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Abstract – The possible periodic arrangements of droplets bouncing on the surface of a vibrated
liquid are investigated. Because of the nature of the interaction through waves, the possible
distance of binding of nearest neighbors is multi-valued. For large amplitude of the forcing,
the bouncing becomes sub-harmonic and the droplets can have two different phases. This effect
increases the possible distances of binding and the formation of various polygonal clusters is
observed. From these elements it is possible to assemble crystalline structures related to the
Archimedean tilings of the plane, the periodic tesselations which tile uniformly the 2D plane with
convex polygons. Eight of the eleven possible configurations are observed. They are stabilized
by the coupling of two sub-lattices of droplets of different phase, both contributing to sustain a
common wave field.

Copyright c© EPLA, 2009

Introduction. – Periodic structures can result from
different ordering principles. During crystallization, the
local condensation of atoms having a single distance of
binding is responsible for the build-up of macroscopic
crystals. In contrast the periodic patterns formed by
standing waves result from global resonances of waves
having a large coherence length. For this reason they
depend on the large-scale shape of the domain in which
they grow. These two types of organizations can be
observed on a fluid interface, in the rafts formed by
floating bubbles [1], and in the wave patterns due to
the Faraday instability [2], respectively. Here, as will be
shown, we investigate an intermediate case between these
two extremes.
It was shown recently [3–5] that droplets bouncing

on a vertically vibrated fluid interface could interact
and form aggregates. The non-local interaction between
drops is due to the damped surface wave they emit. In
the self-organized stable arrangement, each drop is at

(a)E-mail: antonin.eddi@univ-paris-diderot.fr

such a position that its successive collisions with the
interface leave it motionless. For weak forcing, each drop
bounces in the trough formed by the first antinode of
the wave generated by its nearest neighbours. This is a
Lennard-Jones type of interaction with short-range repul-
sion and long-range attraction, with a single distance of
binding. This interaction leads to the spontaneous forma-
tion of crystalline aggregates with a triangular lattice
(fig. 1).
However when the forcing is increased, because of the

spatial periodicity of the waves, the interacting drops
can be stable at several possible distances correspond-
ing to successive antinodes. The experiment reveals the
formation of a large variety of patterns involving differ-
ent polygons. This led us to wonder if this system lent
itself to the formation of crystalline arrangements related
to the Archimedean tilings. The Archimedean tilings
(shown in fig. 2) are the possible uniform tessellations of
the two-dimensional Euclidian space with regular poly-
gons. In these structures, first described systematically
by Kepler [6], the polygons can be either identical or
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Fig. 1: The crystalline organization of a large number of
droplets (N = 61) with a triangular lattice.

different. The tiling is said to be uniform because all the
vertices are identical up to rotation. In the 2D plane, only
eleven such tilings exist. Each of them is characterized by
the structure of its vertex. The conventional notation in
the Grünbaum-Shepard [7] classification gives the relative
position of the regular n-sided polygons meeting at the
vertex. For instance, in the structure noted (32, 4, 3, 4),
a vertex is surrounded by two neighbouring triangles, a
square, a triangle and a square. The identity of all the links
and all the vertices suggests that these tilings could form
the structure of crystalline lattices. Such crystals would be
of interest since it was theoretically shown that they can
have complete photonic band gaps [8]. However, in real-
ity only a few of them were observed [8–13]. Presumably
this is due to the fact they do not correspond to dense
pilings. Some of the polygons being large (e.g. octagons or
dodecagons) they form voids in the structure which tend
to collapse in order to become more tightly packed.

