ωv,h

αβ (t)
of the basis vectors induced by the dynamics. These tell
us how the data rotate relatively to this frame. The su-
perscripts S, A indicate the symmetric (respectively, anti-
symmetric) part of the matrix. Note that these equations
become singular when some degeneracy occurs in W be-
cause then the SVD is not uniquely defined. This is not
really a problem since we are interested in rotations among
non-degenerate modes, the rest corresponding to gauge de-
grees of freedom. Similar equations can be derived for the
fields ηα(t) def=

∑
i ηi(t)uα

i (t) and θα(t) def=
∑

j vα
j (t)θj(t)

projected onto the SVD modes. At this point we make the
assumption that the learning dynamics is represented by a
trajectory of ({wα(t), ηα(t), θα(t),Ωv,h

αβ (t)}, while the spe-
cific realization of the uα

i and vα
j is considered to be irrele-

vant, and can be averaged out with respect to some simple
distributions, as long as this average is correlated with the
data. This means that the decomposition ŝα =

∑
i uα

i ŝi

of any given sample configuration is assumed also to be
kept fixed while averaging. What matters mainly is the
strength given by wα(t) and the rotation given by Ωv,h

αβ (t)
of these SVD modes. Assuming for example i.i.d. cen-
tered normal distribution with respective variance 1/Nv

and 1/Nh for uα
i and vα

j , the empirical term takes the
simple form:

〈sασβ〉Data =

1
Nh

〈
sα(sβwβ − θβ)V

(
1

Nh

∑
γ

(wγsγ − θγ)2
)〉

Data,

where V (x) =
∫

dy
e−y2/2

√
2π

sech2(
√

xy), (9)

which actually depends on the activation function (an hy-
perbolic tangent in this case). The main point here is that
the empirical term defines an operator whose decomposi-
tion onto the SVD modes of W functionally depends solely
on wα, θα and on the projection of the data on the SVD
modes of W . This term is precisely driving the dynam-
ics. The adaptation of the RBM to this driving force is

given by the second term which can be as well estimated
in the thermodynamic limit, as a function of wα, θα and
ηα alone.

Linear instabilities. – First let us consider the lin-
ear regime which can be analyzed thoroughly. It can be
obtained by rescaling all the weights and fields by a com-
mon “inverse temperature” β factor and let this go to
zero in eqs. (6). This limit can be understood by keep-
ing up to quadratic terms in the mean-field free energy
and should correspond to the first stages of the learning.
In this limit, magnetizations (μv, μh) of visible and hid-
den variables have Gaussian fluctuations with covariance
matrix

C(μv, μh) def=

[
σ−2

v −W

−WT σ−2
h

]−1

with σ2
v = σ2

h = 1 introduced for the sake of general-
ity when considering general linear RBM. To simplify the
exposition, we discard the biases of the data and related
fields (θα, ηα) of the RBM. In that case the empirical term
in (7) involves directly the covariance matrix of the data
expressed in the frame defined by the SVD modes of W :

〈sασβ〉Data = σ2
hwβ〈sαsβ〉Data.

From C(μv, μh) we get the other terms yielding the fol-
lowing equations:

dwα

dt
= wασ2

h

(
〈s2

α〉Data −
σ2

v

1 − σ2
vσ2

hw2
α

)
,

Ωv,h
αβ = (1 − δαβ)σ2

h

(
wβ − wα

wα + wβ
∓ wβ + wα

wα − wβ

)
〈sαsβ〉Data.

Note that these equations are exact for a linear RBM,
since they can be derived without any reference to the
coordinates of uα and vα over which we average in the
non-linear regime. These equations tell us that, during
the learning the vectors uα (and also vα) will rotate until
being aligned to the the principal components of the data,
i.e., until 〈sαsβ〉Data becomes diagonal. Then calling ŵ2

α

the corresponding empirical variance given by the data,
the system reaches the following equilibrium values:

w2
α =

⎧⎨
⎩

ŵ2
α − σ2

v

σ2
vσ2

hŵ2
α

, if ŵ2
α > σ2

v ,

0, if ŵ2
α ≤ σ2

v .

