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We use a power grid model with M generators and N consumption units to optimize the grid and its control.
Each consumer demand is drawn from a predefined finite-size-support distribution, thus simulating the instan-
taneous load fluctuations. Each generator has a maximum power capability. A generator is not overloaded if the
sum of the loads of consumers connected to a generator does not exceed its maximum production. In the
standard grid each consumer is connected only to its designated generator, while we consider a more general
organization of the grid allowing each consumer to select one generator depending on the load from a pre-
defined consumer dependent and sufficiently small set of generators which can all serve the load. The model
grid is interconnected in a graph with loops, drawn from an ensemble of random bipartite graphs, while each
allowed configuration of loaded links represent a set of graph covering trees. Losses, the reactive character of
the grid and the transmission-level connections between generators (and many other details relevant to realistic
power grid) are ignored in this proof-of-principles study. We focus on the asymptotic limit, N—o and N/M
—D=0(1)>1, and we show that the interconnects allow significant expansion of the parameter domains for
which the probability of a generator overload is asymptotically zero. Our construction explores the formal
relation between the problem of grid optimization and the modern theory of sparse graphical models. We also
design heuristic algorithms that achieve the asymptotically optimal selection of loaded links. We conclude
discussing the ability of this approach to include other effects such as a more realistic modeling of the power
grid and related optimization and control algorithms.
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I. INTRODUCTION

The existing power grid is complex and far from being
optimized. The anticipated installation of small-scale distrib-
uted generators and storage devices, as well as the addition
of many ancillary backup lines and control devices at both
transmission and distribution levels, imply that the main fu-
ture challenges will require intelligent planning, optimiza-
tion, and control of this ever growing grid. This optimized
and efficient grid of the future, that incorporates hardware
and concepts such as renewable generation and distributed
storage, has been labeled “smart grid” [1,2]. Accounting for
many important details of the power distribution and trans-
mission is not feasible without much simplification. Simpli-
fied models must identify the significant effects, extracting
and analyzing and later probing each of them separately and
in combinations. (See, e.g., related review articles [3-5].)

We adopt this “discovery though simplification” approach
and focus in this paper on improving the functioning and
control of the electric grid on the power distribution level.
Specifically, our prime focus is on preventing overloads of
the power generation units caused by fluctuations in the de-
mand by efficiently utilizing ancillary lines. This approach is
justified in the context of a city-scale transmission system, in
which many significant loads and generators are in geometric
proximity of each other and the cost of building new ancil-
lary lines is not prohibitive. We assume that shedding excess
load is not an option and we consider the possibility of re-
distributing the load via a system of interconnects over a
larger grid than what is used under normal (no overload)
conditions. Fundamentally, we ask the following question:
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can an intelligent arrangement of O(M) ancillary lines
among a system of M generators, each serving D customers,
possibly reduce the probability of a generator failure from a
finite number to zero in the limit of M — o and D=0(1). In
fact, an assumption that a drastic improvement is possible
stems from basic information-theoretic intuition: any finite
error probability can be reduced to zero via properly intro-
duced redundancy [6]. We show that adding interconnects to
the power system is related to adding redundancy to the in-
formation system, in the sense that achieving the asymptotic
overload-free distribution is indeed a possibility for an
idealized grid.