Experimental set-up. – We study the aggregation of
identical droplets bouncing on a vertically vibrated fluid
interface. The experiments are performed on a liquid bath
of thickness h0 = 4 mm subjected to a vertical oscillat-
ing acceleration γ = γv cos(2πf0t). The liquid is silicon
oil with viscosity µ1 = 20 · 10−3 Pa · s, surface tension σ=
0.0209 N/m and density ρ= 0.965 103 kg/m3. The forcing
frequency f0 = 80 Hz is fixed. Similar results were obtained
with an oil of viscosity µ2 = 50 · 10−3 Pa · s and f0 = 50 Hz.
A necessary requirement is to be able to generate on the
fluid surface a set of identical droplets of a size of the order
of 0.7 mm. The drops are created by dipping a conical pin
in the bath, then pulling it out swiftly at a well-defined
velocity. Fast camera recordings show the formation of a
liquid bridge between the pin and the bath. This bridge
pinches off near the two menisci (and only there) and the
liquid thread retracts to form a single droplet. The size
of this droplet is determined by the depth at which the

Fig. 2: The 11 Archimedean lattices, ordered by increasing
complexity. Three are formed of one single type of polygons:
(a) triangles, (b) squares and (c) hexagons. Six are formed
of two types of polygons: (d) and (e) triangles and squares,
(f) and (g) triangles and hexagons, (h) squares and octagons,
(i) triangles and dodecagons. Two are formed of three types
of polygons (j) triangles, squares and hexagons, (k) squares,
hexagons and dodecagons.

cone had been plunged into the liquid. By choosing this
depth, monodisperse droplets with diameters in the range
0.1<D< 1.5 mm could be reproducibly generated.

Binding of two droplets. – At low forcing amplitude,
the drop motion is composed of a series of identical jumps
and each drop emits a travelling wave of frequency f0.
This wave has a small amplitude and its wavelength λ0
corresponds to that predicted by the dispersion relation:

ω2 =
[
gk+(σ/ρ)k3

]
tanh(kh). (1)

The non-local interaction between drops is due to
these surface waves. When two drops interact they come
to bounce at a fixed distance from each other. Several
distances of equilibrium are possible. The measured values
of d0m form a discrete set linearly related to the wavelength
λ0 of the surface waves at the forcing frequency (λ0 = 2.85
mm in our experimental conditions). They can all be
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Fig. 3: The possible distances of binding of two drops as a
function of the order of the bond linking them. Black dots:
drops bouncing at the forcing frequency. With f0 = 80 Hz and
λ0 = 2.85 mm, we find d

0
1 = 1.98 mm, d

0
2 = 5.12 mm, d

0
3 = 7.70

mm. The squares show the distances of binding of two drops
having a period-doubled bouncing. With Faraday frequency
fF = 40 Hz and λF = 4.73 mm we find: black squares: d

F
1 =

3, 12 mm, dF2 = 8.06 mm, d
F
3 = 12.6 mm. Open squares: drops

bouncing with opposite phases. dF1/2 = 0.99 mm, d
F
3/2 = 5.56

mm, dF5/2 = 10.35 mm.

written

d0m = (m− ε0)λ0, (2)

where m, the order of the bound state, is one of the
integers m= 1, 2, 3, . . . (see fig. 3). These discrete values
are all close to a multiple of the wavelength of the surface
wave but shifted by an offset which is the same for all
bound states [3]. The offset ε0λ0 is due to the finite
duration τ of the contact with the interface. The wave is
emitted at lift-off and affects the other drop at its landing
so that the shift can be estimated to be approximately half
the distance travelled by the wave during the time τ of the
collision. Writing ε0λ0 = Vφτ/2 (with Vφ = 189 mm/s the
phase velocity of the wave) gives τ = 810−3 s which is of
the order of the collision duration.
When the forcing amplitude γv/g is increased, there

is a threshold (see the phase diagram in [3]) at which
the vertical motion of a droplet becomes sub-harmonically
modulated. A droplet then undergoes a succession of large
and small bounces. Above this threshold, two states are
possible as the droplet can have its larger bounce either
during one period of the forcing motion or during the next.
This is a breaking of symmetry and we will call these
distinct states (+) or (−), respectively. The droplet now
emits a superposition of waves of frequencies f0 and f0/2.
On a vibrating bath, the waves, parametrically forced by
the Faraday instability, have a sub-harmonic frequency
fF = f0/2. Though our experiment is done below the
threshold of this instability, these waves are less damped

than the others and become dominant when γm/g is
increased. For this reason, when two drops bind, their
possible distances of equilibrium are now related to the
wavelength λF at the frequency fF (λF = 4.73 mm in our
experimental conditions). They can be written

dFn = (n− εF )λF , (3)

where εF = 0.2. In contrast with the result given by
relation (2), the possible values of n in (3) form two
subsets corresponding to drops bouncing in phase or with
opposite phases. When in phase, their possible distances
dFn (+,+) or d

