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We expand the item response theory to study the case of “cheating students” for a set of exams, trying to detect them
by applying a greedy algorithm of inference. This extended model is closely related to the Boltzmann machine learning.
In this paper we aim to infer the correct biases and interactions of our model by considering a relatively small number of
sets of training data. Nevertheless, the greedy algorithm that we employed in the present study exhibits good
performance with a few number of training data. The key point is the sparseness of the interactions in our problem in the
context of the Boltzmann machine learning: the existence of cheating students is expected to be very rare (possibly even
in real world). We compare a standard approach to infer the sparse interactions in the Boltzmann machine learning to our
greedy algorithm and we find the latter to be superior in several aspects.

1. Introduction

The Boltzmann machine learning (or equivalently the
inverse Ising problem), which is one of the methods in
statistical machine learning theory,1) is a useful tool to
describe data issued from strongly correlated systems.
Recently, many developments have been done as well on
the algorithmic part by elaborating efficient methods (for
instance in computer science,2) or as well in physics3–6)), but
also on the experimental part where many data became
available to study as in neural network7) or in biology.8) This
growing number of data needs an efficient inference process
to understand quantitatively the nature of the studied system
and to describe correctly the observed complex behavior.
The generative model assumed in the Boltzmann machine
learning takes the form of a probability density defined by
using the Hamiltonian of the Ising model. This model
contains both a bias on each variable as well as pairwise
interactions between the different variables. However, at the
stage of learning, the Boltzmann machine learning demands
a relatively large number of training data. Moreover, the
computation of the likelihood of the model has a very high
computational cost (it has an exponential complexity with the
system size). One of the simplest way to mitigate the latter
difficulty in the Boltzmann machine learning is to use the
pseudo likelihood estimation,9,10) which asymptotically (large
number of training data) coincides with the maximum of the
likelihood of the problem. The other way is to construct
a good approximation which infers well the biases and
interactions even when the number of samples in the training
data is small.3,5,11–15) In addition, we may sometimes have a
prior knowledge on the structure of the data which we could
take into account in the inference process. Therefore, taken
into consideration this prior knowledge, it enables us to
circumvent the week point of the pseudo likelihood
estimation, which demands a vast number of the training
data to make the inference precise. If one can expect that the
underlying structure of interactions described by the data is
sparse, as for the data we deal with in the present study, a
greedy approach can give good inference in conjunction with
the simple pseudo likelihood estimation.6) The algorithm

allows then to significantly reduces the number of training
data to achieve an efficient learning where most of the
interactions in the generative model have been put to zero.

In the present study, we apply the greedy method to an
extended model of the generative model based on the item
response theory.16) The item response theory is a probabilistic
technique used to estimate the ability of a group of examinees
to succeed or fail to a group of tests of various difficulties.
The method is usually employed to assess the validity and
efficiency of a kind of certification tests and keep their
quality. The applicability of the item response theory does not
restrict itself to the specialized type of the tests. Any kind of
examinations, which are conducted in universities, are in the
range of the item response theory. Although the usual setting
on the item response theory does not assume the existence of
“cheating students”, we demonstrate here the possibility to
detect them by applying inference methods on a sample of
answer sheets corresponding to a series of tests.

The present paper consists of the following sections. The
second section formulates the item response theory with
cheating students in context of the Boltzmann machine
learning. We give a brief introduction of our technique,
namely the decimation algorithm, in the third section. In the
next section, the numerical experiments demonstrate good
performances of our algorithm to detect the existence of the
cheating students. It is also efficient in inferring the ability of
the examinees and the difficulty of the problems they solved.