The model of power line considered in the paper mimics
how the ancillary power lines are operated on the distribution
level power grid. A city-scale power grid has an intervene
loopy structure, however these loops are typically used for
ancillary (backup and/or maintenance) purposes and opera-
tors aim at avoiding running current over loops. We adopt
this strategy and assume that the system contain (or may be
built with) many switches and that it is operated in the man-
ner that for each given configuration of the preinstalled on-
off switches the currents flow over trees, i.e., subgraphs of
the full loopy distribution graph without loops. We also as-
sume that the lines are sufficiently short (kilometers, not
hundreds or thousand of kilometers), and thus thermal losses
are not important and reactive parts of line impedances can
be ignored. These assumptions correspond to the so-called
DC approximation [7]. Combination of the loop-free struc-
ture of power flows (for any given configuration of switches)
with DC approximation allows to model electricity delivery
as an abstract commodity flow [8]. For completeness of our
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description, let us also note that some other effects of realis-
tic power flows are ignored in our first publication on this
emerging subject. Thus, we do not consider back flows (con-
sumers turned into distributed generators) and for that matter
we do not discuss at all the entire scale up (transmission
level) structure of the grid, inhomogeneities and spatiotem-
poral correlations in loads and generation, and all economy,
pricing and regulation effects [9]. In essence, our main task
here consists in establishing the existence of fundamental
limits, and bounds on the idealized asymptotic failure-free
regime, and followed by developing efficient and simple al-
gorithm controlling switching in the grid.

To solve our model we use the cavity method and its
computational realization via population dynamics, intro-
duced in the statistical physics of disordered systems [10,11]
and recently adapted to the analysis of Shannon (phase) tran-
sitions in constraint satisfaction [12] and error correction
[13,14]. This method explores the famous fact that the
Bethe-Peierls [15,16] or belief propagation [17,18] (BP)
scheme exactly solves probabilistic models on graphs with-
out loops (a tree). The method allows to evaluate the en-
semble average over configurations of allowed discrete
switchings on the grid balancing load with generation. We
study how the number of allowed solutions scale with the
size of the grid, and identify a transition (in the space of
model parameters) from a satisfiable (SAT) domain, in which
the number of solutions is exponentially large (in the system
size) and where BP algorithm finds a valid solution easily, to
an unsatisfiable (UNSAT) domain in which the number of
valid solutions is with high probability zero (thus load shed-
ding would be required).

Assuming that the two ways communications between
consumers and generators exists we design a stochastic local
search algorithm, coined WalkGrid, that is able to find opti-
mal configuration of switches almost anywhere in the SAT
phase. We also utilize aforementioned BP analysis and de-
velop a BP-based message passing scheme for efficient
search of SAT configuration of switches. Generally, Walk-
Grid outperforms the BP-based algorithm almost anywhere
in the SAT phase. Note however that one useful feature of
BP (not readily available in WalkGrid) consists in its ability
to count number of available SAT solutions, and thus have a
direct algorithmic test of the distance to failure, i.e., distance
to the SAT-UNSAT transition.

The material in the manuscript is organized as follows.
We present our model of the distribution grid in Sec. II. The
belief propagation method is detailed in Sec. III. We describe
population dynamics algorithms and present SAT-UNSAT
transition results in Sec. IV. Control algorithms are explained
in Sec. V. Section VI summarizes our approach and proposes
extensions of the study for future explorations relevant to
intelligent optimization and control of the power grid.

II. GRID MODEL

Consider M sources/generators each connected to D dis-
tinct consumers, so that the total number of consumers is
MD. Greek/Latin indices will be reserved for generators/
consumers. For simplicity we assume that each generator has
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a maximum production rate of unity, i.e., y=(0=y,<1|«a
=1,---,M), though inhomogeneities in the production can be
easily incorporated into our approach. The configuration of
loads, x=(x;>0]i=1,---,N), is drawn from an assumed
known distribution with support on the interval (0, 1). Our
enabling example is the flat-box ensemble with a fraction &
of customers dropped off from the network, i.e., drawing no
electricity at all,

Plx) = H [(1 - &)p(x;) + £6(x;)],

@ /A, |x-x <A W
x) = .

