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Inference of the sparse kinetic Ising model using the decimation method
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In this paper we study the inference of the kinetic Ising model on sparse graphs by the decimation method.
The decimation method, which was first proposed in Decelle and Ricci-Tersenghi [Phys. Rev. Lett. 112, 070603
(2014)] for the static inverse Ising problem, tries to recover the topology of the inferred system by setting the
weakest couplings to zero iteratively. During the decimation process the likelihood function is maximized over the
remaining couplings. Unlike the �1-optimization-based methods, the decimation method does not use the Laplace
distribution as a heuristic choice of prior to select a sparse solution. In our case, the whole process can be done auto-
matically without fixing any parameters by hand. We show that in the dynamical inference problem, where the task
is to reconstruct the couplings of an Ising model given the data, the decimation process can be applied naturally
into a maximum-likelihood optimization algorithm, as opposed to the static case where pseudolikelihood method
needs to be adopted. We also use extensive numerical studies to validate the accuracy of our methods in dynamical
inference problems. Our results illustrate that, on various topologies and with different distribution of couplings,
the decimation method outperforms the widely used �1-optimization-based methods.
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I. INTRODUCTION

In many fields of science, a large amount of effort has been
devoted to theories and methods to do inference from observed
data. Recently, there has been considerable attention drawn to
the inverse Ising problem in performing such a task. This
problem, also known as “Boltzmann machine learning” [1],
focuses on finding the parameters of an Ising model according
to data that are sampled from the Boltzmann distribution of the
original system. The interest in this particular model is linked
to the maximum entropy principle applied to pairwise inter-
acting variables when the first two moments are measurable
[2]. It is also applied to a large number of relevant data sets
coming from many different fields. It has been used not only
in physics [3–7] and computer science [8] but also in biology
(gene networks [9] and protein folding [10,11]), neuroscience
[2,12], social networks [13], and statistics of birds flock [14].
The fundamental approach to inference problems in general
is based on maximizing the likelihood function of the model.
This function represents the probability of generating the data
given the parameters of the underlying model.

The inferred parameters are therefore the ones that max-
imize the likelihood. However, approaches based on the
maximization of the likelihood function are usually prone to
overfitting, tending to fit not only the experimental data but
also the noise. Overfitting is a common problem in Bayesian
inference and it is crucial to find methods that minimize this
effect in order to obtain a model that can describe correctly
real experiments. Moreover, a lot of real systems in which
we are interested, e.g., biological systems and social systems,
are sparse: The topology (or network) of the system has
many empty interactions (edges). In those sparse systems, the
overfitting problem prevents us fromreconstructing properly
the topology of the system via the inference process. Therefore,
making progress on the inference process, both in the complex-
ity of the algorithm and in the accuracy of the inference, could
allow us not only to deal with larger system sizes but also

to retrieve essential information of the considered system, for
instance, which edges are absent. Thus, in the context of the
inverse Ising problem, the overfitting induced by maximizing
the likelihood not only increases the error made on the
inferred couplings but also prevents from recovering the proper
topology of the system. As an example, we illustrate in the left
panel of Fig. 1 the true couplings of a sparse Ising model with
the couplings inferred by maximizing the likelihood. From
the figure we can see that, although the original network has
only few large couplings (nonexisting couplings being zero),
maximizing the likelihood gives barely zero-valued edges, thus
ending with a completely wrong topology of the network.

In this article, we focus on the important problem of finding
the topology of the underlying problem from the observed data
or, in other words, we want to separate the most important
interactions with respect to the null ones. We believe that
the progress made toward this direction in the context of the
inverse Ising problem will be fruitful when applied to the
inference of real systems.

