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Abstract. We consider a special type of Restricted Boltzmann machine (RBM), namely
a Gaussian-spherical RBM where the visible units have Gaussian priors while the vector of
hidden variables is constrained to stay on an L2 sphere. The spherical constraint having
the advantage to admit exact asymptotic treatments, various scaling regimes are explicitly
identified based solely on the spectral properties of the coupling matrix (also called weight
matrix of the RBM). Incidentally these happen to be formally related to similar scaling
behaviours obtained in a different context dealing with spatial condensation of zero range
processes. More specifically, when the spectrum of the coupling matrix is doubly degenerated
an exact treatment can be proposed to deal with finite size effects. Interestingly the known
parallel between the ferromagnetic transition of the spherical model and the Bose-Einstein
condensation can be made explicit in that case. More importantly this gives us the ability
to extract all needed response functions with arbitrary precision for the training algorithm
of the RBM. This allows us then to numerically integrate the dynamics of the spectrum of
the weight matrix during learning in a precise way. This dynamics reveals in particular a
sequential emergence of modes from the Marchenko-Pastur bulk of singular vectors of the
coupling matrix.

1 Introduction

In the last decade, the field of machine learning became the center of attention of both
the public domain and of the scientific research. With the development of deep neural
networks taking advantage of the GPU technology, the performance on classification tasks
started to outperform human level at image recognition, and more recently, generative model
such as generative adversarial network [1] (GAN) have been able to generate images that
cannot be distinguish from a true one [2]. Despite recent significant advances [3, 4] the
theoretical understanding of deep learning lag behind these progresses, in various respects
like for instance on the interplay between adequate network architecture and complexity of
the data.

Statistical physics has been helpful in the past to clarify the learning process on idealized
inference problems. In the 80’, before the A.I. winter, many works on neural networks were
proposing some elements of understanding in terms of the theoretical phase diagram of some
models. For instance, a retrieval phase for the Hopfield model was determined along with
the number of patterns that can be retrieven in that case [5, 6, 7, 8]. Another example deals
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with the perceptron where again, the capacity for storing synthetic dataset can be computed
[9, 10, 11]. The storage of information in layered neural networks was also analyzed in [12]
with mean-field techniques. These approaches could then be adapted in many different
contexts, such as community detection [13], compressed sensing [14] or traffic inference [15]
to mention only a few of them. Typically in this kind of approach, the formalism of statistical
physics relates the behaviour of the model to its position on a phase diagram in the large
N limit, mean-field equations being used to characterize the free energy landscape and to
sample efficiently the system.

In this work a somewhat similar path is followed to study generative models, by
focusing on a “tractable” version of the restricted Boltzmann machine (RBM). While RBM is
considered to be a basic tool of machine learning, introduced more than 30 years ago [16], it
is still attracting a lot of interest, both from the machine learning and the statistical physics
communities. First, it is a model that can be handled without the need of GPU and can be
run on a ordinary computer in reasonable time while solving non-trivial tasks. Second, it
has only one hidden layer in its classical formulation which allows the possibility to get some
understanding of the learned hidden features since they are directly linked to the visible
variables. Finally, it can be expressed as an Ising model and therefore, many standard tools
developed by the statistical physics community can be used to determine its properties.

Originally, the RBM played an important role in deep learning as a way to pre-train
deep auto-encoders layerwise [17]. It is also in principle possible to stack many RBM to form
a multi-layer generative model known as a Deep Boltzmann Machine (DBM) [18]. Within
the recent years, RBM has continuously attracted the interest of the research community,
firstly because it can be easily used for both continuous and discrete variables [19, 20, 21, 22]
and the activation can be tuned to be either binary of relu [23]; secondly because for datasets
of modest size it is able to deliver good results [24, 25] comparable to the ones obtain from
more elaborated network such as GAN (see for instance [26]). However, even for such a
simple model, the learning procedure (what is learned, and how it is learned) is still very
difficult to analyze with non-linear activation functions, in order to identify the key features
and mechanisms allowing it to work properly. Even for practical purpose, it is intrinsically
difficult to efficiently estimate numerically the gradient w.r.t. the parameters of the model,
as soon as the network has learned non trivial modes. Empirical procedures have been
proposed, first the contrastive divergence [27] (CD) which has properties have been analyzed
in [28], or the refined Persistence CD [29] (PCD) and later on a mean-field estimate [30].
None of these being fully satisfactory (see e.g. [31] for a more detailed discussion), especially if
one is willing to learn an empirical distribution with good accuracy. For that purpose, recent
works [32, 33] using the analogy between the RBM and the Hopfield model characterize the
retrieval capacity of RBMs. RBM with sparse weight matrix have been considered in [34]
to analyze compositional mechanisms of features to create complex patterns. Other works
have focused on a mean-field theory for the RBMs, first to approximate the gradient and
second to probe the mean-field landscape in the general case [30, 35] or in the spherical
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case [36] or even to compute the entropy in a very simple case [37]. In [28] was shown
that large principal components of the data were extracted in the Gaussian RBM, while the
Gaussian-Bernoulli case could reveal independent components of the data. Recently we also
used a mean-field approach to understand the phase diagram of the binary-binary RBM,
as a function of the spectrum of the weight matrix [38, 39]. We characterized in some way
how the singular modes of the weight matrix evolve and interact during learning, bringing
forward a clustering model interpretation of the RBM in terms of mean-field fixed points.

In this paper we study an RBM with continuous symmetry, consisting of one layer of
Gaussian variables (the visible one) and one layer of real variables with a spherical constraint.
In the spirit of the original spherical Ising model introduced by Berlin and Kac [40], this
offers the possibility to say something relevant to the original model, by solving a simpler
one. It turns out that in a special setting the thermodynamical properties of the Gaussian-
spherical RBM can be obtained exactly. This allows one to devise an exact gradient ascent
of the likelihood to learn the model, despite the fact that this model as we shall see is able to
encode only rather specific data. The observation made previously on the spectral dynamics
of the learning procedure [38, 39], in particular that the modes of the weight matrix are
learned by order of importance, will be illustrated by an exact integration of the dynamical
equations introduced in these works. In addition this solution could constitute a possibility
to assess approximate mean-field methods and empirical learning strategies.

s1 snv

σ1 σnh

si

σj Hidden layer

Visible layer

Wij

Figure 1. bipartite structure of the RBM.

