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A Monte-Carlo algorithm for discrete statistical models that combines the full power of the belief-propagation
algorithm with the advantages of a heat-bath approach fulfilling the detailed balance is presented. First we extract
randomly a subtree inside the interaction graph of the system. Second, given the boundary conditions, belief
propagation is used as a perfect sampler to generate a configuration on the tree, and finally, the procedure is
iterated. This approach is best adapted for locally treelike graphs and we therefore tested it on random graphs for
hard models such as spin glasses, demonstrating its state-of-the art status in those cases.
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Sampling a distribution of strongly correlated variables is
a central task in many fields such as statistical mechanics, ma-
chine learning, and statistical analysis. Indeed, there are many
problems where an exact treatment is impossible due to the
large number of strongly correlated variables. Furthermore, in
many cases analytical approximations lead to imprecise results
if compared to the one obtained in numerical simulation. The
Markov-chain Monte-Carlo (MCMC) approach for sampling
is a fundamental component of modern physics [1,2] playing
a central role in inference and learning problems (e.g.,
computational biology [3,4], machine learning [5], simulated
annealing [6]). A drawback of MCMC methods, such as
Metropolis, is the long runtime needed to obtain high-precision
estimates. In addition, this time can be affected by local energy
or entropy barriers and ergodicity breaking. A large scientific
effort has been devoted to the design of faster MCMC
schemes [1,2].

A particular family of discrete statistical models considers
systems where the underlying graph of interaction is a tree.
Those cases have been widely studied both in physics,
where they form the basis of the Bethe approximation [7],
and in computer science [8,9]. In these problems, an exact
marginalization in linear time is possible—i.e., in O(N )
steps, where N is the system size—by using an algorithm
called belief propagation (BP). As we shall see, it implies
the possibility of perfect sampling in linear time as well
(i.e., extracting a configuration from the Boltzmann measure).
This has been a fundamental breakthrough allowing gigantic
possibilities in machine learning [10]. A natural extension is
to consider graphs with few (or large) loops. Those graphs
are typically present in many concrete problems [11]. But
when the loops appear it becomes much harder to sample
perfectly the measure. It would be indeed very useful to
be able to sample efficiently graphs that have locally a tree
structure but which are not tree. Among such graphs, random
ones are commonly used in statistical physics as mean-field
models [12], in combinatorial optimization as archetypes of
hard benchmarks [13], and in many types of sparse networks
encountered in clustering problems [14,15]. They are also used
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for error-correcting codes [16] and in inference problems [11],
where a good sampler is mandatory if one hopes to deal with
large-size problems.

Belief-propagation-guided MCMC. In this paper we present
an algorithm respecting the detailed balance which combines
the perfect sampling ability of BP on trees with the traditional
heat-bath strategy using MCMC approaches. A method close
to ours has been studied on 2D lattices in [17]. However our
algorithm is able, on random graphs, to flip random trees
of huge sizes which would have been impossible with their
method. Those very large clusters allow us to avoid local traps
that one can encounter with the local Metropolis dynamics.
We expect in addition that our algorithm unleashes its full
potential on graphs without too many short loops where the
subtree extraction is facilitated. Finally, our algorithm can
be adapted for any kind of graph. A similar approach has
been used in [18] but where only deterministic subtrees were
considered.

In what follows, we present the algorithm in detail and
apply it to various difficult benchmarks. We focus mainly on
systems having the random graph topology, as they are typical
examples of networks without short loops, and we demonstrate
the state-of-the-art nature of our approach.

Our method is based on a heat-bath procedure: we repeat-
edly select a random subpart of the problem and equilibrate
it given its interaction with the rest of the system. When it
is applied to a single spin, it leads to Glauber dynamics. A
common strategy to improve the convergence of the dynamics
is to apply it to a group of two or more spins. However, the
difficulty to perform a perfect sampling increases dramatically
with the number of spins in general. Our strategy will be to
select sub-parts of the network having the topology of a tree
and to use BP to guide our sampling process.