From this we see that the RBM selects the strongest
SVD modes in the data. The linear instabilities corre-
spond to directions for which the variance of the data is
above the threshold σ2

v . This determines the deforma-
tions of the weight matrix which can develop during the
learning and will eventually interact, following the usual
mechanism of non-linear pattern formation like, e.g., in
reaction-diffusion processes [22]. Other possible deforma-
tions are damped to zero. The linear RBM will therefore
learn all (up to Nh) principal components that passed the
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Fig. 1: (Colour online) Time evolution of the eigenvalues in
the linear model and of the likelihood. We observe very clearly
how the different modes emerge from the bulk and how the
likelihood increases at each eigenvalue learned. In the in-
set, the scalar product of the vectors u obtained from the
SVD of the data and of w. The u’s of w are aligned with
the SVD of the data at the end of the learning.

threshold but it is important to remember that the re-
sulting distribution will still be unimodal. Note that this
selection mechanism is already known to occur for linear
auto-encoders [18] or some other similar linear Boltzmann
machines [17]. In fig. 1 we can see the eigenvalues being
learned one by one in a linear RBM. For non-linear RBM
when the system escapes the linear regime, a well-suited
mean-field theory is required to understand the dynamics
and the steady-state regime.

Non-linear regime. – During the linear regime some
specific modes are selected and at some point these modes
start to interact in a non-trivial manner. The empirical
term in (8) involves higher-order statistics of the data as
exemplified by (9) and the Gaussian estimation with σ2

v =
σ2

h = 1 of the RBM response term 〈sασβ〉RBM is no longer
valid. In order to estimate this term in the thermodynamic
limit, some assumptions on the form of the weight matrix
are needed. A common assumption consists in considering
i.i.d. random variables for the weights wij and this, like
for example in [13–15], generally leads to a Marchenko-
Pastur distribution of the singular values of W , which, as
we shall see in the next section, is unrealistic. Instead,
based on our experiments such distribution corresponds
to the noise of the weight matrix, while its information
content is better expressed by the presence of SVD modes
outside of the bulk. This leads us to write the weight
matrix as

wij =
K∑

α=1

wαuα
i vα

j + rij , (10)

where the wα = O(1) are isolated singular values (describ-
ing a rank K matrix), the uα and vα are the eigenvec-
tors of the SVD decomposition and the rij = N (0, σ2/L)
where L =

√
NhNv are i.i.d. corresponding to noise. To

be consistent with the linear analysis, these modes are

assumed to span the (left) subspace corresponding to the
part of the empirical SVD above threshold while r spans
the complementary space of empirical modes below thresh-
old. We limit the analysis here to the case where K is
finite. This then allows us to assume simple distributions
pu and pv for the components of uα and vα considered
i.i.d. for instance. This altogether defines our statistical
ensemble of RBM to which we restrict ourselves to study
the learning procedure. For K extensive we should instead
average over the orthogonal group which would lead to a
slightly different mean-field theory [23,24]. In the present
form our model of RBM is similar to the Hopfield model
and recent generalizations [25], the patterns being repre-
sented by the SVD modes outside the bulk. The main
difference, in addition to the bipartite structure of the
graph, is the non-degeneracy of the singular values wα.
Still the analysis in the thermodynamic limit follows clas-
sical treatments like [7,26] for the Hopfield model or [14]
for bipartite models. The starting point is to express the
average over u, v and weights rij of the log partition func-
tion Z in (2) with the help of the replica trick:

Eu,v,r[log(Z)] = lim
p→0

d
dp

Eu,v,r[Zp].

After averaging over the i.i.d. weights, 4 sets of order
parameters {(ma

α, m̄a
α), a = 1, . . . , p;α = 1, . . . , K} and

{(Qab, Q̄ab), a, b = 1, . . . , p; a 
= b} are introduced with
the help of two distinct Hubbard-Stratonovich transforma-
tions. These variables represent the following quantities:

ma
α ∼ 1√

L
Eu,v,r (〈σa

α〉) , m̄a
α ∼ 1√

L
Eu,v,r (〈sa

α〉) ,

Qab ∼ Eu,v,r

(
〈σa

i σb
i 〉

)
, Q̄ab ∼ Eu,v,r

(
〈sa

j sb
j〉

)
,

namely the correlations of the hidden (respectively,
visible) states with the left (respectively, right) singular
vectors and the Edward-Anderson order parameters mea-
suring the correlation between replicas of hidden or visible
states. Eu and Ev denote an average with respect to the
rescaled components u �

√
Nvuα

i and v �
√

Nhvα
j of the

SVD modes. The transformations involve pairs of complex
integration variables because of the asymmetry introduced
by the two-layers structure by contrast to fully connected
models. They lead to the following representation:

see equation on top of the next page

κ = Nh/Nv and B[m̄, Q̄] obtained from A[m,Q] by re-
placing u by v, η by θ and κ by 1/κ. The thermodynamic
properties are obtained by first letting L → ∞ allowing for
a saddle point approximation and then the limit p → 0 is
taken. We restrict here the discussion to replica symmetric
(RS) saddle points [27]. The breakdown of RS can actually
be determined by computing the so-called AT line [28] and
will be detailed somewhere else [29]. In the RS case the set
{(Qab, Q̄ab} reduces to a pair (q, q̄) of spin glass parame-
ters, while quenched magnetization towards the SVD di-
rections are now represented by {(mα, m̄α), α = 1, . . . ,K}.
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Eu,v,r[Zp]=
∫ ∏

a,α

dma
αdm̄a

α

2π

∏
a�=b

dQabdQ̄ab

2π
exp

⎧⎨
⎩−L

⎛
⎝∑

a,α

wαmαm̄α +
σ2

2

∑
a�=b

QabQ̄ab −
1√
κ

A[m,Q] −
√

κB[m̄, Q̄]