Various approaches [3,7,8,15,16] have been proposed for
the sparse inverse Ising problem, with different ways to
overcome the overfitting problem. Among various approaches,
probably the most famous and effective one is based on the
�1 regularization [8] which consists in adding a prior on the
couplings. This prior takes the form of a Laplace distribution
on the parameters and usually leads to a sparse solution. As an
example, in the middle panel of Fig. 1 we compared the true
couplings with the couplings inferred by the �1 minimization
approach on a sparse system. From the figure, we can see that
the �1 approach indeed recover much better the null couplings
and give a smaller error than maximizing the likelihood alone.
However, in our experiments, the �1 approach still does not
work perfectly and fails to recover correctly the topology in
many cases (even some easy ones). Moreover, its performance
depends on an external parameter λ that has to be chosen
heuristically.

1539-3755/2015/91(5)/052136(9) 052136-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.112.070603
http://dx.doi.org/10.1103/PhysRevLett.112.070603
http://dx.doi.org/10.1103/PhysRevLett.112.070603
http://dx.doi.org/10.1103/PhysRevLett.112.070603
http://dx.doi.org/10.1103/PhysRevE.91.052136
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FIG. 1. (Color online) True couplings (blue circles) compared with couplings inferred (red crosses) by maximizing likelihood method (a),
�1 minimization + refinement (b), and decimation (c). The relative error [Eq. (11)] is 0.209, 0.079, and 0.026 from left to right, respectively.
The network is a two-dimensional (2D) lattice with size N = 49, β = 2.0, R = 10, and T = 500.

Recently, a decimation process was proposed in Ref. [7]
for inferring the topology in the static inverse Ising problem. It
was shown to give a large improvement over the reconstructed
topology of the inference process over �1-based methods. In
the static problem, empirical data are equilibrium config-
urations that are sampled from the Boltzmann distribution
P(σ ) = 1

Z
e−βE(σ ), where Z is the partition function and

E(σ ) = −∑
〈i,j〉 Jijσiσj denotes the energy of a configuration

σ . When the number of samples is large, the couplings
can be determined by maximizing the likelihood L(J ) =
−〈E(J )〉D − log Z(J ), where 〈E〉D denotes the averaged
value of the energy over the data. In this setting, however,
the partition function Z is hard to compute exactly to compute
exactly and therefore the likelihood function is hard to com-
pute as well (or to maximize). In Refs. [7,17], in order to
use the decimation method, the authors needed to adopt the
“pseudolikelihood,” which is essentially an approximation of
the true likelihood function [8,18].

In this work, we deal with the dynamical inverse Ising
problem. This type of inference problem introduces new sets
of behavior that are absent of the static counterpart. Indeed, the
configurations are now drawn from a stochastic process and
are therefore correlated in time. From this stochastic process
we expect the presence of relaxation toward an equilibrium
distribution (somehow similar to the static inverse Ising case)
but such systems also exhibit ergodicity breaking or limited
cycles. In addition, it is more natural to describe many real
systems by use of a dynamical process rather than by using an
equilibrium distribution. For instance, some biological systems
depends on time-dependent external stimuli. Moreover, and
opposite to the static case, the couplings between the variables
need not to be symmetric. Again, we show in Fig. 1(c) an
illustration of this algorithm on the same system as before
(see the caption) and we can see it manages to better recover
the topology of the network than maximizing the likelihood
alone.

The rest of the paper is organized as follows. Section II
includes definitions and the description of the dynamical
inverse Ising problem. In Sec. III we consider the dynamical
inverse Ising problem on sparse graphs and review the popular
�1-based approach. In Sec. IV we study the inference of the
couplings using the decimation process. In Sec. V we compare
our method with the �1 approach on a larger set of examples.
We conclude this work in Sec. VI.

II. THE DYNAMICAL INVERSE ISING PROBLEM

The dynamical inverse Ising problem, first studied in
Ref. [19], requires that we reconstruct the couplings and the
time-dependent external fields from the output data of the
real system. These data are sets of configurations which can
be considered as a snapshot of the real system at different
time steps. In our settings they are generated according to the
dynamics of the Ising model with real couplings.