The paper is organized as follows. In Section 2 we define the RBM with a spherical
hidden layer and derive the likelihood and the response functions exactly in the case of
Gaussian visible units, together with the dominant behavior in the thermodynamic limit.
In Section 3 we specify some properties specific to the spherical constraint, as the way
is occuring the onset of ferromagnetic order, the critical behavior of the magnetization
associated to mode condensation, remarking and exploiting in passing some connection with
spatial condensation in particle processes explored in [41]. Next, the Section 4 focuses on a
particular case where the spectrum of the weight matrix is doubly-degenerated and allows
one to compute exactly for finite size systems the partition function of the system. Finally,
in the section 5 we exploit these results to numerically integrate the spectral dynamics of
the weight matrix during learning.
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2 Model definition

2.1 Boltzmann measure and associated likelihood

The basic structure of the RBM is shown on Figure 1. It is a bipartite model connecting
one layer of visible variables to one layer of hidden variables, these ones acting as a field
to generate interactions among visible variables. We define the visible variables {si}i=1,...,Nv

and the hidden variables {σi}i=1,...,Nh both real valued, where Nv and Nh denotes the number
of visible (resp. hidden) variables. L =

√
NvNh will represent the size of the system and

κ =
√

Nh
Nv

its shape. We define the energy function by

E(s,σ) = −
∑
i,j

wijsiσj +
∑
i

s2
i

2
−
∑
i

ηisi −
∑
j

θjσj, (1)

W is the weight matrix between the visible and hidden variables, η and θ are local fields
exerted on variables. In this form the visible variables have a Gaussian prior N (0, 1) in
absence of hidden variables. The spherical constraint imposes an additional prior distribution
on the hidden variables. Overall the distribution over s and σ is defined as

p(s,σ) =
1

Z
e−E(s,σ) δ

(∑
j

σ2
j − σ̄2L

)
(2)

where Z is the normalization factor and σ̄ a parameter of the model. In this setting, it is
possible to diagonalize the distribution by using the singular value decomposition (SVD) of
the matrix W :

wij =
∑
α

wαu
α
i v

α
j

where uα are left singular vectors, attached to the visible space, while vα are right singular
vectors attached to the hidden space and wα are the singular values. Depending on whether
Nv > Nh or Nv < Nh the set uα or the set vα is not a complete orthonormal set of respectively
the visible or the hidden space. If we assume for instance that Nh < Nv the matrix
corresponding to the left singular vectors has to be complemented by Nv − Nh arbitrary
orthonormal vectors to form a complete basis of the visible space. For the moment we don’t
need to specify whether Nv is larger than Nh, denote N = min{Nv, Nh} and assume that U
and V represent complete basis respectively of the visible and hidden space.

The joint distribution (2) is conveniently expressed by means of the components of the
visible and hidden vectors in these bases:

ŝα =
1√
L

Nv∑
i=1

Uαisi η̂α =
1√
L

Nv∑
i=1

Uαiηi

for α ∈ {1, . . . Nv} and

σ̂α =
1√
L

Nh∑
j=1

Vαjσj θ̂α =
1√
L

Nh∑
j=1

Vαjθj
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for α ∈ {1, . . . Nh}. These obey the following normalization rules:

Nv∑
i=1

s2
i = L

Nv∑
α=1

ŝ2
α

Nh∑
j=1

σ2
j = L

Nh∑
α=1

σ̂2
α

Nv∑
i=1

ηisi = L

Nv∑
α=1

η̂αŝα

Nh∑
j=1

θiσi = L

Nh∑
α=1

θ̂ασ̂α

we obtain

p(̂s, σ̂) =
1

Z
exp

(
L

N∑
α=1

[
wαŝασ̂α + η̂αŝα + θ̂ασ̂α

]
− L

Nv∑
α=1

ŝ2
α

2

)
δ
(
L

Nh∑
α=1

σ̂2
α − σ̄2L

)
.

From these transformations, we expect ŝα, σ̂α and also θ̂α, η̂α to scale like ∼ L−0.5. In
this representation the SVD modes are coupled by the spherical constraint. To get the
distribution of the visible variables alone, we have to integrate over the hidden variables
which can be done first by using the Fourier representation of the δ function

p(ŝ, σ̂) =
1

2iπZ

∫ a+i∞

a−i∞
dz exp

(
L
(∑

α

[
wαŝασ̂α + η̂αŝα + θ̂ασ̂α

]
−
∑
α

ŝ2
α

2
− z
(∑

α

σ̂2
α − σ̄2

)))
,

(3)
with a > 0. With the change of variable z′ = 2σ̄z/Σ(ŝ) we get

p(ŝ) =
1

2iLZ

( 2π

Lσ̄Σ(ŝ)

)Nh/2−1

exp

(
L

Nv∑
α=1

(
η̂αŝα −

ŝ2
α

2

))∫ a+i∞

a−i∞

dz

zNh/2
exp

(
Lσ̄Σ(ŝ)

2

(
z +

1

z

))
with

Σ2(ŝ)
def
=

N∑
α=1

(wαŝα + θ̂α)2.

The integration over z can actually be rewritten as (for Nh ≥ 2)

p(ŝ) =
(2π)Nh/2

2LZ
ĨNh/2−1

(
Lσ̄Σ(ŝ)

)
exp

(
L

Nv∑
α=1

(
η̂αŝα −

ŝ2
α

2

))
, (4)

where
Ĩν(x) = x−νIν(x),

with the modified Bessel function

Iν(x) =
xν

2

+∞∑
k=0

(
x
2

)2k

k!Γ(ν + k + 1)
.

The partition function is also given by means of a single integral after integrating over visible
and hidden variables the form (3) after the change z′ = 2z:

Z =
1

2iπ

∫ a+i∞

a−i∞
dzeLφ(z), (5)
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where

φ(z) =
σ̄2z

2
− δ

2
log(z) +

h2
0

2z
+

1

2

Nv∑
α=1

η2
α +

1

2

N∑
α=1

[ h2
α

z − w2
α

− 1

L
log(z − w2

α)
]
, (6)

up to a constant and

δ
def
= (κ− κ−1)11{Nh>Nv},

h2
0

def
= 11{Nh>Nv}

Nh∑
α=Nv+1

θ̂2
α,

hα
def
= η̂αwα + θ̂α.