F
n (−,−) satisfy relation (3), with n being one

of the successive integers n= 1, 2, 3, . . . . When of opposite
phases, dFn (+,−) or dFn (−,+) satisfy relation (3) with n=
1/2, 3/2, 5/2 . . . . The values of these distances are plotted
as a function of n in fig. 3. In the stable arrangements
each drop is at such a position that its collisions with the
interface do not lead to a horizontal displacement. In the
following, we call n the order of the bond.

Aggregates. – We can now examine the situations in
which many droplets are present simultaneously on the
bath. Below the threshold of period doubling they are
observed to bind to each other at one of the d0m and form
clusters with various 2D crystalline structures. Lattices
with either square or rectangular structures are weakly
unstable and relax slowly to the triangular patterns, the
most stable having hexagonal symmetry. Structures of
the type shown in fig. 1 can thus form spontaneously.
When the forcing is increased the transition to a period-
doubled bouncing generates an interesting phase transi-
tion. At the period doubling threshold, each elements of
the periodic lattice undergoes a transition to either of two
possible states (+) and (−). Because of the interaction
of the droplets, this is a collective process, dominated
by frustration effects, which leads continuously to new
states with droplets having the two different phases. When
the initial crystal is large, this is a solid-state transition.
The crystalline structure is destroyed and replaced by a
disordered structure which, however, include small orga-
nized regions. In the transition of clusters of medium size
(twenty droplets), patterns with various polygons formed
spontaneously.
In the period-doubled regime the structures obtained

with a large number of droplets are generally complex but
satisfy general principles of organisation. The observed
clusters have two sub-lattices formed by the droplets of
each phase. At one forcing period, the droplets of the
sub-lattice (+) collide with the interface in troughs of
the wave pattern. The swells then become troughs where
the droplets (−) fall at the next forcing period. Both
sub-lattices contribute to sustain a common, coherent
wave field in which all droplets are stable. Of particular
interest for the construction of periodic structures are the
polygonal rings organized around a droplet of a given
phase. These rings can be understood by considering the
waves produced by a central drop.
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Table 1: A list of some of the possible polygonal assemblies in our experimental conditions. The shape of the elementary triangle
is determined by the order of the sides AB, AC and BC, It leads to isosceles (or equilateral) triangles where θn

′
n is the angle at

the main vertex.

AB, AC BC θn
′
n Nn

′
n = 360

◦/θn
′
n Could contribute in

n n′ polygonal rosettes Archimedean lattices

1 1 60◦ N11 = 6 (36)

3/2 1 32.6◦ N13/2 = 11 (3, 122)

3/2 2 92.8◦ N23/2 = 3.87� 4 (44), (32, 4, 3, 4), (3, 4, 6, 4)

2 2 60◦ N22 = 6 (36), (3, 6, 3, 6), (34, 6), (63)

5/2 2 45.4◦ N25/2 = 7.92� 8 (4, 82)

Fig. 4: (a) Sketch of the possible bound states of three drops in
the period-doubled state. (b) The possible polygonal rosettes
around a drop A of phase (−). The circle of radius dF1 is
saturated when occupied by NF1 = 6 droplets (−) at a distance
dF1 from each other. The next circle d

F
3/2 can be saturated

either by N13/2 = 11 droplets (+) bound at a distance d
F
3/2 or by

N23/2 = 4 droplets (+) bound at a distance d
F
2 . With the same

principle the circle of radius dF5/2 can accommodate n
2
5/2 = 8

droplets (+) bound at a distance dF2 .