Let us consider a system of N nodes connected by the
couplings Jij . The state of each node is represented by a spin
σ that takes a discrete value in {−1, + 1}. In Eq. (1), we
define a stochastic dynamics describing the evolution of a
configuration of spins at time t to one at time t + 1. Here we
consider the parallel update dynamics for which the state of all
spins at time t + 1 depends only on the configuration at time
t and all spins evolve in parallel at the same time,

P (σi(t + 1)|σ (t)) = exp
[
βσi(t + 1)

∑
j �=i Jjiσj (t)

]
2 cosh

[
β

∑
j �=i Jjiσj (t)

] . (1)

Therefore, the probability of finding a particular path [a
trajectory σ (0), . . . ,σ (T )] with T time steps can be written as

W [σ (T )|σ (0)]

=
T −1∏
t=0

N−1∏
i=0

exp
[
βσi(t + 1)

∑
j �=i Jjiσj (t)

]
2 cosh

[
β

∑
j �=i Jjiσj (t)

] (2)

= exp

⎛
⎝βT

∑
i

∑
j �=i

Jji〈σi(t + 1)σj (t)〉T

−
∑
t,i

log

⎧⎨
⎩2 cosh

⎡
⎣β

∑
j �=i

Jjiσj (t)

⎤
⎦

⎫⎬
⎭

⎞
⎠ , (3)

where 〈.〉T means taking the average of the data over
the different times: 〈σi(t)〉T = T −1 ∑

t σi(t). In general, we
consider not only the case with symmetric couplings where
the detailed balance holds and the system has an equilibrium
distribution but also the case with nonsymmetric couplings
where no equilibrium distribution exists.

Note that, compared to the static inverse Ising problem
where the couplings are symmetric and the data are sampled
from the Boltzmann distribution, dynamical systems display a
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broader picture of a phase diagram such as limited cycles or nonequilibrium steady states and thus obviously meet wider needs
in real-world systems.

The log-likelihood function of this process is obtained by taking the logarithm of the expression (2). This function can be
maximized simply by a gradient descent method, using the derivative of the log-likelihood with respect to the couplings. In the
symmetric case we obtain:

1

βT

∂ log W

∂Jji

= 〈σi(t + 1)σj (t)〉T + 〈σj (t + 1)σi(t)〉T −
˝
σj (t) tanh

⎡
⎣β

∑
k �=j

Jkjσk(t)

⎤
⎦
˛

T

−
˝
σi(t) tanh

⎡
⎣β

∑
k �=i

Jkiσk(t)

⎤
⎦
˛

T

= cdata
ij (t + 1,t) + cdata

ij (t,t + 1) − cJ
ij (t + 1,t) − cJ

ij (t,t + 1), (4)

which implies a moment-matching condition for the local
maximum of the likelihood function:

cdata
ij (t + 1,t) = 〈σi(t + 1)σj (t)〉T (5)

cJ
ij (t + 1,t) =

˝
sj (t) tanh

⎡
⎣β

∑
k �=j

Jkj sk(t)

⎤
⎦
˛

T

. (6)

In the nonsymmetric-coupling case, the equations take a
simpler form:

1

βT

∂W

∂Jji

= cdata
ij (t + 1,t) − cJ

ij (t + 1,t). (7)

So, starting from an initial condition, the couplings can
be updated using the very general update rule: J new

ij = J old
ij +

η[cdata
ij (t + 1,t) − cJ

ij (t + 1,t)], where η is the learning rate.
In the following we will mainly concentrate on symmetric
couplings but the generalization to nonsymmetric couplings is
straightforward.

Note that, in the static case, the likelihood is a function
of the correlations and therefore is difficult to maximize.
It is even difficult to compute the likelihood exactly since
the computational complexity is exponential in the system
size. Here, as opposed to the static case, the likelihood of
the dynamical model can be easily computed exactly with
linear complexity in the number of samples and quadratic
in the system size. Although several approximate methods
have been studied in the literature [19–22], using mean-
field approximations to accelerate the inference process, in
this paper we consider only exact likelihood-maximizing
methods which compute the correlations exactly given a set of
parameters.