2.2 Learning algorithm

The objective of the standard learning procedure of the RBM is to find the set of parameters
{W,η,θ} such that the likelihood of a given dataset s be maximal. This is done by
conventional gradient ascent of the log likelihood (LL). The conventional gradient of the
LL w.r.t. the parameters is given by

∂L
∂wij

= 〈siσjp(σ|s)〉Data − 〈siσj〉RBM

∂L
∂ηi

= 〈si〉Data − 〈si〉RBM

∂L
∂θj

= 〈σjp(σ|s)〉Data − 〈σj〉RBM

This requires to compute various response functions of the RBM and the conditional
probability p(σ|s). As shown in [38, 39] it is convenient to rewrite the gradient in the frame
defined by the SVD modes of the weight matrix. As already seen it is here especially adapted
since the RBM measure is naturally expressed in this frame. In addition, the specificity of
the Gaussian-spherical model is that the joint distribution of the visible variables (4) is
invariant w.r.t. a rotation of the singular vector V . This means that we can use a more
economical gradient. In addition to modifications of {wα, η̂α, θ̂α} we are led to consider
infinitesimal rotation Ωαβ between modes α and β of the visible SVD basis only. Here Ωαβ

is a skew-symmetric operator corresponding to the change

duα = Ωαβuβ,

duβ = −Ωαβuα.
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Our simplified LL gradient now reads:

1

L

∂L
∂wα

= 〈ŝασ̂αp(σ̂|ŝ)〉Data − 〈ŝασ̂α〉RBM

1

L

∂L
∂η̂α

= 〈ŝα〉Data − 〈ŝα〉RBM

1

L

∂L
∂θ̂α

= 〈σ̂αp(σ̂|ŝ)〉Data − 〈σ̂α〉RBM

1

L

∂L
∂Ωαβ

= 〈(wαŝασ̂β − wβ ŝβσ̂α)p(σ̂|ŝ)〉Data − 〈(wαŝασ̂β − wβ ŝβσ̂α)〉RBM

with

p(σ̂|ŝ) =
σ̄2L

(2π)Nh/2

exp
(
L
∑

αwαŝασ̂α + θ̂ασ̂α

)
ĨNh/2−1

(
Lσ̄Σ(ŝ)

) δ
(
L
∑
α

σ̂2
α − σ̄2L

)
.

This results in the following (continuous) update equations for the parameters and the
dataset S:

dwα
dt

= 〈ŝασ̂αp(σ̂|ŝ)〉Data − 〈ŝασ̂α〉RBM, (7)

dη̂α
dt

= 〈ŝα〉Data − 〈ŝα〉RBM −
∑
β

Ωαβ η̂β, (8)

dθ̂α
dt

= 〈σ̂αp(σ̂|ŝ)〉Data − 〈σ̂α〉RBM, (9)

dŝkα
dt

= −
∑
β

Ωαβ ŝ
k
β, ∀k ∈ S, (10)

with
Ωαβ = 〈(wαŝασ̂β − wβ ŝβσ̂α)p(σ̂|ŝ)〉Data − 〈(wαŝασ̂β − wβ ŝβσ̂α)〉RBM (11)

and where dt/L represents the learning rate. Here the last update equation corresponds
to simply adapting the data projection on the rotated basis. Note that the same is done
also for the second update equation concerning the field projection η̂, which is optional here
but coherent with the conventional update rules and useful in practice. Note also that the
singularity of the conventional gradient observed in [38] for pairs of modes with identical
singular values has disappeared. Hence, computing the gradient requires to evaluate one
and two-points correlation functions of SVD variables.

As seen in the previous section, the LL takes the form

L =
〈

log
(
ĨNh/2−1

[
Lσ̄Σ(ŝ)

])
+ L

∑
α

(
η̂αŝα −

ŝ2
α

2

)〉
Data
− log

(
Z
)
.
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Compared to the simple Gaussian RBM likelihood, we see one important difference:
eigenvalues of W do interact, in particular via the empirical term which is now a nonlinear,
monotonically increasing function of Σ(ŝ). With help of the identity

dĨν(x)

dx
= xĨν+1(x),

we get from this the gradient of the log likelihood in the form:

∂L
∂wa

= σ̄
〈
ŝα(wαŝα + θ̂α)

INh/2
(
Lσ̄Σ(ŝ)

)
Σ(ŝ)INh/2−1

(
Lσ̄Σ(ŝ)

)〉
Data
− ∂ log(Z)

∂wα

Using the following asymptotic expression for large ν (see e.g. [42])

Iν(νz) ∼ 1√
2πν

eνη

(1 + z2)1/4
with η =

√
1 + z2 + log

z

1 +
√

1 + z2
,

resulting from a saddle point approximation of the modified Bessel function, we obtain the
asymptotic expression

〈ŝασ̂βp(σ̂|ŝ)〉Data = σ̄

〈
ŝα

wβ ŝβ + θ̂β

1 +
√

1 + σ̄2Σ(ŝ)2

〉
Data

,

valid for large L.
The remaining point to address now in order to be able to train such a machine is the

estimation of the partition function and its derivatives. For the rest of the paper, the local
fields η̂α on the visible variables will be set to zero to lighten the presentation.

3 Thermodynamical properties

The expression of the partition function given by eq. (5-6) indicates that the physical
properties of the Gaussian-spherical RBM depend only on the spectrum of its weight matrix
in absence of the fields as for the ordinary spherical model [43]. Standard treatments of
the spherical model (see [40, 44, 45]) rely on a saddle point approximation of the contour
integral representation of Z given by eq. (5). Here we recall and straightforwardly adapt
these arguments to our needs by making simple assumptions on the limit spectrum of W
when L → ∞. Note also that variational properties of the free energy of bipartite models
with spherical constraints in thermodynamic limit have been established in the recent years
as in [46] for (p, q)-spin bipartite at high temperature or in [47, 48] for the RBM with two
spherical constraints in terms of the spectral density of the coupling matrix. The Gaussian-
spherical setting that we consider is easier to analyze since only one complex integral instead
of two for the spherical-spherical RBM as detailed in [47], is necessary to express the partition
function as we will see below. In a second step this will lead us to establish incidentally a
connections with condensation phase transition analyzed in the context of factorized steady
states [41].
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3.1 Ferromagnetic transition

First notice that φ given in (6) is convex on the domain of interest:

φ′′(z) =
δ

2z3
+
h2

0

z3
+
∑
α

[ h2
α

(z − w2
α)3

+
1

2L

1

(z − w2
α)2

]
> 0, for z > w2

max,

with wmax the highest singular value, so there is only one solution z0 to the saddle point
equation allowing for the following approximation:

Z ∼L→∞
exp
(
Lφ(z0)

)√
2πL|φ′′(z0)|

.

At the saddle point the free energy per degree of freedom is given by

f = −φ(z0, η, θ).