P 0, otherwise

The mean consumption then is (1-¢)x and A is the width of
the part of the distribution, correspondent to nonzero de-
mand. We require that the consumption of each individual
customer is non-negativel, ie.,

2¥=A, (2)

and we assume that under normal conditions, i.e., when de-
mand is not excessive, there is always enough power pro-
duced in the network to supply electricity to all consumers,
i.e.,

z|X

1

— Y < —
(I-g)x= D (3)

In our “standard” model of the grid each consumer is
assigned to strictly one generator, while each generator feeds
exactly D consumers. This corresponds to a graph decom-
posed into M simple trees, where M is the number of gen-
erators. To guarantee in this standard case that a generator is
always SAT, i.e., it is capable of supplying electricity to all
of its customers, one requires

D<f+%> =1. (4)

This later condition will be challenged below, in the sense
that we will show that by adding ancillary lines one does not
need to impose Eq. (4), but instead have a weaker condition,
thus extending the domain of the asymptotically failure-free
generation.

To achieve this improvement we consider an intercon-
nected grid built from the standard/separated one by adding
ancillary lines between consumers and generators. For our
quantitative analysis we choose a random graph drawn in the
following way. First, D consumers are connected to every
producer. Second, we choose R consumers from each pro-
ducer and connect them to a second producer in such a way
that every producer is connected to D+R consumers. Of
these D+R connections D—R go to singly connected con-

"This assumption is not crucial and can be easily removed, allow-
ing consumers not only to consume but also to generate electricity.
The inclusion of this capability potentially has a far reaching con-
sequences because it allows distributed generation. We postpone
our discussion of this interesting possibility to future publications.
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FIG. 1. (Color online) Illustration of the bipartite graph construction of our grid with D=3. (Left) R=0;1;2;3. Graph samples. Ancillary
connections to foreign generators/consumers are shown in color. (Right) R=1. Three valid (SAT) configurations (shown in black, the rest is

in gray) for a sample graph shown on the left.

sumers and 2R to doubly connected consumers. So that a
total of NR/D consumers are connected to two generators
and N(1-R/D) are connected to one generator. See Fig. 1
for illustration. The choice of the two parameter (R, D) graph
ensemble is used for simplicity. Our analysis method is valid
for any random network as long as it is bipartite and locally
treelike, meaning that the length of the shortest loop going
through a random node is O(log N).

We say that given configuration of loads x=(x;|i
=1,---,N) is SAT (satisfiable) if there exists a matching o
=(0,,=0,1|{i,a} € G), where G is the bipartite graph ac-
counting for all generators, consumers and lines, such that
the following set of conditions are simultaneously satisfied

VieG >, o=1, (5)
aedi

VaeG D ox=1, (6)
ieda

where di, resp. da, stand for all the nodes to which i, resp. a,
is connected. If the reverse is true, i.e., there exists no valid
o with all Egs. (5) and (6) satisfied, we say that x is UNSAT
(unsatisfiable). First, we aim to solve the decision problem:
is x is SAT or UNSAT? Furthermore, if x is SAT, we would
like to find at least one valid solution, ¢. Both problems can
be stated for a given graph or, alternatively, can be consid-
ered “in average” for ensemble of graphs. We describe the
“average” solution of the former problem in Sec. IV and the
algorithmic solution of the latter in Sec. V. Both sections will
be preceded by a preparatory discussion of the BP approach
in Sec. III.

Related models have been studied in the context of re-
source allocation. One example is the problem of online ad-
vertising known as AdWords, in particular its uniform off-
line version [19-21]. The main difference between our model
and the model for budget-constrained advertising problem is
that condition (6) is replaced by the maximization of the total
revenue 2, min[ 1,2, ;,0:.%;]. This relaxation translates into
allowing one to shed loads, that is not an option in our set-
ting. Discussion of the BP-based approaches to the AdWords

problem and their methodology in [22] is very much related
to ours.

Of other models developed in computer sciences, the one
most similar to ours is the so-called off-line weighted balls-
into-bins games (sometimes called balanced loading)
[23,24]. The off-line version of the balls-into-bins games is
known to be polynomial in the nonweighted case [i.e., for a
special discrete choice of the distribution Eq. (1)], as in that
case it can be mapped into a max-flow (min-cut) problem
[25]. On the other hand the general (weighted) version on a
fully connected graph (every customer being possibly con-
nected to every generator) is equivalent to the NP-complete
bin packing problem (number partitioning in the case of two
generators). We are not aware of any computational com-
plexity results for the case of bounded number of consumers
per generator. Therefore, and given that the max-flow map-
ping of [25] does not generalize to the most general version
of Eq. (1), we conjecture that computationally the general
problem described by Eq. (1) is NP hard.

