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We present an asymptotically exact analysis of the problem of detecting communities in sparse random

networks generated by stochastic block models. Using the cavity method of statistical physics and its

relationship to belief propagation, we unveil a phase transition from a regime where we can infer the

correct group assignments of the nodes to one where these groups are undetectable. Our approach yields

an optimal inference algorithm for detecting modules, including both assortative and disassortative

functional modules, assessing their significance, and learning the parameters of the underlying block

model. Our algorithm is scalable and applicable to real-world networks, as long as they are well described

by the block model.
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In many networks, ranging from online communities to
gene regulatory networks, nodes belong to modules or
communities that play distinct functional roles. A funda-
mental problem is to detect these communities and under-
stand what role they play in the network’s structure and
dynamics. Many algorithms for this problem have been
suggested over the past decade. However, most of these
methods suffer from two conceptual problems. First, as
pointed out previously [1,2], they do not provide a measure
of the significance of the division into communities, and
they falsely detect communities even in purely random
graphs. Second, they are limited to assortative community
structure, where nodes are more likely to be connected to
other nodes of the same type. In many real-world networks,
such as food webs, metabolic, and word adjacency net-
works, nodes belong to functional communities—rather
than connecting to each other, they connect to the rest of
the network in similar ways.

Here we present an approach that resolves both these
problems and is asymptotically exact for networks gener-
ated by a widely used stochastic block model. It is appli-
cable to real-world networks that are reasonably well
described by this model and can also be generalized to
other local generative models such as Ref. [3]. We combine
a Bayesian approach with the cavity method developed in
statistical physics [4,5], leading to a message-passing al-
gorithm, known in computer science and information the-
ory as belief propagation (BP) [6], for detecting functional
modules and learning the model parameters. Our approach
provides a natural measure of the significance of the mod-
ules in the network, as it outputs the marginal probability
that a given node belongs to a given group. If the network
does not contain any modules, it correctly infers this fact
by making these marginals uniform. Both these aspects are

missing in the vast majority of current approaches to
community detection.
We also unveil striking theoretical aspects of the block

model. As a function of its parameters, we discover several
sharp phase transitions. We distinguish between a detect-
able phase, where it is possible to learn the model’s pa-
rameters and the group memberships of the nodes, and a
nonintuitive undetectable phase, where learning is impos-
sible because the network’s topology does not retain
enough information about the true group memberships.
The existence of a phase where particular algorithms are
unable to detect communities was previously predicted
[1,7,8], but our results about undetectability are much
stronger: Assuming that BP determines the correct margin-
als, which it does modulo standard assumptions, our results
are algorithm independent, showing that no algorithm can
determine the groups. We also find a transition from a
‘‘hard detectable’’ phase, where the network has enough
information to determine the groups but where, we believe,
no polynomial algorithm can find them, to an ‘‘easy’’ phase
where polynomial-time algorithms do exist.
Stochastic block model.—We consider networks of N

nodes. Each node i has a hidden label ti 2 f1; . . . ; qg,
specifying which of q groups it is a member of. These
labels are chosen independently, where na is the probabil-
ity that a given node has label a 2 f1; . . . ; qg (normalized
so that

Pq
a¼1 na ¼ 1). If Na is the number of nodes in each

group, we have na ¼ limN!1Na=N.
Once the group assignments are chosen, the model gen-

erates a graphG as follows. For each pair of nodes ði; jÞ we
put an edge between i and j independently with probability
pti;tj , leaving them unconnected with probability 1� pti;tj .

We call pab the affinity matrix. Since we are interested in
the sparse case where pab ¼ Oð1=NÞ, we will use the
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rescaled affinity matrix cab ¼ Npab and assume that cab ¼
Oð1Þ in the limit N ! 1.