Another difference between the dynamical and the static
case comes from how the data are taken (or produced). In
the static problem, the data are made of spin configurations
sampled independently from the Boltzmann distribution. Thus
the result does not depend on how the data are acquired—only
the number of configurations matters. In contrast, in the
dynamical case, the configurations are generated through a
stochastic Markovian process. Therefore it is possible to
control the way the data are produced by, for instance, making
many sets of data starting from different initial conditions. This
liberty is impossible in the static case and should, in principle,
improve here the inference process for systems where the
dynamics gets trapped in some region of the phase space.

Here we consider a collection of data parametrized by
two variables: the number of different trajectories R and the
number of time steps T of each trajectory. The total number
of configurations is then equal to R × T . In this way, we
collect the data under the form of R trajectories with length
T + 1 [21], each of which starts from R different randomly
chosen configurations. For each trajectory we update T times
the system according to Eq. (1). The R parameter let us tune
the position from which the dynamics began. It therefore
allows us to cover a larger part of the configuration space. For
example, when R = 1, all configurations are sampled starting
from one initial configuration. In the generated data, it will
be useful to use R > 1 in order to explore better the phase
space.

The T parameter controls the number of time steps of each
trajectory. Again, in many cases, we gain more information
on the system by considering many short trajectories instead
of a long one. Now, when the system is ergodic, tuning the
dynamics should not have any influence on the results since
the configuration can go from any point of the configuration
space to any other ones, which includes somehow the new
random initial conditions. But if the ergodicity does not
hold, for example, when the system is in a spin-glass
phase, a dynamics starting from a particular configuration
could be trapped into a certain regime of the configuration
space. Thus, starting from different configurations helps us to
explore wider area of the phase space and improves the data
quality.

Let us now rewrite the likelihood function in terms of the
parameters R and T . If we denote the sampled configura-
tions by {σa(t)}, with a ∈ [1,R] and t ∈ [1,T + 1], then the
likelihood function of generating those configurations can be
written as

L =
R∏

a=1

T∏
t=1

W [σa(t + 1)|σa(t)]

= exp

⎛
⎝β

∑
i �=j

Jji〈〈σi(t + 1)σj (t)〉T 〉R

−
∑
a,t,i

log

⎧⎨
⎩2 cosh

⎡
⎣β

∑
j �=i

Jjiσ
a
j (t)

⎤
⎦

⎫⎬
⎭

⎞
⎠ , (8)

where the notation 〈.〉R is used to represent the average over the
different realizations. Then, using a gradient descent, a set of
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couplings can be inferred by maximizing the above likelihood.
As discussed previously, by maximizing this likelihood, we
will not only fit the data but also the noise in the data. It
will be particularly true in the cases where the dynamics gets
trapped in some small region of the phase space, or when
the number of samples R × T is small. Then, we will have
difficulties in inferring the couplings as well as recovering the
topology of the graph. In this work, in order to span a large
region of the temperature β, we choose R = 10 and T = 500.
This is equivalent of taking R = 1 and T = 5000 in term of
the number of configurations that are visited. By doing this,
however, we are exploring different regions of the phase space
and therefore we are able to perform a better reconstruction.

III. DYNAMIC INVERSE ISING PROBLEM
ON SPARSE GRAPHS

Most of the biological and social networks are sparse,
meaning that the average degree of those networks is finite
(c � N ). To do inference on sparse systems, it is very
important to first determine which edges are present or,
equivalently, which couplings are nonzero. Therefore, when
it is known as a prior that the underlying graph of a system
is sparse, the correct Bayesian inference process should take
into account this information under the form of a prior
distribution. Ignoring this prior information when maximizing
the likelihood will lead to overfitting, as we discussed in Sec. I
and show in Fig. 1(a).