From these quantities we can in principle get all the needed response functions (see
Appendix A). We will focus here on the computation of the spontaneous magnetizations as
a function of the spectrum of W . Their expressions can be obtain using

〈ŝα〉 = − ∂f

∂η̂α
= wα

hα
z0 − w2

α

, (12)

〈σ̂α〉 = − ∂f

∂θ̂α
=

hα
z0 − w2

α

. (13)

This gives us relations between magnetizations and z0. In order to analyze further the
thermodynamic properties of the system some assumptions have to be made on the spectral
properties of W . Let us define the spectral density (SD) associated to WW T :

ρL(E)
def
=

1

L

Nh∑
α=1

δ
(
E − w2

α

)
,

(which includes zero modes wα = 0 for α > Nv whenever Nh > Nv). In the thermodynamic
limit it is assumed that the SD tends to a well defined limit distribution

lim
L→∞

ρL(E) = ρ(E).

This leads to

φ(z) =
1

2
σ̄2z +

1

2

∫ Emax

0

dEρ(E)
(h(E)2

z − E − log(z − E)
)
,

with some upper bound Emax of the SD, and where h(E) is any smooth function taking the
value

√
Lhα for E = w2

α at finite L, hα being expected to be O(1/
√
L) in general. ρ(E)h(E)2

represents the SD of the external field. As in [44] for instance, we have to distinguish
between a situation where the SD has isolated dominant modes and the situation with just
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a continuous bulk of modes bounded by Emax. When the SD has no isolated dominant mode
we look for a solution z0 to the saddle point equation

φ′(z) =
1

2

(
g1(z)− g2(z)

)
= 0

where

g1(z)
def
= σ̄2 −

∫ Emax

0

dE
ρ(E)

(z − E)2
h(E)2,

g2(z)
def
=

∫ Emax

0

dE
ρ(E)

z − E ,

Let us call
σ̄2
c

def
= g2(Emax) (14)

The properties of the system depends on the behavior of ρ(E) near Emax. A thorough
discussion of its influence on the physical properties of the spherical model can be found
in [43]. Here we restrict the discussion to behavior of the type ρ(E) ∼ (Emax − E)γ with
the exponent γ > −1. This cover various study cases like for instance d-dimensional regular
lattices γ = d/4 − 1 or γ = 1/2 for i.i.d. random matrices. In order to get closed form
expressions we shall consider the following beta distributions for the SD:

ρ(E) =
κ

B(1− γ, γ + 1)

E−γ(Emax − E)γ

Emax

with γ ∈]− 1, 1[, (15)

ρ(E)h(E)2 =
h2

B(β + 1, 1− β)

Eβ(Emax − E)−β

Emax

with β ∈]− 1, 1[, (16)

where the beta function takes here the special form

B(1− γ, 1 + γ) =
γπ

sin(γπ)
,

and with h2 the squared norm of the external field. ρ(E)h(E)2 represents the SD of the
external fields. This setting can be useful to study the response function at the top of the
spectrum, by simply letting β → 1. σ̄c is infinite for γ ≤ 0 and finite otherwise with

σ̄2
c =

1

Emax

(
δ +

κ

γ

)
, γ > 0

in the latter case. The different scenarios for obtaining z0 are sketched on Figure 2.

• When γ ≤ 0, g2 diverges close to Emax and therefore the intersection A with g1 always
converges to the point B = (z0 > Emax, σ̄

2). In that case, there is no way that (z − E)

goes to zero for E ≤ Emax when h → 0 and therefore all the magnetizations (12,13)
vanish.
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• When γ > 0 we have to distinguish between two cases. First, we consider condensation
on modes that have E < Emax by applying small vanishing fields on these modes. In that
case, since when h→ 0 we have z0 ≥ Emax, again the magnetization will simply vanish
since the denominator in (12,13) is finite and non-zero. For modes at Emax if σ̄ < σ̄c,
then z0 → E > Emax when we put the field to zero therefore giving the same results as
in the first scenario. Now, if instead σ̄ ≥ σ̄c, z0 → Emax h(Emax)ρ(Emax)/(z0 − Emax)

has a finite limits given below. We obtain a spontaneous magnetization in that case.

zz0
Emax

A
g1(z)

g2(z)

zz0
Emax

A
g1(z)

g2(z)

γ ≤ 0 γ > 0

BB

σ̄2
c

σ̄2σ̄2

(a) (b)

σ̄2
c B
′

Figure 2. Various scenarios for the saddle points solution z0. Point A corresponds to the
intersection between g1 and g2 at finite field h(E), the black arrow the movement of g1
when the fields tend to zero while points B and B′ corresponds to the limit intersection at
vanishing fields when respectively σ̄ < σ̄c (in blue) and σ̄ > σ̄c (in red).

The spontaneous magnetization is obtained as follows for the cases where a saddle point
solution exists. If a field hα = hmax is concentrated on the largest mode, this is equivalent
to choose h(E) such that ρ(E)h(E)2 = h2

maxδ(E − Emax). We get from the saddle point
equation:

σ̄2 − h2
max

(z0(hmax)− Emax)2
= σ̄2

c .

Now, when z0(hmax)→ Emax and we let hmax → 0 we obtain

lim
hmax→0

hmax

z0(hmax)− Emax

=
√
σ̄2 − σ̄2

c .

Eliminating z0 − E in (12,13) yields the spontaneous magnetization

〈ŝα〉 = wmaxσ̄
√
σ̄2 − σ̄2

c ,

〈σ̂α〉 =
√
σ̄2 − σ̄2

c ,

and
〈ŝασ̂β〉 = δαβwα(σ̄2 − σ̄2

c ).

When the highest mode acquires a macroscopic magnetization in the ferromagnetic phase,
the resulting distribution p(s) becomes bimodal along this direction. It is also worth noticing
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that when the highest mode is degenerated n times, in absence of any external fields the
system has an O(n) symmetry corresponding to rotations in the subspace defined by these
vectors. This results in that case into a distribution concentrated on a n-dimensional sphere
in the ferromagnetic phase. The specific shape of the condensed distribution will be studied
in the next subsection.