In our setting, the adjacency matrix Aij of the graph is

the only information available to us. Our goal is to learn the
parameters q, fnag, and fcabg of the block model, as well as
the group assignments ftig. Special cases of this model
have often been considered in the literature. Planted parti-
tioning, when na ¼ 1=q, cab ¼ cout for a � b, and caa ¼
cin with cin > cout, is a classical problem in computer
science and has been used as a benchmark for community
detection [2,7,9–11]. Planted coloring, where na ¼ 1=q,
caa ¼ 0, and cab ¼ cq=ðq� 1Þ, is a fundamental problem
in constraint optimization [5] and was studied by using the
cavity method in Ref. [12].

Bayesian inference for block models.—Bayesian infer-
ence has been applied to community detection before.
However, except for some very specific generative models
(e.g., [13,14]), the likelihood function for sparse networks
must be computed approximately, either through
Monte Carlo sampling (e.g., [15]) or variational methods
[11]. We note that the authors of Ref. [16] studied Bayesian
inference for dense networks, cab ¼ OðNÞ, and their re-
sults can be recovered from our work in the limit c ! 1.

The crucial contribution of our work is that the quanti-
ties that follow from Bayesian inference can be analyzed
exactly in the thermodynamic limit by using the cavity
method [4,5]. The probability that the model parameters
take a given set of values f�g ¼ ðq; fnag; fcabgÞ, condi-
tioned on the topology of the network G, is

Pðf�g j GÞ ¼ Pðf�gÞ
PðGÞ

X
ftig

PðG; ftig j f�gÞ: (1)

The sum is over all possible group assignments ftig, where
ti 2 f1; . . . ; qg for each node i. The prior Pðf�gÞ includes
all graph-independent information about the values of the
parameters. We will assume there is no such information
available and hence this prior is uniform. In that case,
maximizing Pðf�g j GÞ over f�g is equivalent to maximiz-
ing the sum

P
ftigPðG; ftig j f�gÞ.

The function PðG; ftig j f�gÞ is called the likelihood. It is
the probability that the model would produce the group
assignment ftig and the network G, assuming that its pa-
rameters are f�g. We can write the likelihood exactly for
many different generative models; for the stochastic block
model defined above, it is

PðG; ftig j f�gÞ ¼
Y
i

nti
Y
i<j

½pAij

ti;tjð1� pti;tjÞ1�Aij�:

Thus Pðf�g j GÞ is proportional to the partition sum Zðf�gÞ
of a generalized Potts model, with Hamiltonian

H ðftigÞ ¼ �X
i

lognti �
X
i<j

� logcti;tj Aij ¼ 1;

logð1� cti;tj
N Þ Aij ¼ 0:

(2)

There is a strong Oð1Þ interaction between connected
nodes and a weak Oð1=NÞ one between unconnected
nodes. The lognti play the role of local fields, enforcing

the prior distribution fnag on group assignments.
Inferring the parameters f�g is equivalent to minimizing

the free energy fðf�gÞ ¼ � logZðf�gÞ=N associated with
(2). If fðf�gÞ has a nondegenerate minimum, then, from the
saddle point method, f�g is with high probability exactly
the set of parameters used in the generation of the network.
In that case, inferring the parameters of the underlying
model is possible.
Assuming that we know, or have learned, the correct

parameters f�g, how should we determine the group assign-
ment of the nodes? The most likely assignment ftig is the
ground state of the Hamiltonian (2). However, if we want
to find an assignment ftig that maximizes the number of
correctly labeled nodes, we need to compute the marginal
distribution �iðtiÞ ¼ P

ftjgj�i
�ðftjgj�i; tiÞ of the label of

each node i, where � is the Boltzmann distribution of (2).
Note that a configuration chosen according to the
Boltzmann distribution has, asymptotically, the correct
group sizes and the correct number of edges between
each pair of groups, while for the ground state this is not
true; finding the minimum bisection, for instance, creates
the illusion of two groups even in a completely random
graph [17]. The marginal �iðtiÞ is the probability that node
i belongs to group ti, and the most probable group assign-
ment is t�i ¼ argmaxti�iðtiÞ. The expected fraction of

correctly labeled nodes when N ! 1 is A ¼ P
i�iðt�i Þ=

N ¼ max�2Sq

P
i �t�i ;�ðtiÞ=N, where ti is the true group

assignment and Sq is the permutation group of q elements.

