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We introduce a random energy model on a hierarchical lattice where the interaction strength between

variables is a decreasing function of their mutual hierarchical distance, making it a non-mean-field model.

Through small coupling series expansion and a direct numerical solution of the model, we provide

evidence for a spin-glass condensation transition similar to the one occurring in the usual mean-field

random energy model. At variance with the mean field, the high temperature branch of the free-energy is

nonanalytic at the transition point.
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Clarifying the nature of glassy states is a fundamental
goal of modern statistical physics. Both for spin glasses [1]
and for structural glasses [2], the mean-field theory of
disordered systems provides a suggestive picture of labo-
ratory glassy phenomena as the reflection of an ideal
thermodynamic phase transition. Unfortunately, the devel-
opment of a first principles theory of glassy systems going
beyond mean field has resisted decades of intense research
[3–5]. One of the main obstacles towards this goal lies in
the lack of reliable real space renormalization group (RG)
schemes allowing us to reduce the effective number of
degrees of freedom and identify the relevant fixed points
describing glassy phases. In ferromagnetic systems, an
important role in the understanding of the real space RG
transformation has been played by spin systems with
power law interactions on hierarchical lattices [6,7]. In
these models, the RG equations take the simple form of
nonlinear integral equations for an unknown function (as
opposed to the functional of statistical field theory), that
can be solved with high precision. In this perspective, it is
natural to generalize these models to spin glasses [8,9].

In this Letter, we introduce the simplest such spin-glass
model, a random energy model (REM) [13,14]. As we shall
see, the hierarchical REM is such that the interaction
energy between subsystems scales subextensively in the
system size. It thus qualifies as a non-mean-field model.
We report in what follows the results of a small coupling
expansion and of an algorithmic solution of the RG equa-
tions for the entropy that, exploring complementary re-
gions of parameter space, provide the first analytic
evidence in favor of an ideal glass transition in a non-
mean-field model. Interestingly, this transition turns out to
have—as in the case of the standard REM—the character
of an entropy catastrophe analogous to the one hypothe-
sized long ago for the structural glasses [15,16].

The hierarchical REM can be defined as a system of
N ¼ 2k Ising spins with an energy function defined recur-
sively. The recursion is started at the level of a single spin
k ¼ 0, with the definition of H0½S� ¼ �0ðSÞ, where the

single spin energies are independent identically distributed
(i.i.d.) random variables extracted from a distribution
�0ð�Þ. At the level kþ 1, we consider then two indepen-
dent systems of 2k spins S1 ¼ fS1ig, i ¼ 1; . . . ; 2k and S2 ¼
fS2ig, i ¼ 1; . . . ; 2k with Hamiltonians H1k½S1� and
H2k½S2�, respectively, and put them in interaction to form
a composite system of 2kþ1 spins and Hamiltonian

Hkþ1½S1; S2� ¼ H1k½S1� þH2k½S2� þ �k½S1; S2�;
where the �k are i.i.d. random variables extracted from a
distribution �kþ1ð�Þ, chosen to have zero mean and vari-

ance h�k½S1; S2�2i � 2ðkþ1Þð1��Þ. The interaction term
�k½S1; S2� is physically analogous to a surface interaction
energy between the two subsystems. For � 2 ð0; 1Þ, this
model qualifies as a non-mean-field system, where the
interaction energy between different parts of the system
scales with volume to a power smaller than unity. On the
contrary, when � � 0, the interaction energy grows faster
than the volume. A rescaling of the energy is then neces-
sary to get a well-defined thermodynamic limit. The sys-
tem behaves in this case as a mean-field model. Finally, for
�> 1, the interaction energy decreases with distance and
asymptotically the model behaves as a free system. In the
following, we focus on the most interesting region 0<
�< 1.
We have studied this model with two different methods.

The first one is a replica study of the quenched free energy,
performed through a small coupling perturbative expan-
sion. The second one is a numerical estimate of the micro-
canonical entropy as a function of the energy. Both
methods suggest that a REM-like finite-temperature phase
transition occurs for all � 2 ð0; 1Þ.
Perturbative computation of the free energy.—In order to

make the calculations as simple as possible, we have
chosen a Gaussian distribution for the energies �k. We
then considered the perturbative expansion in g � 21��

of the free energy fðTÞ ¼ fðmÞðTÞ þOðgmþ1Þ. Notice that
the expansion of f to the mth order takes into account just
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the interactions with range less or equal to 2m, i.e., the first
m hierarchical levels.