2. Item Response Theory and Its Extension

The item response theory is proposed as a method to
estimate the ability of each examinee to succeed to a series of
tests of various difficulties. It is often employed in various
qualifying examinations as well as in the context of sociology
and psychology to specify the ability of the examinees. The
item response theory introduces a probability distribution to
express how likely it is that the examinees resolve a series
of problems according to their individual ability and the
difficulty of the problems. In the theory, we use a logistic
function formed as a template to express the relationship
between the answers from the examinees with their ability
to the problems and their difficulty. In our formulation, the
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independence between the problems and between the
examinees is assumed. We define the ability of the ith
examinee (i ¼ 1; 2; . . . ; I) as �i and the difficulty of the jth
problem (j ¼ 1; 2; . . . ; J) as dj. The probability that all of the
examinees give the answers x is expressed as

Pðx j �;dÞ ¼ 1

Zð�;dÞ
YJ
j¼1

exp
XI
i¼1

ð�i � djÞxij
( )

; ð1Þ

where xij is the result of the answer by the ith examinee on
the jth problem and we define xij ¼ 1 if the the answer is
correct and xij ¼ �1 otherwise. We here define the constant
for the normalization as Zð�;dÞ. This model is called the one-
parameter logistic (1PL) model in the context of the item
response theory. In general, extended version of the model
are proposed to get a better description of the probability on
the results of the examinees. For simplicity, we use the 1PL
model here to infer the ability of the examinees and the
difficulty of the problems they solved.

The function (1) can also be seen as the likelihood of the
inferred parameters. The standard procedure to infer the
parameters is to consider the maximization of the log-
likelihood function

PN
s¼1 logPðrðsÞ j �; dÞ, where we insert

rðsÞ into the argument and N denotes the number of samples
in the data set. In the ordinary setting of the item response
theory, we assume that the examinees are independent. We
expand the ordinary setting of the item response theory to the
case where some “cheating students” exist by considering the
existence of positive-valued interactions between several
particular pairs as

Pðx j �;d;wÞ ¼ 1

Zð�;d;wÞ
YJ
j¼1

exp

(XI
i¼1

ð�i � djÞxij

þ
XI
i¼1

X
k2@ðiÞ

wikxijxkj

)
; ð2Þ

where wik is a coefficient of “cheating pair” to express the
correlation between a pair of students ik. When a cooperative
pair cheats, wik takes a positive value. Otherwise wik ¼ 0.
We assume wik ¼ wki, namely sharing the information to
cheat on tests. Here we define the normalization factor as

Zð�;d;wÞ �
X
xj

YJ
j¼1

expð�Eðxj j �; dj;wÞÞ; ð3Þ

where xj ¼ ðx1j; x2j; . . . ; xIjÞ and

Eðxj j �; dj;wÞ � �
XI
i¼1

ð�i � djÞxij �
XI
i¼1

X
k2@ðiÞ

wikxijxkj: ð4Þ

This is the same function as the standard form of the
Hamiltonian of the random-field and random-bond Ising
model. By introducing interactions between the problems, we
can also deal with the case where several problems are
constructed by using a series of related questions.17) The
introduction of the interactions wik is reasonable. In order to
the examinee i to correctly answer to the problem j, its ability
�i must exceed the difficulty of the jth problem dj. However,
if he shares information with the kth examinee, meaning
having wik > 0, the extra term wikxkj will help the ith
examinee to succeed to the problem j. The summation over
@ðiÞ means the adjacent examinees of the ith examinee which
in practical case could be tuned to take into account how the
tests are done. For instance, a reasonable assumption in the

case where the tests are performed in an exam room on desks
would be to locate the examinees at the sites of a square
lattice. Another example could be a situation where we
demand to the examinees to hand in some reports after a few
days. In that case, all the examinees can be in contact with
each other leading to consider that everybody is “connected”
to everybody (as in infinite range models).

2.1 Parameter estimations
The goal of the original formulation of the item response

theory is to estimate the ability of the examinees � and the
difficulty of the problems d from the given score data r.
In our model, the aim straightforwardly corresponds to the
Boltzmann machine learning. Detecting the existence of
cheaters is interpreted as inference of the cheating coefficient
w from the given data r in the formalism of the Boltzmann
machine learning.

Let us tackle the inference problem on �, d, and w from
the data r generated from Eq. (2). Notice that in Eq. (2)
Pðx j �;d;wÞ ¼ Pðx j � þ �;dþ �;wÞ for the arbitrary real
values �. Thus we cannot identify � and d uniquely. In order
to avoid this arbitrariness, we are going to follow an idea of
a previous study,17) where it is assumed that the dj are
independent random variables generated from the Gaussian
distribution Nðdj j �; �2Þ. We take the maximizers of the
following joint probability as the most likely estimations of �,
d, and w.