Let us consider a droplet of phase (−) located at the
point A generating concentric circular waves (fig. 4). The
circular troughs of this wave are the loci where other
droplets can be at rest. Droplets of phase (−) will be
stable in the troughs of radius dFn (−,−), droplets of phase
(+) in those of radii dFn (−,+). If several droplets of the
same phase are located in the same circular trough they
bind to each other at a distance which is necessarily one
of the dFn (+,+). They thus form, with A, a polygonal
rosette formed of juxtaposed isosceles triangles. In the
self-organization of small clusters, these rosettes appear
spontaneously. We can consider the triangle formed by A
and two neighbouring drops in B and C (fig. 4(a)). Calling
n the order of the bounds to A and n′ the order of the
bound of B with C, the angle of the vertex in A will satisfy:
sin(θn

′
n /2) = d

F
n′/2d

F
n . The triangle ABC is equilateral if

n′ = n, isosceles in the other cases. The possible values of
θn
′
n , deduced from the values of d

F
n are given in table 1.

For pairs of values of n and n′, the value of θn
′
n gives the

limit number Nn
′
n = 2π/θ

n′
n of droplets which saturates a

given trough and the possible symmetry of the rosette.
As shown in table 1 and fig. 4(b), it is possible to

assemble around A rings of droplets of the same phase,
bound at dFn forming polygonal rosettes (fig. 3(b)). These
rosettes are observed to form spontaneously in small
aggregates and we wondered if they could be the building
blocks of Archimedean tilings. We can now revisit the
structures shown in fig. 2 and examine them by the types
of polygons they contain to see if they can be obtained in
our system.
The assembly in equilateral triangles is the simplest

and most commonly observed clustering mode of droplets
the same phase. The resulting triangular organisation
(36), being the most dense, self organizes spontaneously
as shown in fig. 1. The next organization (44) is formed
of squares. It is found to be unstable when constituted of
droplets of only one phase but it can be obtained by the
assembly of identical square rosettes of side dF2 where four
drops of one phase surround at a distance dF3/2 a droplet
of the other phase. The assembly of such rosettes gives a
“square centred” structure shown in fig. 5(b). It is formed
of two identical sub-lattices of droplets (+) and (−)
respectively, each formed of squares of side dF2 and shifted
diagonally by dF3/2. Crystallites having this organisation
were observed in the spontaneous aggregation of small
clusters. However to obtain large crystals we had to
resort to an artificial assembly method. After forming a
nucleus we keep adding droplets, each one being displaced
and released near its predicted position of equilibrium
to which it then moves spontaneously. Once formed it
is a very stable structure. Two tilings, the snub square
(32, 4, 3, 4) (fig. 2(d)), and the elongated triangular tiling
(33, 42) (fig. 2(e)) are formed of triangles and squares.
They can be obtained by the assembly of the same square
rosettes separated by equilateral triangles of sides dF2 .
The resulting clusters are shown in fig. 5(d) and (e),
respectively. In the snub square the stabilizing sub-lattice
is square. In the elongated mode the stabilizing sub-lattice
is parallelogramic. Both are very stable arrangements.
It is worth mentioning that in these structures the
density of droplets of each phase is not the same.
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(b) (d) (e)

(f) (h) (j)

Fig. 5: The observed 2D periodic organizations of droplets of two different phases and their interpretation, labeled by reference
to their order in fig. 2. A sketch of the relation between the two sub lattices is given below each photograph. (b) Two identical
square sub-lattices (44) of side dF2 . Each square is stabilized by a central drop of the other phase located at a distance d

F
3/2 of

its vertices. Stoichiometry: R=N−/N+ = 1. See squares.mov. (d) A snub square (32, 4, 3, 4) associated to a square sublattice.
The polygons of the Archimedian sublattice have a side dF2 . The other sub-lattice stabilizes the small squares, being located
at a distance dF3/2 of their vertices. R= 1/2. (e) An elongated triangular lattice (3

3, 42) associated to a monoclinic sublattice.