Sampling on a tree. We describe first how using BP we can
sample efficiently the Boltzmann measure on a tree given the
boundary conditions. Starting from the leaves of the graph (the
nodes with only one neighbor), we can compute sequentially
the BP messages (or “partial” marginals) toward the center.
Let us consider first a “leaf” spin sl and compute its “partial”
marginal toward k, that is, the probability of sl given that its
only neighbor k has been removed. When the only neighbor
has been removed, the “leaf” spin is only sensitive to the
boundary condition (which we denote as an effective magnetic
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field hbound
i ) and the partial marginal reads

ψl→k
sl

= eβhbound
l (sl )

Zl→k
, (1)

where Zl→k is the normalization constant and β the inverse
temperature. In the following, we should also consider the
partial marginal ψ

i→j
si

of a site i when the link (ij ) has been
removed (also called BP message from i to j ). Starting from
the leaves, these partial marginals can be propagated toward
the center of the tree using the BP equations: for any i, ψi→j

can be computed when the ψk→i are known for all neighbors
k �= j of i. This propagation is exact on trees and reads
for ψi→j

ψi→j
si

= 1

Zi→j

∏

k∈∂i\j

∑

sk

e−βH(si ,sk )ψk→i
sk

, (2)

whereH encodes the interaction between neighbors, and ∂i de-
note the neighbors of i. Iterating this procedure allows us to go
deeper and deeper in the tree, until we reach a spin where all in-
coming messages have been computed. For this very last spin,
we can now compute the correct “complete” marginal using

pmarg(sc) = 1

Zc

∏

k∈∂c

∑

sk

ψk→c
sk

e−βH(sk,sc). (3)

Thus, we can use this marginal to choose a new state for the
spin sc. Given this new assigned value for the spin’s state, it is
possible to compute the complete marginal for its neighbors.
From them, we choose again a new state for these spins, and
this procedure is iterated back to the boundaries of the tree.
At this point, the whole tree has been updated with a new
configuration sampled from the Boltzmann measure in O(N )
steps, where N is the size of the tree graph.

Sampling on a graph. We now explain how to use this
procedure to perform a heat bath on any graph. The procedure
follows three different steps: (i) Extract randomly a tree
subgraph from the interaction graph; see Fig. 1, left panel.
(ii) Cancel the states of the spins inside the tree. All spins
immediately outside of the tree will be used as the boundary
conditions. (iii) Use the BP perfect sampler described above

to extract a new configuration of the spins inside the tree given
the boundary conditions. In Fig. 1 the middle panel illustrates
the propagation of BP messages toward the central spin. The
right panel illustrates how new states are drawn and used to
iterate BP messages.

In our implementation of the algorithm, we construct the
subtree by taking a node at random and adding its neighbors in
random order. The neighbors are added unless it creates a loop
in the subgraph. In such case we put it in the list of spins at the
border of the tree. This list will be used as boundary conditions.
The procedure is repeated on all newly added nodes until all
of them have been treated. This construction is particularly
efficient on random graphs and we illustrate it in the left panel
of Fig. 1. It is however important to point out that it might
not be efficient on finite-dimensional systems. In that case one
should design a different procedure to extract a tree from the
graph.

The creation of the subtree is dominating the algorithm’s
complexity and a complete update of the graph scales as
O(c2N ), where c is the average degree of the graph. Our
algorithm is therefore faster on diluted graphs. However, we
should be careful that in some cases this construction might
update less frequently some sites. Indeed, since the root of the
tree is chosen randomly, small disconnected clusters will be
updated more rarely. To counterbalance this effect, we always
alternate our algorithm with a Metropolis move so that all
the sites are updated frequently. It is also important to point
out that this is not a problem of ergodicity: all states of the
phase space can be reached with a nonzero probability. In our
tests of the algorithm, the results were mainly independent of
the amount of randomness used during the subtree creation.
We also observed that the local MCMC moves were quite
important when dealing with Poissonian random graphs.