The �1 regularization is a well-known method to obtain
sparse solutions in inference problems. It has been widely
used in compressed sensing [23] and for inverse Ising problems
[8,24]. The �1-based methods consist in adding a Laplace prior,
e−λ

∑
ij |Jij |, to the system in order to obtain a sparse solution.

The major advantage of the �1 regularization is that adding the
Laplace prior does not break the convexity of the likelihood
function. This method is fully tractable, but there are several
drawbacks. First, it is hard to fix the parameter λ of the Laplace
distribution consistently. When using a given value of λ, many
couplings will be put to zero in the maximization process. It
is possible to determine the maximum value of λ analytically
such that, for λ > λmax, all the inferred couplings will be zero.
But then the best value of λ inside [0,λmax] is not given by the �1

method. Indeed, by changing the value of λ, the set of inferred
zero couplings will change accordingly and it is therefore not
possible to know what would be the best value of λ. As an
example, in Fig. 2, we plot the histogram of couplings inferred
by maximizing the likelihood using a �1 prior and using two
different values of λ. We can see that, although it seems quite
easy to choose the cut-off value on whether couplings are
zero, different values of λ give a different number of zero
couplings and thus end with two different topologies for the
network.

Another drawback of the �1-based method is that the
Laplace prior is sometimes far from the distribution of the true
couplings. Thus the �1 minimization will try to fit the couplings
with a Laplace distribution and lead to additional errors. The
Bayesian prescription advises us that using the correct prior
is always the best choice to obtain the best performance, e.g.,
in the compressed sensing problem [25], the group testing
problem [26], and the error-correction problem [27]. However,
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FIG. 2. (Color online) Illustration of the results obtain by max-
imizing the likelihood together with the �1 prior on a set of data
generated by a parallel dynamics. The considered system is a 2D
ferromagnet at low temperature, β = 0.61, and we use T = 1000 and
R = 1. The histograms show the parameters obtained for λ = 0.1
(top) and λ = 1.1 (bottom). Clearly, the number of zero couplings
change drastically when λ changes.

in the inverse Ising problem, we usually cannot use the correct
prior distribution because otherwise the problem would no
longer be convex.

IV. DECIMATION PROCESS

Decimation methods have been widely use in statistical
mechanics in various problems and it can be seen as a practical
tool to reduce the search space of our problem. This idea is
actually quite old [28], especially in the context of optimization
problems. In the context of the inverse Ising problem and
more generally in machine learning, this procedure can reduce
greatly the overfitting over the inferred parameters. It was
therefore used to reduce the number of parameters of the model
to infer (see Ref. [29] for a method close to the one presented
here). Another advantage of the decimation procedure is that,
by reducing the search space, the system receives feedback that
it can exploit to solve the problem with more accuracy. This is
typically used when solving constraint satisfaction problems
using the marginals of the variables obtained by a message-
passing algorithm [30,31].

For the inverse Ising problem, the decimation process was
introduced to recover the topology of the Ising model and
shown to provide a significant improvement on the quality
of the reconstruction over the popular �1-based methods [7].
In the static problem, since the real likelihood function is
hard to estimate exactly, the decimation procedure is done by
maximizing an approximation of the likelihood function (the
pseudolikelihood [18]) and then by pruning a fraction of the
smallest couplings (in magnitude) by setting their values to
zero. This maximizing-pruning procedure is iterated until a
given criterion is reached.

In the dynamical problem, as we discussed in the last
section, the likelihood function can be easily estimated and
thus the decimation can be applied directly by using the
true likelihood function. The most intuitive way to fix the
variables would be to set to zero one variable at a time after
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having maximized the likelihood function over the remaining
parameters. However, in doing this, the decimation would be
very slow [it would multiply the complexity of the algorithm
by a factor log(N )]. In order to make it fast without loosing
accuracy, we can fix a finite fraction of variables at each time
step. Doing so, the only parameter in our decimation procedure
is the fraction of couplings that are pruned at each time step.
A refined way to choose this fraction is, at the first steps
of the decimation, to prune a large amount of the remaining
parameters. Then the fraction of couplings to decimate is
decreased gradually during the process.