R= 1/2. (f) A snub hexagonal (6, 34) pattern obtained by creating voids in a triangular structure. (h) A truncated square
(4, 82) associated to a square (44) sublattice. The polygons have a side dF2 . The octagons are stabilized by central droplet (−)
located at a distance dF5/2. R= 1/2. See Truncated square.mov. (j) A small rhombitrihexagonal (3, 4, 6, 4) lattice associated to
a trihexagonal (3, 6, 3, 6) sublattice. R= 3/7.
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Choosing (−) to be the stabilizing sub-lattice with the
smaller density of droplets, we define the stoichiometry
of the system as R=N−/N+. In both these lattices
R= 1/2.
We can now examin the lattices involving either only

hexagons (63) (fig. 2(c)) or triangles and hexagons:
the snub hexagonal tiling (6, 34) (fig. 2(f)) and the
trihexagonal tiling (3, 6, 3, 6) (fig. 2(g)). They can be
seen as lacunary triangular lattices. In order to observe
them we assembled triangular crystals and removed
droplets so as to generate periodic lacunae. The wave
pattern, which is the same as in the triangular lattices, is
sustained by a smaller density of droplets, so that these
structures are less stable. The hexagonal and trihexagonal
structures are unstable and their hexagonal voids tend to
collapse. The snub hexagonal (6, 34) can be obtained and
is shown in fig. 5(f). The structure (3, 4, 6, 4) shown in
fig. 2(j) involves triangles, squares and hexagons. Using
the same principles we were able to assemble a crystal
which associates a small rhombi-trihexagonal (3, 4, 6, 4)
sub-lattice with a stabilizing trihexagonal (3, 6, 3, 6)
sub lattice. It is stable and shown in fig. 5(j). The
stoichiometry is R= 3/7. As shown in table 1 and fig. 2(f)
octagonal rosette of side dF2 can form at a distance
dF5/2 around a droplet of the other phase. Square and
octagonal rosettes can be assembled into a truncated
square (4, 82) sub-lattice associated with a square sub-
lattice (fig. 5(g)). The stoichiometry is R= 1/2. As shown
on table 1 approximations of dodecagonal rosettes can
be obtained with n= 3/2 and n= 1. We were able to
assemble small aggregates having the predicted organisa-
tion but they turned out to be unstable. As a result we
were not able to obtain the truncated hexagonal tiling
(3, 12, 12), nor the great rhombi-trihexagonal (4, 6, 12)
tiling.

Conclusion. – The large-scale symmetry in this
system results from two types of ordering. At a small
scale, a limited number of droplets aggregate. Several
stable structures are observed, forming small ordered
domains: the rosettes. In these domains the droplets are
located at the antinodes of the waves, but not necessarily
at all of them. As in the Faraday instability (and unlike
in a crystal) a resonant wave-field exists in each of these
regions of finite spatial extent. It is sustained by the
local forcing of the droplets. These rosettes can be
assembled into large structures with the possibility of
coexistence of various regular convex polygons. The
periodicity results from the periodic arrangement of
these domains. Since the wave amplitude decreases away
from the sources, the interaction with second neighbours
is weak so that the wave structure does not have neces-
sarily the periodicity of a global standing wave. As in a
crystal (but differing from Faraday waves), long-range
order results here from the clustering of finite size

domains. We used this possibility to obtain Archimedean
lattices.
These lattices have been obtained by artificial assembly

in the period-doubled regime. A different approach would
be to assemble a crystal in the simple-bouncing regime and
observe result of the phase transition which occurs when
the bouncing becomes sub-harmonic. As usual solid-state
phase transitions it induces a complex reorganisation into
various crystallites with no long-range order, reminiscent
of complex structures obtained in the Faraday patterns
forced with two frequencies [14]. Numerical simulations,
using models in which the multivalued distances of bind-
ing are taken into account, could be useful to investigate it.
In conclusion, several aspects of this system should trig-
ger further developments. The above-described periodic
structures are, once formed, very stable. When the forcing
amplitude is strongly increased, they are affected by collec-
tive oscillations where all droplets vibrate around their
equilibrium positions. These oscillatory modes, which are
similar to the phonons of a solid crystal will be described
elsewhere. Finally, when the period doubling is complete,
the droplets become walkers [3]. The crystal is usually
destroyed but small crystallites sometimes undergo a tran-
sition to global rotation.
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