Numerical tests. We shall now discuss the performance of
our algorithm. In the following we consider three different
examples. First we focus our attention on the relaxation of the
energy as a function of the time. We compare three different
methods on two Ising models and we investigate the effect
of the subtree maximum size on the convergence. Second we
study the autocorrelation time for both Metropolis and our

ψk→i
sk

= δsks
∗
k

pcentral(q)

si

k ∈ ∂i

ψk→c
sk

= 1
q

p1(q)

p2(q)

sINIT

FIG. 1. (Color online) A schematic illustration of the BP-guided MCMC on the coloring problem. Left: Starting from a random node sINIT

we create a random tree by adding the neighbors of each node in the tree progressively (but without creating a loop). The (plain) links in gray
have been cut on the picture to emphasis the constructed tree structure. Middle: The tree nodes have been reset and marked by a red X on the
figure. We illustrate by arrows how the BP messages propagate to compute the partial marginals until the central spin is reached. For the latter
we can then compute the complete marginal. Right: The central node has been put in one state according its marginal pcentral. Propagating this
information backward on the tree, this allows us to compute the complete marginal for each variable and to sample a new configuration for all
the variables on the tree.

214421-2



BELIEF-PROPAGATION-GUIDED MONTE-CARLO SAMPLING PHYSICAL REVIEW B 89, 214421 (2014)

method on a p spin. Finally we compare the same algorithms
on an annealing experiment. Note that for our algorithm one
time step corresponds to an update of N spins (N being the
system’s size) such that after T time steps all sites are updated
T times on average. This definition is chosen in order to make a
fair comparison with MC where a time step corresponds to the
update of N randomly chosen spins. We should also mention
that the results presented here do not depend on the system
sizes. We controlled that using larger (or smaller) system sizes,
the conclusions were not affected.

We consider first the energy relaxation after a quench
in the low-temperature phase of two systems. We consider
an easy case—a standard ferromagnetic Ising model on a
random graph with connectivity c = 3, Tc ≈ 2.94—and a
harder one—an antiferromagnet on the same random graph,
Tc ≈ 1.52. This later, due to the presence of loops of various
sizes, behaves as a spin-glass model. For both, we start from
a random configuration and cool the system at T = 0.1. A
quench from a random configuration at this temperature get
stuck into relatively high energy states due to the presence of
local energy barriers.

In our simulation, we compare the relaxation time of our
algorithm where we add a parameter controlling the subtrees’s
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FIG. 2. (Color online) Energy density after a quench (using
eREF = c/2 for the ferromagnet and eREF = 0 for the antiferromagnet)
starting from a random initial configuration for an Ising model on a
large (N = 106) regular random graph with connectivity c = 3 at
temperature T = 0.1. Top panel: The convergence of the energy
is shown versus the iteration time in the ferromagnetic case using
different thresholds for the largest possible tree-cluster move on
each curve. While standard Metropolis (1 spin) gets trapped in
configurations with large energy for infinitely long time, increasing
the size of the trees systematically increases the efficiency of the
algorithm. With large enough trees, one equilibrates the system
in less than 20 iterations. Bottom panel: A similar study for an
antiferromagnet that behaves as a spin glass model due to the
frustration. Similar performances to those in the ferromagnetic case
are observed. Note that while the Wolff cluster approach is able to
perfectly sample the ferromagnet, it fails in the spin glass case where
the best performances are obtained by the BP-guided algorithm.

maximum size and we report the results obtained by varying
this parameter (when the maximum size is 1 we recover
the Glauber MCMC). In addition we implemented the Wolff
algorithm [19] to confront a cluster method to the BP-guided
one. In Fig. 2 we plot the energy as a function of the iteration
time for both systems. As we increase the maximum size of
the subtrees, we update larger and larger clusters and the
barriers no longer block the dynamics. One can observe on
the figure that the convergence time is drastically improved. In
fact, perhaps not surprisingly, the algorithm converges faster
when using the maximum cluster size—thus avoiding larger
and larger local minima—in both the ferromagnet and the
spin-glass case. It is instructive to compare it with the standard
Wolff algorithm. For the ferromagnet, Wolff is able to avoid
the barriers and in fact performs even better than the BP-
guided MCMC. This is hardly a surprise as for ferromagnetic
systems without frustration the Wolff approach is always very
efficient. For the spin glass problem, however, even the Wolff
method remains stuck in some subspace of the phase space
(see Fig. 2). In these cases, the advantage of our approach
is evident.