3.2 Condensation mechanism in thermodynamic limits

The scaling form (15,16) of the SD of singular values and field densities allows us to make an
explicit connection with scaling function derived in a different context, namely condensation
of factorized steady states [41]. After dropping irrelevant terms and making the change
z′ = (z − Emax)/Emax while absorbing Emax in the definition of σ̄ we get the following form
of the partition function:

ZL,N [σ̄, h] =
1

2iπ

∫ i∞

−i∞
dze

L
2
φ(z,σ̄,h),

with (see Appendix B)

φ(z, σ̄, h) = σ̄2(z + 1)− κ

γ

∫ z

0

du
[
1−

( u

1 + u

)γ]
+
h2

β

[(1 + z

z

)β
− 1
]
. (17)

For large L the rescaling L1/(1+γ)z → z leads to the scaling behavior

ZL,N(σ̄, h) = e
L
2

(
σ̄2−h

2

β

) (
L−

1
γ+1Vγ,β

(
L

γ
1+γ (σ̄2 − σ̄2

c ), L
2+β+γ
1+γ h2

)
+O

( 1

L
2

1+γ

))
,

valid for (γ, β) ∈ (]− 1, 0[∪]0, 1[)2, where the following scaling function has been introduced

Vγ,β(x, y) =

∫ i∞

−i∞
dz exp

(1

2
xz + bzγ+1 + c

y

z1+β

)
,

=
1

π

∫ ∞
0

du e−b2u
γ+1−c2 y

uβ+1 cos
(xu

2
− b1u

γ+1 + c1
y

uβ+1

)
,

with

b =
κ

2γ(γ + 1)
b1 = b cos

(γπ
2

)
b2 = b sin

(γπ
2

)
c =

1

2β
c1 = c cos

(βπ
2

)
c2 = c sin

(βπ
2

)
and where the change of variable z = ±iu is used for Im(z) ± 0. In [41] the same scaling
function (at y = 0) is encountered albeit in a different context. We can therefore closely
follow their analysis to describe the transition to ferromagnetic order of the present spherical
model. As seen previously, when γ > 0 there is a possibility for dominant modes to generate
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Figure 3. Shape of the condensate distribution (γ = 0.5) along a given mode α as the scaled
distance y = L

1
1+γ (1− εα) from the upper boundary is increased, x being the scaled fraction

of variance L
γ

1+γ (σ2
α − Vex) along this mode. The bump in the distribution disappear for

y ≥ y0.5 ' 0.72, while the second mode correspond to the range y ∈ [1.77, 2.81[ for γ = 0.5.

ferromagnetic order when σ̄c < σ̄. In presence of an external field (h2 > 0) there is always
a solution to the saddle point equation and no transition occurs at σ̄c. Instead, in absence
of external fields and γ > 0, there is no solution to the saddle point equation when σ̄c < σ̄

while there is always one in the opposite case, and the transition corresponds to the onset of
ferromagnetic order materialized by condensation along the dominant modes. In that case
a finite fraction of the overall variance of the distribution is captured by one or possibly a
small number of modes.

In order to study the condensate we need to express the marginal probabilities pŝα(x)
def
=

P (ŝα = x) and pσ̂α(x)
def
= P (σ̂α = x). For any given mode α we have (in absence of external

fields)

pŝα(x) =

∫
dypσ̂α(y)eL

(√
εαxy−

x2

2

)
pσ̂α(x) =

ZL,N−1

(
σ̄2 − x2

)
ZL,N

exp
(L

2
εαx

2
)
,

with εα = Eα/Emax and

ZL,N =

∫ ∞
0

dxZL,N−1

(
σ̄2 − x2) exp

(L
2
εαx

2
)
,

where it is assumed that ZL,N corresponds to the system with one single mode at εα added
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to the SD (15), while ZL,N−1 corresponds to the SD (15) alone. Let us call

Vex = σ̄2 − σ̄2
c ,

the “excess of variance” in the system. We get for the condensate the following behavior

pσ̂α(x) ∝ Wγ

(
L

γ
1+γ (x2 − Vex), L

1
1+γ (1− εα)

)
with now

Wγ(x, y) = e
−xy
2

∫ ∞
0

du e−b2u
γ+1

cos
(xu

2
− b1u

γ+1
)

So Wγ(x, y) = e−xy/2Vγ(−x/2) whose plot is shown on Figure 3 and which asymptotic
behavior for large x is given in Appendix B. This help us to determine how many modes
condense and the shape of the distribution along these modes, in the vincinity of the upper
boundary of the spectrum corresponding to εα = 1. Strictly speaking the bump observed on
Figure 3 represents the condensation of a mode only for y = 0, because as soon as y is strictly
positive Wγ(x, y) ∼x→−∞ e−xy/2/|x|γ+2, which means that the contribution of the bump to
the distribution is suppressed exponentially by a factor exp

(
−L 1

γ+1Vexy/2
)
by comparison to

contributions near σ2
α = 0. Still we see that the bump is present for some values y ∈ [0, yγ[.

To know to which modes this corresponds to, first note that y = L
1

1+γ (1 − ε) is actually
a measure of the rank from the top of the spectrum. Given the SD (15) the kth mode is
actually located in the range y ∈ [y

(k)
γ , y

(k+1)
γ [ with

yk
def
=
[
k
γ(γ + 1)π

sin(γπ)

] 1
γ+1

,

corresponding to a value of ε s.t. L
∫ 1

ε
duρ(u) = k for large L and finite k. It can be checked

numerically that yγ is always below y
(1)
γ for γ ∈]0, 1[, which means that the bump concerns

only the highest mode.
For modes which are detached above the bulk we have to consider the situation with

y = L
1

1+γ (1 − ε) < 0. In that case pσ̂α(x) has a Bell shape centered around x2 = Vex,
and according to the asymptotic behavior of Vγ given in appendix, pσ̂α(x) decays like
1/|Vex − x2|γ+2 when x → 0 and like exp

(
−c2L(x2 − Vex)

γ+1
γ + L

2
(x2 − Vex)(ε − 1)

)
for

x2 � Vex ((γ + 1)/γ is always greater that 1 for γ ∈]0, 1[).

4 Doubly degenerate spherical RBM

Instead of using the saddle point approximation we remark that closed-form expressions of
the partition function and of the LL can be obtained in the case where the spectrum of the
weight matrix has discrete levels with a multiplicity of 2 per level. Defining an RBM obeying
this constraint can be done simply by a duplication of both the input and hidden layer with
two identical blocks of the weight matrix but keeping one single spherical constraint on the
hidden layer.
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Figure 4. Integration contour deformation.

4.1 Dual formulation

Let K = max(0, (Nh − Nv)/2) and let now N = min(Nv, Nh)/2 represent half the rank of
W. The weight matrix takes now the form:

W =
N∑
α=1

ω∈{1,2}

wαu
α,ωvα,ω.

Given this we then have the following form for the partition function:

Z =
1

2iπ

∫ a+i∞

a−i∞

dz

zK

N∏
α=1

(z − Eα)−1eLφ(z)

with now

φ(z) =
σ̄2z

2
+
h2

0

2z
+

1

2

N∑
α=1

h2
α

z − Eα
,

with
h2
α = h2

α,1 + h2
α,2

and

hα,ω = wαηα,ω + θα,ω, α = 1, . . . N

h2
0 =

N+K∑
α=N+1

(
θ2
α,1 + θ2

α,2

)
.