II1. BELIEF PROPAGATION

In the asymptotic limit of an infinite system, for which
N—o while D and R are O(1), the interconnected grid is
locally treelike. Therefore, the Bethe-Peierls (Belief Propa-
gation) BP approach for evaluating the generalization of Eq.
(4) is expected to be asymptotically exact (in a sense to be
clarified later in this text). This section describes details of
the BP approach.

We introduce the following set of marginal probabilities:

¢! is the probability that generator « is satisfied given
that the edge (i,@), connecting « with his consumer-
neighbor on G, is in the active state, i.e., g;,=1.

@~ is the probability that generator a is satisfied given
that the edge (i, @), where (i,a) € G|, is inactive, i.e., 0,
=0.

X,~® is the probability that i is satisfied (i.e., it is con-
nected to exactly one generator) given that the edge (i, @),
where (i,a) € G|, is active, i.e., 0,,=1.

Xy~ is the probability that i is satisfied (i.e., it is con-
nected to exactly one generator) given that the edge (i, @),
where (i,a) € G, is inactive, i.e., ;,=0.
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BP relates these marginal probabilities to each other as-
suming that the relations are graph local, i.e., as if the graph
would contain no loops. The resulting BP equations are

Xi = IT w6 (7

i—a
Z Bedi\a

Xo = > i 1

i—a
z Bedi\a yedi\a,B

W (8)

a—i 1
1 :F 2

 i=10.1}1%1

0(1—x,-— D

Jjeada\i

j—a
(Tja'x]> H (rja )

Jjeada\i

)

. 1
il Y

ZC&‘*’[ .
‘Tz?a\iz)z:{o’ 1 }lﬁa\’

0(1 -3
| jeada\i

Ujaxj) H X](rla’

jeda\i
(10)

where di\a is a standard notation for the set of generator
nodes linked to consumer i, however excluding generator «,
and similarly da\i stands for the set of consumer nodes
linked to generator @ excluding consumer i. In Egs. (7)-(10),
7~ and Z%~' are normalizations ensuring that, x| ®
+x5 “=1 and '+ 5 '=1. The 6(-) is the step function
enforcing the generatlon constraints. It is unity if the argu-
ment is positive and zero otherwise. The probability for the
link/edge (i, ) to be active, stated in terms of the related i
and y, is
a—i_i—a

1 X1 (11)

a—i_i—a a—n i—a’

[ Xo

pli,a) =

where 2, ,p(i,@)=1. Note, for the sake of completeness,
that the BP equations can be derived in the spirit of [26] as
conditions for a fixed point (minimum) of a functional of
marginal probabilities (beliefs), the so-called Bethe free-
energy functional.

The Bethe entropy, defined as the logarithm of the number
of possible SAT configurations (and also equal to the Bethe
free energy evaluated at the solution of the previously men-
tioned BP equations), is

SBethe = Elog(za)+210g(2')—2log(zm) (12)
(i,a)

9(1— > Uax,) 1T )(Ha, (13)

ieda ieda

zv= X

0,;,=10, l}“"'a|

Zi= 2y I o, (14)
aedi Bedi\a
ZU= g X (15)

The entropy Sgeme is extensive, O(N), and self-averaging,
i.e., the distribution of Sg.y, 1S concentrated around its mean
value with dispersion being o(N) at N— .
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IV. AVERAGE BETHE ENTROPY VIA POPULATION
DYNAMICS

Fixed point of the BP Egs. (7)—(10) and the corresponding
entropy Eq. (15) can be obtained by solving Egs. (7)—(10)
iteratively for a given instance of the problem. Repeating
these simulations many times for different instances of the
graph and load ensembles one can also calculate the average
Bethe entropy. However, the average behavior, correspond-
ing to the limits of the infinite graph, can be obtained more
efficiently via the population dynamics technique. This tech-
nique offers a computationally efficient sampling from the
distribution of the marginal probabilities x, on infinite ran-
dom graphs and subsequent evaluation of the average Bethe
entropy. Below we give a very brief exposition of the popu-
lation dynamics approach applied to our model. The inter-
ested reader is referred to [11,27] for further details.