As a second example, we move to a more complicated
model: the Ising p-spin glass on random graphs, also known
as the random XORSAT model. The Hamiltonian reads

H({s}) = −
M∑

a=1

Ja

∏

i∈∂a

si, (4)

where M groups of p spins are chosen randomly and coupled
according to the random coupling Ja which is equal to {±1}
with equal probability. This model has been widely studied in
the literature both as a model for glasses [20,21] and for error-
correcting codes [22] and as a toy model for the satisfiability
problem [23]. It exhibits a dynamical glass transition at
Td = 0.510 [24] at which the relaxation time diverges, thus
making difficult to take independent measures. We study here
the relaxation time of the magnetization when T → Td for
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FIG. 3. (Color online) Autocorrelation m(t) = Ceq(t) for the p

spin on regular graph with N = 105 and c = 3 starting from
equilibrium. The temperatures go from 0.7 → 0.525 and the dynamic
glass transition arises at Td = 0.510 [24]. In the inset the melting time
diverges as a power law. The BP-guided MCMC method is more than
10 times faster than the traditional one.
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FIG. 4. (Color online) Simulated annealing starting from an
equilibrated configuration at T = 0.12 in a 4-coloring problem on
a large N = 105 9-regular random graph. The annealing is performed
by decreasing the temperature by �T = 10−7 every ten time steps.
While the traditional Metropolis approach is stuck at finite energy,
our BP-guided algorithm shows no sign of such blocking and actually
reaches the ground state.

both Metropolis and our algorithm. By using the approach
of [25,26], it is possible to create perfectly thermalized
initial conditions which allow us to measure the equilibrium
spin-glass correlation time easily. The time-relaxation of the
correlation as T → Td can be directly observed starting from
this thermalized configuration. In Fig. 3 we illustrate the
alpha relaxation starting from an equilibrium configuration
for different temperatures close to Td . Our algorithm improves
the decorrelation time by one order of magnitude while the
exponent for the diverging relaxation time was, however, not
significantly smaller. Hence, even in models as complicated
as the XORSAT one, the BP-guided approach improves the
mixing property of the dynamics by taking advantage of the
local-tree structure.

A third example is given by the q-coloring problem. This
is an NP-complete constraint optimization problem that aims
to color a graph with q colors such that all variables have
a different color than their neighbors. It is equivalent to an

antiferromagnetic Potts model:

H({s}) =
∑

(i,j )∈E
δ(si,sj ), with si = 1, . . . ,q. (5)

We consider this model on random graphs for which, in
some region of the parameter q and the average degree c, a
coloring configuration exists with probability one but can be
hard to find. In a recent work [27], it has been shown that the
9-regular graph with q = 4 has a dynamical transition below
which the equilibrium states possess a colorable configuration.
We therefore perform an annealing experiment from an
equilibrium configuration at T < Td using MCMC dynamics
on one part and the BP-guided approach on the other one.
As can be seen in Fig. 4, the MCMC dynamics gets stuck
in some local minima as the temperature is cooled down.
However, under the same condition, our algorithm manages
to escape such minima and to reach the ground state of
the system.

Conclusion. We have presented an algorithm for exact
sampling in complex systems, illustrated its performance, and
compared it to those of more traditional Metropolis dynamics.
We show different examples where our method performs better
than local move MCMC. In addition we demonstrate that our
algorithm out-competes (some) cluster rejection-free methods
and is immediately adaptable to many types of systems. We
have made all the tests on random graphs since the extraction
method of subtrees we are using is particularly adapted for this
topology. On the other hand, the algorithm can be applied to
any kind of graph (except fully connected ones), but one should
be careful when choosing the subgraph construction. Indeed
for a typical Euclidean graph the first step of the algorithm has
to be optimized in order to construct quickly a subtree for the
network considered. Many developments could be considered:
combining our algorithm together with parallel tempering;
testing the performances on finite-dimensional models, as for
instance the diluted spin models of [28] where large trees could
be constructed; or studying the zero-temperature version as an
optimization tool.
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