⎞
⎠

⎫⎬
⎭

with A[m,Q] def= log

⎡
⎣ ∑

Sa∈{−1,1}
Eu

(
e

√
κσ2

2

P

a �=b QabSaSb+κ
1
4
P

a,α(ma
αwα−ηα)uαSa

)⎤
⎦ ,

Letting x = N (0, 1) and skipping some details, the saddle
point equations are given by

(mα, m̄α) = E
(
κ

1
4 vα tanh

(
h̄(x, v)

)
, κ− 1

4 uα tanh(h(x, u))
)
,

(11)
(q, q̄) = E

(
tanh2

(
h̄(x, v)

)
, tanh2 (h(x, u))

)
, (12)

with E denoting the average over (u, v, x) and

h(x, u) def= κ
1
4

(
σ
√

qx +
∑

γ

(wγmγ − ηγ)uγ

)
,

h̄(x, v) def= κ− 1
4

(
σ
√

q̄x +
∑

γ

(wγm̄γ − θγ)vγ

)
.

These fixed point equations can be solved numerically to
tell us how the variables condensate on the SVD modes
within each equilibrium state of the distribution and
whether a spin glass phase is present or not. The impor-
tant point here is that with K finite and a non-degenerate
spectrum the mode with highest singular value dominates
the ferromagnetic phase. The phase diagram looks in fact
similar to the one of the SK model with ferromagnetic
coupling, when 1/σ is interpreted as temperature and
wmax/σ as the ferromagnetic coupling. Some subtleties
arise when considering various ways of averaging over sin-
gular vectors components [29]. In [15,30] it is underlined
the importance of the capability of networks to produce
compositional states structured by combination of hidden
variables. In our representation, we do not have direct
access to this property, but to the dual one in some sense,
namely states corresponding to a combination of modes.
Their presence and their structure are rather sensitive to
the way the average over u and v is performed. In this
respect the case where uα and vα are Gaussian i.i.d. dis-
tributed is very special: all other fixed points associated to
lower modes can be shown to be unstable as well as fixed
points associated to combinations of modes. Instead, for
other distributions with smaller kurtosis, like uniform or
Bernoulli, stable fixed points associated to many differ-
ent single modes or combinations of modes can exist and
contribute to the thermodynamics.

Coming back to the learning dynamics, the first thing
which is expected, already from the linear analysis, is that
the noise term in (10) vanishes by condensing into a delta
function of zero modes. Then the term corresponding

to the response of the RBM in (6) is estimated (in ab-
sence of bias) in the thermodynamic by means of the order
parameters defined previously:

〈sασβ〉RBM =
L

ZMF

C∑
q=1

e−Fqm̄(q)
α m

(q)
β , ZMF

def=
∑

q

e−Fq ,

where the index q runs over all stable fixed point solu-
tions of (11), (12) weighted accordingly to their free en-
ergy. These are the dominant contributions as long as free
energy differences are O(1), internal fluctuations given by
each fixed point are comparatively of order O(1/L). Note
that this is the reason why the RBM needs to reach a ferro-
magnetic phase with many states to be able to match the
empirical term in (7) in order to converge. For instance,
in the case of a multimodal data distribution with many
well-separated clusters, the SVD modes of W which will
develop are the one pointing in the direction of the mag-
netizations defined by these clusters. In this simple case
the RBM will evolve as in the linear case to a state such
that the empirical term becomes diagonal, while the sin-
gular values adjust themselves until matching the proper
magnetization in each fixed point. More precise statements
about the phase diagram of the RBM and the behaviour
of our dynamical equations including the dynamics of the
external fields ηα and θα will be given in [29].