In population dynamics, we create a pool of N, compo-
nents, each characterized by the (xq,x;,x) vector with x
drawn from the original distribution of demands Eq. (1) and
the initial y selected arbitrarily. Messages leaving the gen-
erator and entering the consumer connected to a single gen-
erator will always be kept fixed to x;=1, xo=0, while other
messages will be updated iteratively, so that at any new
sweep a new pool is derived from the old one. A sweep
consists of the following step repeated O(N,) times (each
time one of the N, components is updated). A step consists of
choosing a random number x;, D—R random numbers Xj, and
2R random elements from the pool representing the incom-
ing messages x, and computing the message ¢ based on Eqs.
(9) and (10). Then we replace a random element of the pool
by the vector (¢, ¥%,x;), in accordance with Egs. (7) and (8),
thus guaranteeing that y;=¢y and y,=¢;. We repeat this
sweep procedure many times until convergence is achieved.
To compute the average Bethe entropy we apply similar pro-
cedure of sampling from the resulting pool and thus averag-
ing all the terms in Eq. (15).

Implementing the population dynamics method we ob-
served three possible outcomes

(a) SAT phase: the Bethe entropy is positive suggesting
that the number of SAT configuration (valid redistribution of
the dzemand over the generators) is exponential in the system
size.

(b) UNSAT phase, type 1: the Bethe entropy is negative,
suggesting that there is almost surely no valid redistribution
of demand over the generators.

(c) UNSAT phase, type 2: a contradiction is encountered
in the BP equations, formally correspondent to zero values
for the normalizations in Eq. (7)—(10). We conclude that the
demand is incompatible with the graph and respective gen-
erator assignment.

Figure 2 shows results of the population dynamics simu-
lations, with lines connecting the marks indicating the

*This is the case unless the so called replica symmetry breaking
takes place in our model. We have done a local stability check of
the BP solution and have not seen any indication for a break down
of the replica symmetry. Note also that this stability is also equiva-
lent to convergence of the underlying BP algorithm for an indi-
vidual realization of the graph and the loads.
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FIG. 2. (Color online) Results of the population dynamics shown in the (x,A) plane for D=3,4, where (1—g)x is the distribution mean
and A is the distribution widths. The population dynamics was done with Np=1000 for D=4 and N,=10000 for D=3. The triangular region
(black full lines) corresponds to conditions Egs. (2), (3), and (17), and encloses the interesting region of parameters. The colored lines with
data points separate SAT and UNSAT domains lying on the bottom-left and top-right off the lines, respectively. Different colors/lines/markers
correspond to different values of R=0,---,D. Note that the curves for R=0 and R=1 (dashed without markers) are identical, due to condition
Eq. (16). We observe that the performance improves with increasing R =2 (the number of ancillary lines) and the grid tolerates larger values
of A (fluctuations in the demand). The abrupt change in slope of the curve corresponding to R=2 (full red line with x marks) in the right part
of the figure is due to condition (16). Note that if condition (2) is removed (see, e.g., discussion in the footnote preceding the equation) our
description still remains valid, thus resulting in the colored lines with markers extending smoothly beyond their crossings with the tilted

black curve.

boundaries of the respective SAT and UNSAT phases. These
boundaries are established by fixing A and traversing differ-
ent values of x starting from SAT phase moving toward UN-
SAT phase and catching the value where the UNSAT condi-
tions are first time observed. We observe a significant
improvement of the SAT/UNSAT threshold from what Eq.
(4) suggests.