To evaluate Z we can deform the integration contour to the half circle CR as shown on
Figure 4:

Z = lim
R→∞

1

2iπ

∮
CR

dz

zK

∏
α

(z − Eα)−1eLφ(z),
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thanks to the following bound for the contribution on the half circle for R sufficiently large:

R

∣∣∣∣∣z−K∏
α

(z − Eα)−1eLφ(z)

∣∣∣∣∣ ≤ A

RNh−1
→R→∞ 0.

Then, since the integrand is holomorphic everywhere inside the domain enclosed by CR except
on the singularities z = Eα, we can deform the contour as shown on Figure 4 in terms of
small anti-clockwise circles Cε,α of radius ε around each singularities including z = 0 for Cε,0,
ε being small enough such that each Cε,α encloses one single singularity. Z is then expressed
as

Z =
1

2iπ

N∑
α=0

∮
Cα,ε

dz

zK

∏
β

(z − Eβ)−1eLφ(z),

which after expanding for each contour the enclosed singular part in the exponential reads

Z =
∞∑
n=0

((Lh2
0

)n
4nn!2

f
(n+K−1)
0 (0) +

N∑
α=1

(
Lh2

α

)n
4nn!2

f (n)
α (0)e

L
2
σ̄2Eα

)
,

where

f0(z) =
∏
β

1

z − Eβ
exp
(L

2

[
σ̄2z +

∑
β

h2
β

z − Eβ

])
,

fα(z) =
1

(z − Eα)K

∏
β 6=α

1

z + Eα − Eβ
exp
(L

2

[
σ̄2z +

h2
0

z + Eα
+
∑
β 6=α

h2
β

z + Eα − Eβ

])
.

It is rather tedious to write down this expression for Z more explicitly, instead at this point
let us consider the case when all hα = 0. Then we simply get

Z =
N∑
α=1

1

EK
α

(
exp
( σ̄2LEα

2

)
−

K−1∑
k=0

1

k!

( σ̄2LEα
2

)k)∏
β 6=α

(Eα − Eβ)−1. (18)

Reducing this expression to the same denominator leads us to express the partition function
as a ratio of two determinants:

Z =


1 E1 E2

1 . . . EN−2
1

∑∞
k=N−1

1
(k+K)!

(
σ̄2LE1

2

)k
1 E2 E2

2 . . . EN−2
2

∑∞
k=N−1

1
(k+K)!

(
σ̄2LE2

2

)k
. . . . . . . . . . . . . . . . . .

1 EN E2
N . . . EN−2

N

∑∞
k=N−1

1
(k+K)!

(
σ̄2LEN

2

)k




1 E1 E2
1 . . . EN−2

1 EN−1
1

1 E2 E2
2 . . . EN−2

2 EN−1
2

. . . . . . . . . . . . . . . . . .

1 EN E2
N . . . EN−2

N EN−1
N
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This ratio is actually a weighted sum of particular Schur polynomials (see e.g. [49]), each one
being a positive symmetric function of the energy levels Eα. There is a generating function
for these thanks the following identity

1 E1 E2
1 . . . EN−2

1
1

1−tE1

1 E2 E2
2 . . . EN−2

2
1

1−tE2

. . . . . . . . . . . . . . . . . .

1 EN E2
N . . . EN−2

N
1

1−tEN

 =
∏
α<β

(Eα − Eβ)
tN−1∏

α(1− tEα)
,

we have

Z =
∑
{nα}

(
σ̄2L

2

)K+N−1

(
∑

α nα +K +N − 1)!

N∏
α=1

(L
2
σ̄2Eα

)nα
, (19)

where the nα’s run over N.

4.2 Urn model interpretation

Expression (19) allows us to make the connection with another type of models studied in
statistical physics, namely urn models (see e.g. [50]) which generalize the Ehrenfest model to
an extensive number of urns. These are in fact a special case of queuing network processes [51]
well studied in probability theory. In the queuing theory, general class of queuing networks
have been identified which have simple explicit steady state measures [52]. The first one is
the so called Jackson network with exponential service rates [53] possibly open or closed.
Up to a multiplicative constant, the form (19) coincides with the normalization of the
invariant measure of a closed Jackson network of queues. Here each index α refers to a queue
characterized by a service rate µα and nα is interpreted as the number of clients in the queue.
These queues are assembled into a network by fixing a set of routing probabilities among
them. Many different configurations can possibly lead to the same measure corresponding
to (19). Let us give an instance of such a network fulfilling this constraint. In addition of
the queues already defined we add an additional one with index α = 0 corresponding to the
reservoir, n0 being its number of clients supposedly large. The routing is then simply defined
by the given ordering of the queues: a client in queue α is routed to queue (α+ 1) mod(N),
which means that the system is closed and the queues are arranged along a circle. Let
N∞ = n0 +

∑
α>0 nα represent the total number of clients, considered arbitrarily large.

Consider the following service rates:

µα =


E−1
α ∀α ∈ {1, . . . N},
σ̄2L

2(N∞ − n0 +K +N − 1)
for α = 0.

We are then in the conditions of the Jackson theorem, namely that each service rate depends
only the state of the corresponding queue and that there exists a set of actually constant
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arrival rates λα = λ, satisfying the so-called traffic equation (i.e. flux conservation on the
network). Hence the corresponding measure has the following form

P (n) =
1

Z̃(N∞)

n0−1∏
n=0

2λ(N∞ − n+K +N − 1)

σ̄2L

N∏
α=1

( λ
µα

)nα
δ
(
N∞ −

N∑
α=0

nα

)
,

where λ is arbitrary, with (after re-arranging the summation)

Z̃(N∞) = λN∞
∑

{nα,α>0}

11{∑α nα≤N∞}

(Lσ̄2

2

)∑
α nα−N∞ (N∞ +K +N − 1)!(∑

α nα +K +N − 1
)
!

N∏
α=1

Enα
α .

So if we now let the size of the reservoir (controlled by N∞) become sufficiently large, we see
that up to an irrelevant N∞-dependent factor, Z̃(N∞) coincides with Z:

Z = lim
N∞→∞

λ−N∞(σ̄2L/2)N∞+N+K−1

(N∞ +N +K − 1)!
Z̃(N∞).