We define the overlap as Q ¼ ðA�maxanaÞ=
ð1�maxanaÞ. Note that this is zero, for instance, if all
nodes are assigned to the largest group.
Belief propagation.—We could estimate the free energy

by using Monte Carlo (MC) sampling, and we do this
below and in Ref. [18] for comparison. But a faster algo-
rithm is BP, known in physics as the cavity method [4,5]. It
is exact in the thermodynamic limit as long as the network
is locally treelike and as long as correlations decay rapidly
as a function of topological distance. BP was proposed for
community detection in Ref. [10] but without the crucial
ability to learn the parameters of the underlying model.
To derive the BP equations [5,6], one introduces cavity

marginals, or ‘‘messages,’’ c i!j
ti and c j!i

tj that are sent

from one node to another along each edge ði; jÞ. For

instance, c i!j
ti is the probability that i would be in group

ti if j were absent from the network. Assuming conditional
independence between the neighbors of each node and
neglecting lower-order terms, the messages must be a fixed
point of a self-consistency equation:

c i!j
ti ¼ 1

Zi!j ntie
�hti

Y
k2@inj

�Xq
tk¼1

ctktic
k!i
tk

�
(3)
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for each edge ði; jÞ. Here @i is the set of i’s neighbors, Zi!j

is a normalizing factor ensuring that
P

ti
c i!j

ti ¼ 1, and the

external field hti ¼ 1
N

P
N
k¼1

Pq
tk¼1 ctkti�kðtkÞ summarizes

the influence of the nonedges via �iðtiÞ ¼
ð1=ZiÞntie�hti

Q
j2@i½

P
tj
ctjtic

j!i
tj �. For more details about

implementing BP, see [18].
We start with random messages and iterate (3) until we

reach a fixed point. The marginals corresponding to the
fixed point are �iðtiÞ [18], and the free energy is

fBPðf�gÞ ¼ � 1

N

X
i

logZi þ 1

N

X
ði;jÞ2E

logZij � c

2
;

where Zij ¼ P
a>bcabðc i!j

a c j!i
b þ c i!j

b c j!i
a Þ þP

acaac
i!j
a c j!i

a . Requiring that fBPðf�gÞ is stationary,
we update the parameters to their most likely values:

c0ab ¼ X
ði;jÞ2E

cabðc i!j
a c j!i

b þ c i!j
b c j!i

a Þ=ðZijnanbNÞ;

and n0a ¼ P
i�iðaÞ=N. Starting with a suitable initial value

f�0g, we compute f�0g and iterate until convergence (see
Fig. 1 and Ref. [18]) as in the expectation-maximization
algorithm [19]. Each iteration takes time proportional to
the number of edges, and a constant number of iterations is
needed for convergence (see Fig. 2). Thus like the
expectation-maximization algorithms of Refs. [13,14],
the total running time of our algorithm is linear in N.

In order to learn the number of groups, we note that the
free energy fBPðqÞ decays with q and then stays constant
(in the limit N ! 1) for q � qactual. Then the correct
number of groups qactual is learned by running the algo-
rithm for several values of q until fBP stops decreasing.

Phase diagrams.—For illustration, we use the case of
planted partitions and colorings: na ¼ 1=q, cab ¼ cout for
a � b, and caa ¼ cin. We observe three different cases
governing the free energy landscape fBPf�g. In the ‘‘para-
magnetic’’ phase, the free energy is constant in the vicinity
of the true parameters f�g. Learning is impossible, and the
marginals are �iðtiÞ ¼ 1=q for all nodes. In this case the
overlap between the true assignment and the one resulting
from BP marginalization is zero, and the true assignment is
undetectable. Generalizing [12,20], one can show there is
essentially no difference between a graph produced by the
block model and a completely random graph of the same
average degree.
In the ordered phase, fBP has an attractive global mini-

mum at the true parameters f�g, and BP rapidly infers
them. This is illustrated in Fig. 2. As � ¼ cout=cin varies
from 0 (q separate groups) to 1 (a purely random graph),
we observe a continuous phase transition from an ordered
phase with positive overlap to a paramagnetic phase with
zero overlap. Thus there is a second-order transition from a
detectable to an undetectable phase.
A third situation arises if fBPf�g has both a paramagnetic