Recall that in the R=0 case the SAT/UNSAT threshold is
described by Eq. (4). Similar upper bound can be derived for
cases R=1. Then for any given R, one can find (with high
probability) a place on a very large network where all con-
sumers connected to two generators (which are neighbors
trough one of the consumers) have demands near to the
maximum value x+A/2. Then at least D—R+1 of these
loads have to be connected to one generator and hence

(D—R+1)<f+§)sl. (16)

Note that Eq. (16) is identical to Eq. (4) for R=1.

Moreover, in order to observe an improvement in the con-
dition Eq. (4) for £=0, Fig. 2 left, one needs to require ex-
istence of such configuration of loads that a set of (D+1)
consumers connected to one producer and drawing the mini-
mal amount of electricity does not overload the generator,
ie.,

e=0: (D+1)(f— %)Sl. (17)

This condition is at the origin of the nonintuitive reentrant
behavior observed in Fig. 2 left. Note that Eq. (17) does not
apply to the (more realistic) case of £>0.

To conclude, this study of the average Bethe entropy
shows that the network with added ancillary lines is able to
withstand larger fluctuations in the demand, A, than the naive

network, in which every consumer has a predesigned pro-
vider independently of the current demand. This effect is
amplified with increasing R.

At this point it is also appropriate to recall that the SAT-
UNSAT transition is actually an abrupt transition only in the
sense of the asymptotic N—cc limit. Thus for large finite N
the generator failure probability is small but finite at any
point of the SAT domain.

V. CONTROL ALGORITHMS

In this section we discuss the problem of calculating a
valid load-to-generators assignment for a given graph and
given configuration of loads. We designed two heuristic
methods to identify SAT configuration of switches. Our first
algorithm, coined WalkGrid, is an adaptation of the Walk-
SAT [28,29], which is a stochastic local search heuristic
solver for the K-satisfiability problem. The WalkGrid algo-
rithm is very fast and shows flawless performance in discov-
ering a valid configuration almost anywhere in the SAT
region.

Our second algorithm corresponds to solving BP equa-
tions. The BP scheme, designed in the spirit of [12], is used
to find most biased/stressed link and then proceeds with deci-
mation toward a valid configuration [12]. Our implementa-
tion of the BP decimation is so far slower and a bit less
efficient than performance shown by the WalkGrid algo-
rithm. To this point, let us note that there exists a more effi-
cient way of using BP to find valid configurations—the rein-
forcement strategy [30,31], which is fully distributed, linear
in the number of consumers and typically outperforms deci-
mation. The reinforcement strategy has been implemented in
[22] for a related online advertising problem. However, we
had a difficulty to find an implementation of the reinforce-
ment which would work efficiently in our problem.
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FIG. 3. (Color online) Performance of the WalkGrid algorithm. The data are for networks with M producers, and R=2, D=3, A=0.2,
e£=0. The temperaturelike parameter and the maximum number of iterations are set to p=0.18 and T,,,,=2000, respectively. The average
(median) is over 100 instances for M up to 20k and 20 instances for M=100k. Left: the median running time plotted against the average
consumption x. Right: the percentage of cases where solution was found in less than 7,,,,=2000 iteration. The Bethe entropy based
(asymptotic) curve is drawn dashed for comparison (the actual value for the curve is not related to the success rate), suggesting that in the
limit of N— valid configurations exist up to x=~0.30. Note that in the separated case (of R=0), valid configurations exist only at X

=1/D-A/2=0.23.