Pjointðr;d j �;wÞ � Pðr j �;d;wÞ
YI
j¼1

Nðdj j �; �2Þ: ð5Þ

It is then convenient to maximize its logarithm, instead of the
joint probability,

Lð�;d;wÞ � lnPjointðr;d j �;wÞ

¼
XJ
j¼1

lnPðrj j �; dj;wÞ � ðdj � �Þ2
2�2

� �
; ð6Þ

where lnPðrj j �; dj;wÞ ¼ �Eðrj j �; dj;wÞ� logZjð�; dj;wÞ.
It is however difficult in general to maximize the log-

likelihood function (6). Let us introduce the pseudo log-
likelihood function by approximating the first term in Eq. (6)
as

lnPðrj j �; dj;wÞ �
XI
i¼1

lnPðrij j �; dj;w; rjniÞ; ð7Þ

where

Pðrij j �; dj;w; rjniÞ � expð�Eðrj j �; dj;wÞÞX
frjg

expð�Eðrj j �; dj;wÞÞ

¼
exp �i � dj þ

X
k2@ðiÞ

wikrkj

 !
rij

( )

2 cosh �i � dj þ
X
k2@ðiÞ

wikrkj

 !

ð8Þ
and rjni :¼ rj n frijg. Then Eq. (6) is reduced to

Lð�;d;wÞ �
XI
i¼1

XJ
j¼1

ð�i � djÞrij þ
XI
i¼1

XJ
j¼1

XI
k2@ðiÞ

wikrijrkj
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�
XI
i¼1

XJ
j¼1

ln 2 cosh �i � dj þ
X
k2@ðiÞ

wikrkj

 !

�
XJ
j¼1

ðdj � �Þ2
2�2

� PLð�; d;wÞ: ð9Þ
We call the function in Eq. (9), PL, the pseudo log-
likelihood function. We call the method which infers the
parameters by maximizing the pseudo log-likelihood function
as “Pseudo Likelihood Maximization” (PLM).9) Since the
pseudo log-likelihood function is a strictly convex function,
we may employ the steepest descent method to maximize it.
We give the gradient of PLð�;d;wÞ as
@PLð�; d;wÞ

@�i
¼
XJ
j¼1

rij �
XJ
j¼1

Aij ð10Þ

@PLð�; d;wÞ
@dj

¼ �
XI
i¼1

rij þ
XI
i¼1

Aij � dj � �

�2
ð11Þ

@PLð�; d;wÞ
@wik

¼ 2
XJ
j¼1

rijrkj �
XJ
j¼1

rkjAij �
XJ
j¼1

rijAkj; ð12Þ

where

Aij � tanh �i � dj þ
X
k2@ðiÞ

wkjrij

 !
: ð13Þ

We use a gradient descent method by using Eqs. (10)–(12)
to update the parameters �, d, and w until we reach the
maximum of the pseudo likelihood function. The obtained
values are the results of the PLM estimation. In the present
formulation, we assume that each problem is independent
from each other. This means that the set of tests can be
interpreted as an independent set of data to infer the
parameters, namely J ¼ N. Therefore, the precision on the
estimate of the parameters is increased when the number of
tests J is increased as well.

3. Utilization of Sparseness

3.1 Sparseness
When using the item response theory to detect the

existence of cheating pairs between examinees in the given
data, we may assume that most of the cheating coefficients
are zeros, namely it is sparse. A common method to deal with
inferring the parameters of sparse system is to use the L1
norm as a prior distribution on the parameters.18) This prior
distribution for w is then multiplied by the likelihood to
obtain the posterior distribution:

Pjointðr;d;w j �Þ � Pjointðr;d j �;wÞPðwÞ; ð14Þ
where PðwÞ is set to be PðwÞ / expð��jwjÞ. Instead of the
maximization of Pjointðr; d j �;wÞ, we find the maximizer of
Pjointðr;d;w j �Þ. In the rest of the article we denote this
procedure as PLM+L1 estimation. One crucial remaining
problem on the PLM+L1 estimation is the arbitrariness of the
parameter ­. In order to avoid this arbitrariness, we will
employ the decimation algorithm. This puts the parameters of
the model (here wik) to zero iteratively. Each step of the
algorithm consists in maximizing the pseudo likelihood and
then to put to zero (or decimate) a fraction of the smallest
parameters. This method was proposed in a previous study6)

and we will refer to it as PLM+decimation in the rest of our
work. This method does not suffer from the arbitrariness of
some parameter such as the one on the regularization L1
norm. In addition, it shows outstanding performance and beat
PLM+L1 in many situations. In the present study, we apply
the PLM+decimation to our model in order to infer the rare
existence of cheating on tests. We assess the performance of
PLM+decimation in detail by evaluating the inference of the
ability of the examinee and the difficulty of the problem as
well as the detection of cheating tests.

3.2 Decimation algorithm
The pseudo log-likelihood function should strongly

depend on whether wik takes a non-zero value or not. We
thus divide the group of wik into two subgroups. One is wik

with non-zero values as W1 and the other is wik with zero
values as W0. In the PLM+decimation algorithm, a fraction
of the system is put to zero at each step. The parameters wik

with a small value are interpreted of potentially being absent
and can be assigned to the group of inferred parameters that
are zero: W�

0. Here the asterisk indicates that we refer to
the inferred parameters. At the first stage of inference by
PLM+decimation, we initially set W�

0 ¼ ;. At each step of
maximization of PL, we assign a set of wik to W�

0 by a fixed
ratio of μ. We call this procedure “decimation”. We have now
to define a criterion telling us when to stop the decimation
process. In other words, we must find a way to stop the
process as close as possible of the point where W�

0 ¼ W0.
The decimation can be seen as forcing the parameters
belonging to W�

0 to be zero: w�
ik ¼ 0 if w�

ik 2 W�
0 during the

remaining steps of the inference and when maximizing the
pseudo log-likelihood. Thus we find that the following
inequality holds during PLM+decimation algorithm.

PLmin � PL � PLmax; ð15Þ
where PLmin and PLmax are the pseudo log-likelihood
functions where all coefficients are respectively all zeros, or
all present. At this time, we can expect that, if we decimate
all the correct null parameters, wik 2 W0, the pseudo
likelihood should not change drastically since these parame-
ters are useless in principle to describe the data and therefore
the difference between PL and PLmax is very small. On the
other hand, if we decimate a coupling such that wik 2 W1 and
assign it to W�

0, the pseudo likelihood should change a lot
and thus the difference between PL and PLmax can be large.
In other words, at the early stage of the inference process
using the PLM+decimation algorithm, PL takes values close
to PLmax. As the step increases, PL suddenly switches and
approaches PLmin. This sudden change is a signal that we
are decimating the wrong parameters and should be a point
where we are the closer possible to have W�

0 ¼ W0. It is
convenient to define the more sharp quantity to represent the
trigger as

PLtilted ¼ PL� xPLmax � ð1� xÞPLmin; ð16Þ
where x is the ratio of decimated parameters. This function
vanishes when x ¼ 0 or x ¼ 1 and therefore present a
maximum which we took as the signal to stop the decimation
process. Further details on this function can be found in the
literature.6)
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4. Numerical Experiments

We first perform numerical experiments on detection of
cheating students by use of the PLM+decimation algorithm.
We set the number of examinees as I ¼ 30 and we therefore
have IðI � 1Þ=2 ¼ 435 potential pairs of cheaters. To control
the dilution of the true model, we will denote p the ratio of
cheating pairs that we introduce. We set the coefficient
wij ¼ 1 with a probability p and wij ¼ 0 with 1� p. The
ability of the examinee �i is generated from Nð0; 0:5Þ and the
difficulty of the problems dj is also distributed following
Nð0; 0:5Þ. In the standard PLM estimation, the gradient
descent step of the algorithm is done until the algorithm
converges toward a given value. In the decimation algorithm,
each step of the algorithm consists in a thousand iterations of
the gradient descent algorithm to infer a first guess of the
parameters. Then, we decimate a fraction of the system
before going back to the gradient descent step. We set the
ratio of the decimation step to be � ¼ 0:05.