The computation of the free energy has been done with
the replica method. In this context, it is just a mathematical
tool to organize the terms of the series. We considered then
the expansion of the average partition function of the
system replicated n times

Zn ¼ X

S1���Sn
exp

�
�2

4

Xk

j¼0

gj
X2k�j

i¼1

Xn

a;b¼1

�
Sðj;iÞa Sðj;iÞ

b

�
(1)

where � � 1=T, and Sðj;iÞ is the configuration of the ith
group of spins at the jth level of the hierarchy. This

representation allowed an automated computation of fðmÞ
up to the value of m ¼ 10.

A useful check of the method is obtained considering
�< 0. Since in this case high values of j dominate the
energy in (1), correlations between the energy levels can be

neglected. After rescaling the energies by �j ! 2k�=2�j,

the free energy of the model becomes equal to the one of

the standard REM [13,14] with critical temperature Tc ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j2

��j= log2
q

. We found that, when increasing m, fðmÞ

converges to the REM free energy with exponential speed
in the whole high temperature regime �<�c.

We now consider fðTÞ for 0<�< 1. The direct in-
spection of the curves shows that, form � 1, themth order

entropy sðmÞðTÞ � �dfðmÞðTÞ=dT while positive at high

temperature, becomes negative at some temperature TðmÞ
c .

As can be seen in Fig. 1, the sequence TðmÞ
c exhibits a good

exponential convergence to a finite limit Tc for � � 0:15.
The stability of these data for large m clearly suggests that
an entropy crisis transition is present in the model at Tc.
The inset in Fig. 1 shows that Tc is a decreasing function of
�, consistently with the fact that the larger �, the weaker
the interaction strength. At high temperature also, the free-

energy series has a good exponential convergence in g (see
Fig. 2).
This small g expansion gives some evidence for an

entropy crisis taking place at temperature Tc. It is impor-
tant to realize that this Tc cannot be simply computed from
the sum of the variances of the �k: the energy correlations
cannot be neglected. An entropy crisis implies the exis-
tence of a phase transition at a temperature� Tc. In a REM
scenario, the phase transition would take place exactly at
Tc, when the entropy vanishes. An argument in favor of
such a result can be found with a one-step replica symme-
try breaking ansatz. Consider the partition function (1) and
suppose that the n replicas are grouped into n=x groups, so

that, for any two replicas a, b in the same group, Sðj;iÞa ¼
Sðj;iÞb for all i, j. Then perform again the small g expansion,

within this ansatz. To each order m, this procedure gives a

free energy fðmÞ
x ðTÞ ¼ fðmÞðT=xÞ. The maximization over x

then gives x ¼ 1 for T > TðmÞ
c , and x ¼ T=TðmÞ

c for T <

TðmÞ
c . This result is in complete analogy with the one found

in the REM, so the above replica symmetry breaking
Ansatz predicts a REM-like transition at T ¼ Tc. In order
to get distinct evidence for this scenario, we have done
some numerical study.
Numerical computation of the entropy.—We exploit the

hierarchical structure of the model to compute the micro-
canonical entropy SkðEÞ. In order to make the computa-
tions as simple as possible, we have chosen for �kð�Þ the
binomial distribution [17,18],

�kð�Þ ¼ 1

2Mk

Mk

�þ Mk

2

� �
:

At the level k,Mk is the integer part of �2
kð1��Þ, to have the

FIG. 1. The temperatures TðmÞ
c vs m for � ¼ :1. Here, Tc ¼

1:861� :021. Inset: Tc vs �.

FIG. 2. To get a better convergence for the free energy, we

considered the sequence fðmÞðT � Tc þ TðmÞ
c Þ instead of fðmÞðTÞ.

As TðmÞ
c ! Tc form ! 1, the two sequences have the same limit

fð1ÞðTÞ. Here, we see that for � ¼ 0:1, fðmÞðTÞ has negative

entropy sðmÞðTÞ for T < TðmÞ
c .
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same scaling of the variance as in the Gaussian model. The
constant � is chosen so that for all the values of � studied,

bð�2kð1��ÞÞc=ð�2kð1��ÞÞ 	 1 for every k. Consider the
disorder-dependent density of states for a sample a:
N a

kðEÞ ¼
P

S�HkðSÞ;E. The recursion relation that defines

the model’s Hamiltonian implies that when two samples a
and b at the level k are merged to define a sample at the
level kþ 1, the resulting density of states N c

kþ1ðEÞ sat-
isfies

N c
kþ1ðEÞ ¼

X

Ea;Eb;�
E¼EaþEbþ�

nkðEa; Eb; �Þ (2)

where nkðEa; Eb; �Þ ¼
P

S1;S2
�Ha

k
ðS1Þ;Ea



�Hb

k
ðS1Þ;Eb

��kðS1;SeÞ;� is the number of states in the composite

system that have Ha ¼ Ea, Hb ¼ Eb and interaction en-
ergy equal to �. For given Ea and Eb, the joint distribution
of the nkðEa; Eb; �Þ for the different values of � is multi-
nomial with parameters q� ¼ hnkðEa; Eb; �Þi ¼
N a

kðEaÞN b
kðEbÞ�kð�Þ, while nk’s with different first or

second argument are independent.
Our algorithmic approach starts from the exact iteration

of Eq. (2). Thanks to the use of a discrete interaction
energy, the iteration time grows with k proportionally to