A. WalkGrid

WalkGrid is a stochastic local search algorithm inspired
and closely related to its K-SAT ancestor called WalkSAT
[28,29]. It can also be viewed as a Monte Carlo-like algo-
rithm which in order to gain speed violates the detailed bal-
ance condition (not needed here as we are not interested in
sampling, but are rather focused on a local search). Our
implementation works as follows

Walk Grid

1 Assign each value of o 0 or 1 randomly
(but such that Vie G:2,50,,=1);

2 repeat Pick a random power generator «
which shows an overload, and denote the
value of the overload, &,

3 Choose a random consumer i connected
to the generator «, i.e., 0;,=1;

4 Pick an arbitrary other generator which is
not overloaded and consider switching con-
nection from (i) to (iB8).

5 if (in the result of this switch « is re-
lieved from being overloaded

6 and g either remains under the allowed
load or it is overloaded but by the amount
less than o)

7 Accept the move, i.e., disconnect i from
a and connect it to B thus setting o;5=1, gy,
=0.

8 else With probability p connect consumer i
to B instead of «;

9 until Solution found or number of iterations
exceeds M T,

The WalkGrid algorithm depends on two parameters: the
maximum number of iterations T,,,,, and the temperaturelike
(greediness) parameter p. The parameter p needs to be opti-
mized, just as in the original WalkSAT solver.

Figure 3 and 4 show performance of the WalkGrid algo-
rithm. The running time of this algorithm scales close to
linear with the system size, it is thus relatively easy to re-
solve fast network with many thousands of nodes. Whereas
for R=2, D=3, A=0.2 the separated architecture requires x
=0.233, the WalkGrid algorithm is able to find valid con-
figurations up to x¥=0.296, while our theoretical analysis
suggests that valid configurations should exist up to X
~0.301.

B. Belief-propagation decimation

In the BP-based decimation algorithm one updates Egs.
(7)—(10) iteratively, thus passing messages from generators
to consumers and back. After fixed number of steps the most
biased consumer is chosen and the more probable value for
its consumption is assigned, the graph is reduced and the
procedure is repeated. Note that updating Egs. (7) and (8)
takes 22K steps per message thus making the algorithm ex-
ponential in R. However, building new connections is expen-
sive and one should realistically assume that actual R is any
case not very large. As far as the scaling in N goes, the
algorithm is quadratic in the number of consumers.

Decimation

1 repeat Update BP messages on every edge
according to (7-10) n times.

2 Compute the marginals (11).

3 Choose the most biased edge i« and as-
sign is the more probable values;
4 Simplify the formula, cutting off the as-
signed edge from the graph;
5 until Solution or contradiction is found;
The algorithm performance is illustrated in Fig. 5 where
the percentage of success in the BP-based decimation is
shown. These data average over 50 random instances from

the R=2, D=3 ensemble with variance in consumption A
=0.2 and varying mean consumption. For such a set of pa-
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FIG. 4. (Color online) Performance of the WalkGrid algorithm
for D=3, R=2, £¢=0 and different values of the distribution width
A. Bellow the blue (dashed) line the WalkGrid algorithm is able to
find solution on more than 50% (average over 20 trials) of graphs
with 10° generators. The red (full) line corresponds to the theoret-
ical boundary separating SAT and UNSAT domains respectively.

rameters the separated network would be able to achieve x
=1/3-0.1, whereas with two consumers per producer con-
nected to two producers the mean consumption increases to
x=0.30.

VI. SUMMARY AND PATH FORWARD

This manuscript reports a study of the power distribution
networks with transition from the SAT regime, in which
shedding of loads is avoidable, to the UNSAT regime, where
shedding is the only available option for balancing the de-
mand. We have shown that a significant enlargement of the
SAT domain is possible employing ancillary connections be-
tween power consumers and generators. Even though our
model represents a gross oversimplification over the actual
power grid, it offers a significant step forward in providing a
framework and guidance for analysis of more involved and
realistic problems. The general approach we pursued in this
study is based on recent developments in the field of graphi-
cal models that merges statistical physics, computer science,
optimization theory, and information theory [13,14]. The BP
approach is asymptotically exact on infinite sparse graphs
and as such is useful for the asymptotic (capacity/phase-
transition style) analysis. The BP scheme also provides heu-
ristic tools for graphical models on finite sparse graphs that
can be used for algorithmic optimization and control of the
power grid. We tested this BP approach, and also developed
in parallel another an apparently more efficient alternative to
BP called WalkGrid. This algorithm finds valid configuration
of switching practically anywhere inside the SAT phase.
Note, that the two algorithms, BP and WalkGrid, are truly
complementary and there utility for practical problems in
power networks are yet to be explored.