fixed point and the ordered fixed point at the true f�g. In
this case, the two phases coexist and the detectability
transition is first-order; see Fig. 2 on the right. The phase
transition is located by comparing the free energies of the
two phases. However, even if the ordered fixed point has a
lower free energy, it is not easy to find it unless the initial
messages are close to the true group assignment. All but an
exponentially small set of initial messages will lead to the
paramagnetic fixed point. This situation is typical of mean-
field first-order phase transitions. In fact, recent results
about random optimization problems show that finding
the lower-free-energy phase in this case is an extremely
hard problem [12].
Only when the paramagnetic phase is no longer locally

stable does inference become easy. We can compute the
location of the transition to this easily detectable phase
analytically by analyzing how a small random perturbation
to the paramagnetic fixed point propagates as the BP
equations are iterated [12,21]. It follows that for

jcin � coutj> q
ffiffiffi
c

p
; (4)

the true group assignment is dynamically attractive. In that
case, many algorithms, e.g., MC or BP, will converge to it
in linear time. But in the easy phase it may still be hard to
compute the ground state of (2), even though we can
compute the marginals, and therefore the optimal estimate
of the group assignment, asymptotically exactly.
On the other hand, if (4) is not satisfied, then community

detection is either impossible or, at best, as hard as solving
the hardest known optimization problems. When cout <
cin, the phase transition is of first order for q > 4, as can
be retrieved from data presented in Ref. [21]. However, the
detectable but hard region is so narrow that it is quite
unlikely to appear in realistic situations.
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FIG. 1 (color online). Learning for q ¼ 2 groups with na ¼
1=2, average degree c ¼ 3, and � ¼ cout=cin ¼ 0:15. If we initi-
alize our algorithm in the ordered region, i.e., with �0 < 0:37, it
infers the correct value of �. Inset: The free energy as a function
of �. Note the minimum at � ¼ 0:15 and the paramagnetic region
for � > 0:37.
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Real-world networks.—Our algorithm is not restricted
to large random networks; it is applicable to real-world
networks as well, including those which have small loops
rather than being locally treelike. As a proof of concept, we
illustrate this on the ‘‘karate club’’ network [22], a com-
mon benchmark for community detection. For q ¼ 2, BP
leads to two different fixed points. One corresponds to the
actual known division into two groups. The other has a
smaller free energy (thus a larger likelihood) and splits the
network into high-degree nodes and low-degree nodes as
found in Ref. [3]. These two fixed points correspond to two
local minima of fBP for q ¼ 2, and depending on the initial
value f�0g BP converges to one or the other.

On a network of this size, MC quickly reaches equilib-
rium; we found that MC gives results almost identical to
those of BP for the parameters and marginals and identical
in terms of the estimated group assignments.

Conclusion.—We have presented an asymptotically ex-
act analysis of the detection of communities in networks
generated by the stochastic block model. We found that
there is a strict limit on detectability due to a sharp phase
transition. In some cases the communities are detectable,
but the problem is exponentially hard because the attractive
region around the correct fixed point is exponentially
small. We have also presented a learning algorithm, which
for large sparse networks generated from the model is able
to infer the number of groups, their exact sizes, and the
affinity matrix cab. The resulting BP algorithm is also
applicable to real-world networks, and it is not restricted
to assortative modular structures.

We note that, for many real networks, the stochastic
block model is not a good fit to the network’s structure.
However, our BP algorithm can be generalized to other

generative models where the likelihood is a product of
local terms, e.g., the degree-corrected block model of
Ref. [3].
We are grateful to Mark Newman for useful discussions
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238701 (2009).
[13] M. E. J. Newman and E.A. Leicht, Proc. Natl. Acad. Sci.