2kð3��Þ. This allowed us to reach the level k ¼ 12. The
results of the iteration shows that the values of the energy
can be divided in bulk region of energy density around the

origin where the number of states N kðEÞ ¼ e2
kSkðE=2kÞ is

exponential in the system size, and an edge region where
the number of states is of order one (see Fig. 3).

In order to proceed further, we assume the existence and
self-averaging property of the entropy density SðeÞ in the
thermodynamic limit. We then coarse grain our descrip-
tion. We discretize the energy density in the bulk region

and use an approximated iteration for the entropy, where
the sum (2) is approximated by its maximum term. We
account for the edge region using the exact recursion for
the N0 ¼ 10 000 lowest energy levels. We can in this way
iterate many times and obtain a good estimate of the
thermodynamic limit behavior.
In Fig. 3, we present the average entropy density as a

function of the energy density e for various values of �. In
order to identify the transition, it is more convenient to
average the data obtained with a fixed energy difference
from the fluctuating ground states. We can get in this way
good estimates of the value of the inverse critical tempera-
ture of the model �c ¼ s0ðe0Þ. An interesting feature
emerging from our analysis is that close to the ground state
energy density e0, the entropy is not analytic and behaves
as SðeÞ 	 �cðe� e0Þ þ Cðe� e0Þa with a well fitted by
the value a ¼ 2� �. This behavior, when translated in
the canonical formalism, implies a singularity of the

free energy close to Tc, FðTÞ ¼ E0 þ const
 ðT �
TcÞð2��Þ=ð1��Þ, corresponding to a specific heat exponent
� ¼ � �

1�� .

Having found evidence for a thermodynamic phase tran-
sition, we turn our attention to the distribution of low-lying
energy states. The REM picture suggests that, close to the
ground state, the number of energy levels with given
energy E are independent Poissonian variables with den-

sity hN 1ðEÞi ¼ e�cðE�E0Þ. A computation using extreme
value statistics shows that the probability Q‘ðkÞ that the
ground state and first ‘� 1 excited states are occupied by n
levels is given by

Q‘ðnÞ ¼ ½1� expð�‘�cÞ�n=ð‘�cnÞ: (3)

In Fig. 4, we show theQ‘ðnÞ obtained numerically together
with a fit with the form (3). This procedure confirms the

FIG. 3. The entropy sðeÞ vs e=
ffiffiffiffi
�

p
for � ¼ 0:9, 0.8, 0.7, 0.6

(with � ¼ 30, 10, 5, 5, respectively), from the outside to the
inside. Inset: power law behavior of �� �c. The slopes are
close to 1� �, with � ¼ 0:6, 0.7, 0.8 from bottom to top.

FIG. 4. Numerical data (cross) and the fitting function Q3ðnÞ
for the statistics of occupation of the ground state and the first
two occupied levels. Here, k ¼ 10, � ¼ 0:6 and � ¼ 5. The
dashed line is a fit with the form (3) with �c ¼ 1:20.
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validity of a REM-like transition, and provides an alter-
native way of estimating the critical temperature. As Fig. 5
shows, the two estimates for different values of k tend to
the same limit from opposite directions.

Conclusions.—In this Letter, we have introduced a hier-
archical, non-mean-field REM. We have analyzed it
through small coupling series, through a 1RSB replica
ansatz, and through an algorithmic approach. The two
approaches point to the existence of a REM-like phase
transition at the temperature where the entropy vanishes.
At variance with the mean-field result (which predicts a
discontinuity in the specific heat), one finds a nontrivial
specific heat exponent at Tc. It will be interesting to study
the replica structure of this hierarchical REM in order to
explore other possible replica solutions at low tempera-
tures. Another important theme of future research is the
study of spin-glass models with p-body interaction
[13,19,20]: at the mean-field level, these models display
an entropy crisis transition similar to the one of the REM

whenever p � 3. It will be interesting to study them on
hierarchical lattices.
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FIG. 5. Finite volume estimation of the inverse critical tem-

perature,
ffiffiffiffi
�

p
�ðkÞ

c vs k, for � ¼ 0:6 and � ¼ 5 determined by (3)

(circle) and by �c ¼ s0ðe0Þ (triangles). The latter have been fitted
with a function of the type �ðkÞ

c ¼ �c � BCk (solid line). The
asymptotic value �c is given by the dashed line.
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