It is important to emphasize that many generalizations of
our model are very straightforward and can be used directly
within the framework presented here. This includes imple-
menting different probability distributions for demands (as
long as the distribution support is bounded), and nonunifor-
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FIG. 5. (Color online) Performance of the BP-based decimation
algorithm. The data are for networks with M producers, n=>5 (five
iteration per a cycle of the decimation procedure) and R=2, D=3,
A=0.2, e=0. Average over 50 random instances is taken and the
fraction of successful runs is plotted against the mean consumption
X. The Bethe entropy based (asymptotic) curve is drawn dashed for
comparison (the actual value for the curve is not related to the
success rate), suggesting that in the limit of N— o valid configura-
tions exist up to x~0.30. Note that in the separated case (of R=0),
valid configurations exist only at X< 1/D—-A/2~=0.23.

mity for both generator and consumer levels, i.e., varying
production caps for generators and considering distinct dis-
tributions of demands for different consumers. Also the net-
work itself can be easily extended in many ways from the
simplified case, parameterized by R and D, that we discussed
in the manuscript. Our equations are straightforwardly valid
for every bipartite locally treelike random network. Another
case, which allows very natural and straightforward generali-
zation for all the statements made in this manuscript, corre-
sponds to breaking the equivalence between different edges
in the graph and thus assigning nonuniform weights to them.
These weights may, e.g., represent cost of construction, geo-
graphical length, proxy for losses, cost of exploitation, etc.

There are many other more realistic extensions of our
model associated with the description, optimization, and con-
trol of power grids which can benefit from utilizing a graphi-
cal model approach of the kind discussed in this paper, even
though actual implementation may prove to be more in-
volved. We conclude listing some of these more interesting
but difficult problems that we plan to address in the future,
based on the general method sketched in this manuscript:

(A) Most important generalization of our approach would
be to account for losses, impedances, and the reactive char-
acter of ac electrical systems. Obviously this will require
incorporating in our statistical SAT-UNSAT framework
Kirchhoff’s circuit laws [7,32].

(B) Generators in a real grid are interconnected on higher
(still power distribution, but also power generation) levels. In
combination with item [A], this represents a major challenge
for extending our approach. However, we still believe that
posing the joint optimization and control problem in terms of
a complex graphical model and then addressing capacity/
transition as well as algorithmic issues with the host of BP-
related techniques is a feasible and exciting path forward.

(C) The joint optimization setting, mentioned in item [B],
may also include various additional factors associated with
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economic policies (e.g., prices, incentives, etc.) [9,33], gov-
ernment regulations and load/generation forecasting. These
complications can be accounted for in the form of extra soft
or hard constraints. This united framework should also take
advantage of the progress made in developing optimal power
flow solutions [34,35].

(D) Our consideration in this paper was purely static, thus
ignoring important transients. Constructing dynamical (dis-
crete and continuous time) models that also accounts for all
the aforementioned problems, is an important future task. It
is also important to notice that the graphical model approach
can in fact be extended to the dynamic framework, see, e.g,
[36] thus suggesting yet another intriguing future opportu-
nity.

(E) An essential part of statistical studies of the power
grid focuses on estimating probabilities and mitigating very
costly and dangerous large scale outages [37,38]. The graphi-
cal model framework this manuscript describes allows an

PHYSICAL REVIEW E 80, 046112 (2009)

extension which can analyze rare events of special interest,
such as dangerous but rare configurations of the
channel noise and degrading performance of low-density-
parity-check codes [39,40]. We plan to extend this approach
to the analysis of outages and their cascading through the
grid.
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