From the practical point of view, Z can be computed with arbitrary precision, thanks to the
following recursion. Let

Zl,m[E1, . . . , El]
def
=
∑

n1,...,nl

11{∑l
α=1 nα=m}

l∏
α=1

Enα
α .

We have

Z =
∞∑
m=0

(
σ̄2L

2

)m+K+N−1

(m+K +N − 1)!
ZN,m

[
E1, . . . , EN

]
. (20)

In order to compute Z numerically we make use of the following recursion:

Zl+1,m[E1, . . . , El+1] =
m∑
k=0

Ek
l+1Zl,m−k[E1, . . . , El].

Thanks to this recursion, if now we fix an upper bound M = O(L) (in the condensed phase)
of the maximal number of clients in order to reach a given precision for Z, we end up with
a complexity O(L2) to estimate the partition function. On Figure 5 is shown the finite size
dependence of the two-point function 〈ŝασ̂α〉 using these recursions.

4.3 The ferromagnetic transition as a Bose-Einstein condensation

It is known for a very long time that the spherical model is related to the ideal Bose gas and
that the transition is analogous to the Bose-Einstein condensation (see [43] and references
herein). In this queueing process language we can make it very explicit. In its original
formulation, the ferromagnetic transition is associated to sharp increase of the magnetization
projected on the dominant mode, which results for the thermal expectation 〈ŝ2

α〉RBM along
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finite size behavior when N = 200.

this mode, in a change of from a O(1/L) to a O(1) behavior. In the queuing terminology,
leaving aside the queue corresponding to the reservoir, we expect to see a transition where
the queue associated to the smallest service rate absorbs a finite fraction of the total number
of clients O(L) present in the system (not in the reservoir). In fact the two are closely related
since we have:

〈ŝ2
α〉RBM =

2v2
α

L

∂ log(Z)

∂vα

〈nα〉RBM = Eα
∂ log(Z)

∂Eα

if vα is the prior variance of mode ŝα set to the default value vα = 1 in (1). We then have
the relationship (in absence of external fields)

〈nα〉RBM = L〈ŝασ̂α〉RBM

=
L

2

(
〈ŝ2
α〉RBM −

1

L

)
≥ 0. (21)

The phase transition identified previously actually correspond to an ordinary Bose-Einstein
condensation when reinterpreting the nα as occupation numbers of states α of energy εα in
this last expression, with the identification

e−βεα = Eα
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and the fugacity ν representing

e−βν =
2z

σ̄2L
.

Then the critical value σ̄c of σ̄ previously given in (14) is reintepreted as

Lσ̄2
c =

∫ +∞

εmin

dε
ρ(ε)

exp
[
β(ε− ν)

]
− 1

∣∣∣
ν=εmin

,

Lσ̄2
c corresponding then to the maximum number of bosons that can be inserted into the

system without condensing into the ground state εmin.

5 Dynamics of learning

At present we have all the material to setup an “exact” learning method of the Gaussian-
spherical RBM, i.e. based on exact response function. The continuous learning equations
(7,10,11) given in Section 2.2 are integrated straightforwardly. All the one and two-point
correlation functions involved in these equations can be estimated with arbitrary precision in
principle, from the previous section. As a result we can generate the deterministic learning
trajectories shown on Figure 6. The synthetic data used to train this RBM are generated
from a distribution which support is localized in the neighborhood of an ellipsoid of small
dimension embedded into a larger dimensional space. As can be checked the modes which
emerge eventually align with one of the principal axes of the ellipsoid. The order of arrival is
in correspondence with the order of the values of the corresponding principal axes the modes
are aligning with. Here the needed time to condense combines the time it takes to align in
the right direction and the amplification time of the singular value itself. So as we see in this
experiments, 20 out of 100 modes condense which is reflected by the fact that they acquire
a finite singular value (close to 2 in this example, top left panel), a finite fraction of the
total number of clients (top right panel), or equivalently from (21)a macroscopic variance
(bottom right panel). The competition between the modes which condense leads to a non-
monotonic behaviour of the fraction of clients or of the variance as new modes show up in
the condensate. The mean client number 〈nα〉RBM associated to mode α is a formal quantity
which emerge from the reformulation of the partition function, but cannot be interpreted as
an actual degrees of freedom of the learning process.

The critical value of σ̄c of σ̄ as well as the condensation mechanism itself is defined in
principle only in the thermodynamic limit, with a continuous spectrum of the weight matrix.
Still, in order to have an estimation of σ̄c in our experiments for a finite size system, we take
z = Emax and sum over all dominated levels E < Emax the integral in (14). As seen in the
lower left panel this estimate is meaningful only at the beginning of the learning when the
first mode condense, σ̄/σ̄c becomes greater than one, but vanish when other modes condense
and get close to Emax. The evolution of the log likelihood shown shown on the same panel
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Figure 6. Learning dynamics of an RBM of size (Nv, Nh) = (100, 100) learned on
a synthetic dataset of 2000 samples distributed in the neighborhood of a 20-d ellipsoid
embedded into a 100-d space. t represents the number of iterations (full batch). The
dynamics of the singular values (each color represents one singular value) is shown on the top
left panel. Correspondingly the evolution of the number of clients filling the queues is shown
on the top right panel or equivalently the variance along each mode on the bottom right. All
the modes corresponding to the principal axes of the ellipsoid do eventually condense, while
other modes degenerate see their associated singular value, fraction of clients or variance go
to zero.

seems to follow very closely the evolution of total mean number of clients shown on the
top right panel. We don’t have much reason to believe that these two quantities should be
analytically related by a simple rescaling, so this coincidence might be presumably incidental.

The scatter plots shown on Figures (7,8) illustrates the ellipsoid shape of the distribution
when more than one mode get condensed.