Tests on the MNIST dataset. – We illustrate our
results on the MNIST dataset. The MNIST dataset is
composed of 60000 images of handwritten digits of 28×28
pixels. It is known that RBMs perform reasonably well
on this dataset and therefore we can now interprete in the
light of the preceding sections how the learning goes. For
the training of the MNIST dataset we use the following
parameters. The weights of the matrix W were initiated
randomly from a centered Gaussian distribution with a
variance of 0.01 such that the Marchenko-Pastur (MP)
bulk does not pass the threshold. The visible fields are
initialized to reproduce the empirical mean of the data for
each visible variable. The hidden field is put to zero. The
learning rate is chosen to be ≈ 0.01. With these parame-
ters we verified that our machine was able to sample digits
in a satisfactory way after 20 epochs. Now we can investi-
gate the value of some observables introduced previously.
First, we look at the SVD modes of the matrix w during
the learning in fig. 2. We see that, after seeing only few
updates the system has already learned many SVD modes
from the data.

60001-p5



A. Decelle et al.

(a) (b) (c)

Fig. 2: (Colour online) (a) Singular values distribution of the
initial random matrix compared to the Marchenko-Pastur law.
(b) With the training we can see some singular values strength-
ening and overcoming the threshold set by the Marchenko-
Pastur law. (c) Distribution of the singular values after a long
training: we can see many outliers spread above threshold and
a spike of below-threshold singular values near zero.

(a) (b) (c)

(d)

(e)

(f)

Fig. 3: (a) First mode learnt by the RBM with the external
visible field initialized as a null vector. (b) External visi-
ble field initialized on the empirical mean. (c) First princi-
pal components extracted from the training set. (d) Principal
components extracted from the training set (starting from the
second). (e) The first 10 modes of a RBM trained for 1 epoch.
(f) Same as (e) but after a 10 epochs training.

In fig. 2(a)–(c), we observe what is expected from the
linear regime. Some modes escape from the MP bulk of
the eigenvalues while other condense down to zero. In
particular, we can see that the modes at the beginning of
the learning correspond exactly to the SVD modes of the
data, see fig. 3. In this figure, we notice that the modes
of the W matrix are the same as the ones of the data at
the beginning of the learning as predicted by the linear
theory.

After many epochs, we observe in fig. 3(f) that non-
linear effects have deformed the SVD modes of W with
respect to the beginning of the learning. We can also
look at the evolution of the eigenvalues of W . In fig. 4 we
observe their evolution and when they start to be amplified
(or dumped). In the inset, we see how the strongest modes
get out of the bulk and increase while the lowest ones are
dumped after many epochs. We also observe that the top
part of the spectrum of W appears flattened as compared
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Fig. 4: (Colour online) Log-log plot of the singular values rep-
resented as discrete abscissas (in decreasing order) with their
magnitude reported on the ordinates. The RBM contained 400
hidden variables. A cutoff is highlighted by the onset of the
linear behaviour and the SVD modes of the data in black. We
qualitatively observe that beyond some αtresh the modes are
dumped while before they are amplified. In the inset, the time
evolution of the modes 1, 2, 10, 100, 350, 400 during the learn-
ing as a function of the number of epochs, we see that for large
value of α, the modes are decreasing. We observe that the lin-
ear cutoff (around α ≈ 50 seems different from the one observed
when going deep into the non-linear regime (α ≈ 250).

to the empirical SVD spectrum. This presumably favors
the expression of many states of similar free energy related
to various digit configurations, able to contribute to the
RBM response term in (6).

Discussion. – The equations obtained for the dynam-
ics and the mean-field theory that allows us to com-
pute them constitute a phenomenological description of
the learning of an RBM. This is assumed to represent a
typical learning trajectory in the limit of infinite batch
size. These equations have been obtained by averaging
over the components of left and right SVD vectors of the
weight matrix, keeping fixed a certain number of quanti-
ties considered to be the relevant ones, fully characterizing
a typical RBM during the learning process. This averaging
corresponds actually to a standard self-averaging assump-
tion in a RS phase. The singular values spectrum {wα} is
playing the main role. The projections (ηα, θα) of the bias
onto the eigenmodes of W are also considered as intrin-
sic quantities. Finally the rotation vectors {Ωv,h

α,β} give us
the relative motion of the data with respect to the time-
dependent frame given by the singular vectors of W . In
our phenomenological description the learning dynamics is
represented by a trajectory of {wα(t), ηα(t), θα(t),Ωv,h

αβ (t)}
which is uniquely determined by our equations once an ini-
tial condition specified by the decomposition of the data
on the singular vectors of W is given. By contrast to
usual approaches which rely on the teacher-student sce-
nario, we may obtain generic learning curves of non-linear
neural networks, which are driven by intrinsic properties
of the data. The point is to give insights into the rela-
tionship between model and data. This allows us to give
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some elements for understanding of which properties of
the data drive the learning and how they are represented
in the model. Eventually this will lead us to identify and
correct some flaws of the present learning methods.

∗ ∗ ∗
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of the letter.
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