We note that, in the literature, another decimation approach
has been proposed [29,32] in a different context. In their
approach, instead of pruning the parameters by order of
magnitude, the algorithm will in priority put to zero the
parameters that decrease the least the likelihood function. Let
us assume, for instance, that the maximum of the likelihood
function has been found. We can then make an expansion
around this maximum J ∗:

L(J ∗ + δJ ) ∼ L(J ∗) + 1
2δJHδJ, (9)

where H is the Hessian of the likelihood function evaluated at
J ∗. The goal is then to find a set of couplings in such a way
that putting them to zero will affect the likelihood function
the least. Therefore it asks to minimize L = 1

2δJHδJ such
that Ji + δJi = 0 for the couplings that will be pruned. This
second-order decimation process will be denoted as “Deci-O2”
in the following and will be compared with our approach.

The most important step of the algorithm is to decide when
to stop the decimation. We use here the same criterion as in
Ref. [7] which is defined by investigating the behavior of the
likelihood function when we decimate the parameters.

To describe its principle, let us note the set of nonzero-zero
couplings of the true system by J1/J0, respectively. One would

expect the following. When a coupling Jij ∈ J0 is pruned
during the decimation process, the likelihood should remain
constant as this parameter is not useful to describe the data. In
practice, and due to the overfitting phenomena, the likelihood
will slightly decrease since the model is less accurate to fit
the noise of the data. Now, if a coupling Jij ∈ J1 is pruned,
this parameter was necessary to describe correctly the data.
Therefore its absence should impact the likelihood and we
expect to observe its value to decrease significantly. Hence, by
looking at the likelihood as a function of the number of the
remaining parameters, we can find the stopping point where
the behavior of the likelihood changes significantly. That is, a
discontinuity in the first derivative of the likelihood function
should be observed.

We will follow here the prescription of Ref. [7] in order to
characterized the stopping point for the decimation. In order
to exhibit a peak at the point where to stop the decimation, the
following tilted-likelihood (TL) function has been considered

Ltilted(x) = L(x) − xLmax + (1 − x)N log(2), (10)

whereLmax is the maximum likelihood when all the parameters
are present (before decimating) and x denotes the fraction of
couplings that remain unfixed. We also denote L(x) as the
maximum of the likelihood over the remaining parameters
[note that L(1) is the usual maximum likelihood when all
parameters are present]. The TL is constructed as follows.
We consider a new likelihood for a system of independent
variables but where its maximum value when all the couplings
are present (x = 1) matches the likelihood of the system
L(1) = Lindep(1). The likelihood of our system of independent
variables should decrease linearly (with x decreasing) when
decimating the parameters since they are here not useful to
describe the system. When x = 0, both likelihoods will reach
the value L(0) = Lindep(0) = −N log(2) by definition. The TL
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FIG. 3. (Color online) (a) Illustration of a typical tilted-likelihood function. In this case we are in a hard region, N = 49, β = 1.5 with
R = 10 and T = 500 of a 2D symmetric model with J = ±1. We observe a well-defined peak which indicates where to stop the decimation
process. In the inset we show that the relative error is minimized at the peak. In this case, the decimation process reconstructs perfectly the
network as indicated in (b). (b) The ROC curve for the same system in (a). The ROC curves show the number of true positives on the y axis
and true negatives on the x axis. The goal is therefore to reach the top-right angle for a perfect reconstruction. Here the decimation process
and the Deci-O2 method are shown at different stages of the decimation [at T = 0 the curve start at (0,1)]. For the �1 method, different points
correspond to different values of λ. We can see that our method works better than the two other ones. The �1 method is clearly less good even
when considering the best possible λ [δ indicates the value of the cutoff but is chosen such that it goes into the gap separating zero couplings
from the nonzero ones (see Fig. 2)].
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is constructed by looking at the difference between the two
likelihoods Ltilted(x) = L(x) − Lindep(x). It can be seen by
this construction that the TL goes to zero when x = 1 and
x = 0. Therefore it should exhibit a maximum value between
these two limits. When we start decimation, since we expect
to decimate couplings from J0 at the beginning, the likelihood
of our system will remain almost constant while the likelihood
of the system with independent variables will decrease more
rapidly and make the TL increases. At a certain point, where we
start to decimate parameters that are present in the true system,
the likelihood of our system will decrease dramatically while
the likelihood for the system of independent variables will
keep decreasing at a constant rate. Therefore, a peak should
appear at the point where the process starts to decimate the
wrong parameters.