4.1 Results by PLM+decimation
We show the results of PLM+decimation with p ¼ 0:1

and J ¼ 1000 in Fig. 1. We measure PLtilted at each step and
the error value is defined as

errw ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i<k

ðwik �w�
ikÞ2X

i<k

w2
ik

vuuuuut ; ð17Þ

where w�
ik is the inferred value generated by the numerical

experiments. As shown in Fig. 1, the error value drastically
changes when reaching the maximum of PLtilted. In addition,
we put ROC curve in the right panel of Fig. 1. We define
the true positive rate (TPR) as the ratio of the number of
parameters wik 2 W1 which are assigned to W�

1 and the
number of parameters in W1. The true negative rate (TNR) is
the same quantity defined for the null parameters. Therefore,
on the ROC curve, the performance gets better and better
when we approach the corner ð1; 1Þ for the TPR and TNR. The
maximum of PLtilted is in general located at the most upper-
right point in the ROC curve, which shows that both the TPR
and TNR are close to unity, namely good estimations.

4.2 Dependence on p
We investigate the dependence of the performance of

PLM+decimation algorithm for various values of p. We plot
the ROC curves for the cases p ¼ 0:1, 0.125 and p ¼ 0:15
in Fig. 2. In all these cases, we keep a constant number of
samples J ¼ 1000. We can observe that, when p increases,
the TPR of the PLM+decimation gets a lower value. We can
therefore see that the PLM+decimation algorithm can work
well on the sparse model where most of the parameters are
zero. We remark also that, the density of the present cheaters
increases (keeping the number of tests constant) the quality of
the inference process gets reduced. In Fig. 3 we illustrate
the decimation algorithm at a fixed value p ¼ 0:15 and
increasing the number of samples J. We clearly see that, for
relatively large value of p, if we prepare more training data
J ¼ 1000, 1600, and 2000, PLM+decimation algorithm
leads to a better and better estimation with very few errors
on the TPR at the end.

4.3 Comparison to L1 regularization
In this section we compare the results obtained by

PLM+decimation to the PLM+L1 method. We recall that
the L1 regularization can be simply implemented by adding
�
P

i<k jwikj to Eq. (9), where ­ is the regularization
coefficient. However, we have to mention that the perform-
ance of the L1 regularization strongly depends on the value of
­. Indeed, by varying the value of ­, the results of the
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Fig. 1. (Color online) PLtilted and errors in PLM+decimation algorithm
for the case with p ¼ 0:1 (left panel) and J ¼ 1000 and ROC curve (right
panel). We plot the value of PLtilted denoted by tPL in the green dashed
curve. In addition, the red solid curves describes the value of errors (errw).
The minimum of errors coincides with the maximum point of PLtilted. We
depict the maximum point of PLtilted by the green circle on the ROC curve.
The terminal point is located at the most right upper side in the ROC curve.
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Fig. 2. (Color online) ROC curves for the cases p ¼ 0:1, 0.125, and 0.15
from upper right to lower left when J ¼ 1000. As p increases, TPR also
decreases.
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inference process change. For small values, we find that a lot
of parameters are not put to zero whereas above a given
threshold �max, all parameters are pruned. Therefore, the
good performance of PLM+L1 should be taken with care
since it is not possible in general to decide what would be the
optimum value for ­.

We show the comparative results obtained by PLM+

decimation and PLM+L1 in Fig. 4. We run the numerical
estimations in the 100 samples for I ¼ 30 and J ¼ 500, 1000,
and 2000, while tuning p ¼ 0{0:25. The rate of the
decimation is fixed to � ¼ 0:05. In the present experiment
we choose the value of ­ such that the error on the cheating
coefficient is minimized. In this example, PLM+decimation
outperforms clearly PLM+L1 for the sparse cases in which
most of the pairs do not cheat on the tests. Increase of J yields
remarkable improvement on performance of PLM+decima-
tion. The location at which PLM+decimation outperforms
PLM+L1 in errw moves to larger p against increase of J.
Similarly to the case of w in Eq. (17), we define the error
values of � and d as err� and errd respectively:

err� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXI
i¼1

ð�i � ��i Þ2

XI
i¼1

�2i

vuuuuuuut ; ð18Þ

errd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXJ
j¼1

ðdj � d�j Þ2

XJ
j¼1

d2j

vuuuuuuuut ; ð19Þ

where ��i and d�j are the values inferred by the numerical
experiment. As shown in Fig. 5, PLM+decimation algorithm
outperforms the PLM+L1 estimation regarding the error
values of � and d. The relatively large error bars are put on
the errors of ª due to lack of the regularization on this
quantity. The large number of J reduces the uncertainty of
the estimation even in ª. We can therefore conclude that
PLM+decimation algorithm is a good tool to detect the
existence of cheating students and simultaneously infer the
ability of the examinees and the difficulty of the problems
in terms of the item response theory. We emphasize that,
although our model corresponds to the Ising model, namely
the ordinary Boltzmann machine learning, the estimated
quantities are not only the magnetic fields and the
interactions. In our model, we have two kinds of magnetic
fields independent from each other. First the ability of each
examinee and second, the difficulty of each problem.
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Fig. 3. (Color online) ROC curves for the case with J ¼ 1000, 1600, and
2000 from lower left to upper right when p ¼ 0:15. Increase of J,
PLM+decimation algorithm yields good estimations with larger TPR.
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We also notice the following statements on the perform-
ance of PLM+decimation. Our rule to stop the decimation
process is to stop it when the maximum of the tilted pseudo
likelihood PLtilted is reached (we call the maximum the
terminal point). However we confirm that, when the number
of the given data is small, for instance J ¼ 500, PLM+de-
cimation algorithm fails to give the better estimation than the
optimal case of PLM+L1 estimation. In this case, the
standard use of PLM+decimation algorithm does not lead
to the best performance as shown in Fig. 6. We observe the
discrepancy between the terminal point and the best point, at
which the error value in w takes its minimum. The reason
why is the curve of the tilted pseudo likelihood is not sharp as
shown in Fig. 6. The maximum point of the tilted pseudo
function is the furthest from the line given by xPLmax þ
ð1� xÞPLmin for x 2 ½0; 1�. When the number of data J is
small, the uncertainty of inference remains. Therefore the
pseudo likelihood function does not change drastically
depending on decimation of the coefficients. The uncertainty
of inference thus reflects lack of sharpness in the curve of the
pseudo likelihood function. As a result, we can not detect the
best point by detecting the maximum point of the tilted
likelihood function.

Notice that, when we use PLM+L1 estimation to detect the
existence of non-zero coefficients in w, we must decide a
threshold value of the cheating students. It is difficult to
decide this value without a preliminary knowledge. In
addition, if the number of tests J is small, this value is more
difficult to determine the threshold as shown in Fig. 7,
although we find a clear gap between the several values
around zero and the other when the number of tests is a
relatively large.

5. Summary

We formulated the item response theory with “cheating
students” in the context of the Boltzmann machine learning.
We applied the pseudo likelihood estimation to our
formulation in order to mitigate the computational complex-
ity to infer the coefficient expressing the degree of cheating
on tests and the biases characterizing the difference between
the ability of the examinees and the difficulty of the problems
which they solve. To improve the precision of the estimation
and avoid any arbitrariness in the inference, we used
PLM+decimation algorithm. We contrasted the algorithm
with PLM+L1 estimation. Both of the approaches are based
on sparseness involved in the inference problem. We showed
that PLM+decimation algorithm, while it does not remain
any arbitrariness when we perform it, is comparable or often
outperforms PLM+L1 estimation. The key point is that tilted
pseudo likelihood function is useful to determine when to
stop the step of decimation. If the number of the training
data, namely the number of tests, was small, tilted pseudo
likelihood function did not yield the best estimation. We
hope that the future study finds out a more suitable function
than the tilted pseudo likelihood function to decide to
terminate decimation steps. The experiment by use of
the actual data is desired to show the performance of our
method.
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Fig. 6. (Color online) PLM+decimation algorithm in the case with
J ¼ 500. The same symbols and notations are used in Fig. 1. The peak of
the tilted pseudo likelihood function does not coincide with the minimum
point of the error values as depicted by the left vertical line while the right
vertical line denotes the maximum point of the tilted pseudo likelihood
function in w.
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