U.S.A. 104, 9564 (2007).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

ov
er

la
p

ε= cout/cin

undetectabledetectable

q=2, c=3

εs

overlap, N=500k, BP
overlap, N=70k, MC

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1
 0

 100

 200

 300

 400

 500

ite
ra

tio
ns

ε= cout/cin

εs

undetectabledetectable

q=4, c=16

overlap, N=100k, BP
overlap, N=70k, MC

iterations, N=10k
iterations, N=100k

 0

 0.2

 0.4

 0.6

 0.8

 1

 12  13  14  15  16  17  18

 0

 0.1

 0.2

 0.3

 0.4

 0.5

f p
ar

a-
f o

rd
er

c

 undetect. hard detect. easy detect.

q=5,cin=0, N=100k

cd

cc

cs

init. ordered
init. random

fpara-forder

FIG. 2 (color online). The best possible overlap between the inferred and true group assignments. Left: Community detection with
q ¼ 2, c ¼ 3, and different values of � ¼ cout=cin. A continuous phase transition between a detectable and a nondetectable phase
arises at the critical point �s given by (4). Middle: The 4-group community detection benchmark of Ref. [9] with c ¼ 16, with the same
phenomenology. The number of BP iterations needed for convergence is a constant with respect to N and diverges at the critical point.
The results agree well with MC simulations, except very close to the critical point where finite-size effects are stronger. Right: A
planted coloring problem with q ¼ 5 and cin ¼ 0, c ¼ coutð1� 1=qÞ. Both the ordered fixed point (greenþ’s, obtained by initializing
in the actual group assignment) and the paramagnetic one (blue �’s, obtained by initializing the algorithm in a random configuration)
exist between cd and cs. The difference �f (red) between the paramagnetic and ordered free energies shows that modules are, in
principle, detectable as soon as c > cc when �f > 0. In practice, it is exponentially hard to find the corresponding fixed point, and
detection becomes feasible only after the phase transition point cs given by (4).

PRL 107, 065701 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

5 AUGUST 2011

065701-4

http://dx.doi.org/10.1103/PhysRevE.81.046106
http://dx.doi.org/10.1103/PhysRevE.81.046106
http://dx.doi.org/10.1016/j.physrep.2009.11.002
http://dx.doi.org/10.1103/PhysRevE.83.016107
http://dx.doi.org/10.1103/PhysRevE.83.016107
http://dx.doi.org/10.1007/PL00011099
http://dx.doi.org/10.1103/PhysRevLett.101.078701
http://dx.doi.org/10.1103/PhysRevLett.101.078701
http://dx.doi.org/10.1073/pnas.0605965104
http://dx.doi.org/10.1073/pnas.0605965104
http://dx.doi.org/10.1103/PhysRevE.69.026113
http://dx.doi.org/10.1103/PhysRevE.69.026113
http://dx.doi.org/10.1103/PhysRevE.74.035102
http://dx.doi.org/10.1103/PhysRevLett.100.258701
http://dx.doi.org/10.1103/PhysRevLett.100.258701
http://dx.doi.org/10.1103/PhysRevLett.102.238701
http://dx.doi.org/10.1103/PhysRevLett.102.238701
http://dx.doi.org/10.1073/pnas.0610537104
http://dx.doi.org/10.1073/pnas.0610537104


[14] B. Ball, B. Karrer, and M. E. J. Newman, arXiv:1104.3590.
[15] C. Moore et al., in Proceedings of the Seventeenth ACM

Conference on Knowledge Discovery and Data Mining
(Association for Computing Machinery, New York, 2011).

[16] P. J. Bickel and A. Chen, Proc. Natl. Acad. Sci. U.S.A.
106, 21 068 (2009).

[17] D. Coppersmith, D. Gamarnik, M. T. Hajiaghayi, and
G. B. Sorkin, Random Struct. Algorithms 24, 502 (2004).

[18] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.107.065701 for more
detailed derivations.

[19] A. Dempster, N. Laird, and D. Rubin, J. R. Stat. Soc. 39,
138 (1977).

[20] D. Achlioptas and A. Coja-Oghlan, in Proceedings of the
49th Annual Symposium on Foundations of Computer
Science (IEEE, New York, 2008).
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