In order to illustrate the behavior of the TL in the whole
decimation process we take a symmetric two-dimensional (2D)
Ising model with N = 49 spins and J = ±1 at β = 1.5. The
decimation process is characterized by the function K(T )
which defines how many couplings we put to zero at each time
step. Here we define K(T ) in such a way that for small T a large
amount of couplings are decimated. Then we progressively
diminish the number of decimated couplings at each T until
the we end up decimating one coupling at each time step,
K(T ) = 1. This parametrization is quite flexible and we did
not observe significant changes as soon as K(T ) was small
enough after having decimated half of the system. We illustrate
on Fig. 3 the behavior of the TL as a function of the remaining
parameters. We can see that the TL exhibits a maximum at
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FIG. 4. (Color online) Results obtained on a 2D symmetric
model J = ±1 with N = 49, R = 10, and T = 500 for various
values of β. In the top panel, we can see the topology reconstruction
[Eq. (12)] of the three methods: decimation, Deci-O2, and �1. We can
see clearly that the decimation always recovers perfectly the topology
of the graph, whereas �1 performs poorly. The Deci-O2 method works
almost as well as the decimation. In the bottom panel, we show the
error in the reconstruction [Eq. (11)]. All methods perform similarly
with a slight advantage shown with the decimation. This behavior
can be explained by the fact that, often, the error in the topology
reconstruction is dominated by the false negative couplings. The �1

finds a lot of false positives but they are inferred quite close to zero
(i.e., their true value) and therefore they do not contribute much to
the reconstruction error.

the point where the relative error, Eq. (11), is minimized. In
Fig. 3(b) we plot the ROC curve, which puts the number of true
positives on the y axis versus the number of true negatives on
the x axis. In Fig. 4 we compare the performance of our method
with Deci-O2 and the �1 method in recovering the topology.
The figure shows that our decimation method stopped at a
point where the topology is perfectly reconstructed—making
no false negative or false positive. The Deci-O2 is slightly
worse than our method, making one false negative at its
stopping point. The �1 method is the worst, making lots of
false negatives and false positives.

V. NUMERICAL RESULTS AND
PERFORMANCE COMPARISON

In this section we systematically study the performance of
the proposed method and we compared it with the �1 method
and the Deci-O2 method on various topologies and with
various parameters of the kinetic Ising model. These systems
include ±J and Gaussian-distributed couplings on 2D lattices
and on ER random graphs. Concerning the decimation-based
methods (decimation and Deci-O2) at each time step the
likelihood is maximized over the remaining couplings and
a fraction of couplings is put to zero. Our only free parameter
was the fraction of decimated couplings at each time step.
Concerning the �1 method, the likelihood together with the
Laplace prior was maximized for a set of λ chosen inside
[0,λmax]. Then the value of λ where the ROC curve was
the closest to the perfect reconstruction was chosen. We
should emphasize that this choice is highly nontrivial and it
would not be possible to do the same in many real inference
problems. Finally, the topology is reconstructed by taking a
cutoff inside the gap separating the zero couplings from the
others (see Fig. 2 for the gap). The error on the reconstruction
is computed over a new maximization of the likelihood,
this time without the Laplace prior but with the previously
inferred topology. This last step is done in order to not bias
the value of the inferred couplings because of the �1 penalty
term.

To evaluate the performance we consider two measures.
The first measure is the relative error of the reconstruction
which is defined as

ε =
√∑

i<j (Jij − J ∗
ij )2∑

i<j J 2
ij

. (11)

The second measure takes into account the reconstruction
of the topology by counting the number of well-reconstructed
neighborhoods. For each site i, the neighborhood of i is said
to be reconstructed if, for all the couplings Jij , ∀j �= i, the
inference process has separated correctly the zero couplings
from the present ones. We then sum over all the sites to obtain
the measure

Pneigh({J ∗}) = 1

N

N∑
i=1

δ

⎡
⎢⎢⎣∑

j �=i
Jij ∈J1

δJ ∗
ij ,0 +

∑
j �=i

Jij ∈J0

(
1 − δJ ∗

ij ,0
)
⎤
⎥⎥⎦ .

(12)
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FIG. 5. (Color online) Comparison of the performance of the three methods on different topologies: (a) 3D lattice with N = 64, J = ±1,
R = 10, and T = 500; (b) ER random graph with N = 50, J = ±1, R = 10, and T = 500; (c) Gaussian couplings on a random graph with
N = 50, σGauss = 0.1, R = 10, and T = 500; (d) asymmetric couplings with Jij = ±1 on a random graph with N = 50, R = 1, and T = 5000.
In each figure the crosses correspond to the value of Pneigh [Eq. (11)], and the circles and the squares correspond to the relative error ε [Eq. (11)].
From those figures we can conclude that the decimation always works much better than the �1 method. The Deci-O2 method is comparable but
always slightly worse than the decimation. The details concerning the comparison are described in the text.

This observable is zero if at least one error is made for
all the neighborhoods and is 1 if all the neighborhoods are
reconstructed perfectly. The results are illustrated in Fig. 5.
We can see from the figures that, in various topologies and
parameters, the decimation algorithm clearly recovers the
topology in all cases. In comparison, the �1 method does not
work well to recover the topology and usually finds slightly
larger errors. However, it is interesting to understand why the
error in the �1 method performs as well as in the decimation and
Deci-O2 cases while the reconstructed topology is completely
wrong. First, the reconstructed topology is mainly affected by
the fact that the �1 method is unable to find correctly who are
the zero couplings of the system. This means that this method,
even by tuning the value of λ (as we did here), is not close to the
correct solution in many cases. But, as the topology is wrong
mainly because of the false positives, the inferred value of these
couplings will remain close to zero and therefore they do not
contribute significantly to the relative error. Finally, it is also

interesting to see that the Deci-O2 method has a behavior very
similar to the one of the decimation while always slightly worse
than our method, especially in the topology reconstruction.

VI. CONCLUSION AND DISCUSSION

In this paper we proposed a simple method based on a
decimation process to the inference of the dynamical inverse
Ising problem on sparse graphs. We claim that our method is
a much more robust approach than the maximum-likelihood
method, which is prone to overfitting. In addition, unlike the �1

approach, we do not assume an artificial prior on the couplings,
and we do not have any parameter to tune. Experimental results
show that our method outperforms �1-based method on various
topologies and with different coupling distributions. It also
shows improvement over decimation-based methods using the
second derivative of the likelihood function.
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AURÉLIEN DECELLE AND PAN ZHANG PHYSICAL REVIEW E 91, 052136 (2015)

Including our method, many existing approaches to the
inverse Ising problems are based on a “maximum à posterior”
method. However, in cases where the amount of data is small or
when the data quality is low, it would be very helpful to develop
a real Bayesian inference method considering the average over
all possible couplings and not focusing on the value of the
couplings that maximize the posterior distribution. We leave
this for future work.

Though all the study in this paper is theoretical, we note that
it would be very interesting to test our method on real-world

problems, probably with missing or noisy data. We leave this
for future work.
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