With respect to the thermodynamic analysis given in Section 3.2, the final state of
the RBM found by the learning process do not correspond to a continuous bulk of singular
values with some given exponent γ. Instead it is a situation where a small number of modes
is detached from the bulk of the SD, with mutual distances of order 1/L, all condensing and
capturing in almost equal proportion a finite fraction of the overall variance.
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Figure 8. Scatter plot of the training data (blue) and sampled data from the learned RBM
(red) projected on the first nine svd modes of the weight matrix (xi) against the norm of
the the orthogonal complement (x⊥i =

√
|x|2 − x2i ), for a problem in dimension Nv = 60

with nine condensed modes.
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6 Perspectives

The RBM model presented in Section 4 is clearly useful only from the theoretical point
of view, in particular it could serve to test some heuristic learning strategies. When
compared to more realistic settings as in [38, 39] we see that this simple model basically
exhibits a generic spectral dynamics which account for only one part of the learning process,
namely the emergence of modes at the global level leading to the emergence of a simple
global manifold supporting the data. Interestingly the Gaussian-spherical RBM is indeed
modelling a distribution with a continuous manifold (ellipsoid or portion of ellipsoid if
biases are switched on) when more than one mode get condensed. By contrast an RBM
with binary latent variables tends to form small spherical clusters to cover the training
dataset. To go further we have to concentrate on more realistic and complex situations
where the manifold can emerge locally by some piecewise mechanism. This property could
maybe be obtained by considering a more general model which can be still solvable using
asymptotic response functions of Section 3. First we remark that if we partition the hidden
variables into P = Nh/n subsets of size n, and define a spherical constraint on each of these
subset, we thereby define a family of models which interpolates between the Gaussian RBM
considered so far and an RBM with Ising latent variables when varying n between Nv and
1. Then consider an RBM with Nv and P fixed, but with varying sizes of the partition
{nhq , q = 1, . . . P} with

∑
q nq = P . For the visible variables we consider first an arbitrary

basis U partitioned into P subspaces again of sizes {nvq , q = 1, . . . P}, the overall dimension
of the visible space being Nv =

∑
q n

v
q . We can then define an RBM expressed as a direct

product of smaller RBM on this partition directly in the svd mode representation of the
global weight matrix:

P (ŝ, σ̂) =
P∏
q=1

1

Zq
e−LEq(ŝ,σ̂)δ

( nhq∑
α=1

σ2
q,α − nhq

)
where now

Eq(ŝ, σ̂) =

min(nvq ,n
h
q )∑

α=1

[
wq,αŝq,ασ̂q,α + ηq,αŝq,α + θq,ασ̂q,α

]
− 1

2

nvq∑
α=1

ŝ2
q,α

σ̄2
q,α

,

(σ̄q,α being default variances), and each partition function Zq can be computed by saddle
points approximations. The matrix U as well as the fields η̂ and θ̂ has to be learned while V
is predefined with each mode (q, α) localized on the corresponding subset of hidden variables
corresponding to the qth partition.
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A Response functions

All response functions at leading order are expressed as derivatives w.r.t. external fields of
φ given in (6) taken at the saddle point z0. We have

〈ŝα〉 =
∂φ

∂η̂α
(z0)

〈σ̂β〉 =
∂φ

∂θβ
(z0)

〈ŝασ̂β〉 =
∂φ

∂η̂α
(z0)

∂φ

∂θβ
(z0) +

1

L

∂2φ

∂η̂α∂θβ
(z0).

We get these as a function of z0:

〈ŝα〉 =
(
η̂α +

wαhα
z0 − w2

α

)
,

〈σ̂β〉 =
hα

z0 − w2
α

,

〈ŝασ̂β〉 − 〈ŝα〉〈σ̂β〉 =
1

L
wα

∂

∂θβ

( hα
z0 − w2

α

)
=
wα
L

( δαβ
z0 − w2

α

− hα
(z0 − w2

α)2

∂z0

∂θβ

)
=
wα
L

(
δαβ

z0 − w2
α

−
(∑

γ

h2
γ

(z0 − w2
γ)

3
− 1

L

1

(z0 − w2
γ)

2

)−1 hαhβ
(z0 − w2

α)2(z0 − w2
β)2

)
,

where ∂z0/∂θ̂α is obtained from the saddle point condition.

B Asymptotic expressions for the condensate

The large deviation function (6) reads (after dropping irrelevant terms) in the continuous
formulation

φ(z) =
1

2
σ̄2z +

1

2

∫ Emax

0

dEρ(E)
(h(E)2

z − E − log(z − E)
)
.

First we make the change of variable (z−Emax)/Emax → z in the integral representation (5)
and change accordingly the definition of the spectral density ρ(E)dE → ρ(u = E/Emax)du
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and similarly for ρ(E)h(E)2, while Emax is absorbed in the definition of σ̄2Emax → σ̄2. This
leads then to

Z(σ̄, h) =
Emax

2iπ

∫ i∞

−i∞
dz e

L
2
φ(z,σ̄,h),

with

φ(z, σ̄, h) = σ̄2(z + 1)−
∫ 1

0

duρ(u)
( h(u)2

z + 1− u − log(z + 1− u)
)
.

From the expressions (15,16) and the definition of hypergeometric functions we have

∂zφ(z, σ̄, h) = σ̄2 − h2
( 1

z + 1

)2

F
(

2, 1 + β; 2;
1

z + 1

)
− κ

2

1

z + 1
F
(

1, 1− γ; 2;
1

z + 1

)
.

More general beta distributions with arbitrary exponents would lead as well to
hypergeometric functions with different parameters. Our choice leads to more explicit
expressions. Indeed, using hypergeometric transformations formulas (See Gradshteyn &
Ryzhik) we have:

F (2, 1 + β; 2;u) = (1− u)−1−βF (0, 1− β; 2;u)

= (1− u)−1−β

F (1, 1− γ; 2;u) = (1− u)γF (1, 1 + γ; 2;u)

=
1

γu

[
1− (1− u)γ

]
So we finally get for the saddle point equation

φ′(z) = σ̄2 − h2 (z + 1)β−1

z1+β
+ σ̄2

c

[( z

z + 1

)γ
− 1
]
, for γ ≥ 0

= 0,

with
σ̄2
c =

κ

γ
.

Upon integration over z we obtain the expression (17) of φ(z, σ̄, h). The expression of
the partition function in term of the scaling function Vγ,β is obtained after the rescaling
L1/(1+γ)z → z.

In absence of external field it becomes obvious that for σ̄c < σ̄ there is no saddle point
solution in the domain z ≥ 0. This situation has been analyzed in depth in a slightly different
context of condensation in zero range processes [41]. In that case, the partition function has
a scaling behavior

ZL,N(σ̄2) ' L−
1

1+γ Vγ

(
L

γ
1+γ (σ̄2 − σ̄2

c )
)
,
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given in terms of the scaling function (slightly adapting the notation of [41])

Vγ(x) =
1

2iπ

∫ i∞

−i∞
dueux+bu1+γ ,

=
1

π

∫ ∞
0

e−b sin(γπ/2)uγ+1

cos
(
b cos(γπ/2)uγ+1 − ux

)
.

Here L(σ̄2 − σ̄2
c ) = Vex represents the excess of variance that forces the system to condense

on the highest modes. The asymptotic behaviour of Vγ studied in [41] rewrites here:

Vγ(x) =



bγ(γ + 1)

Γ(1− γ)xγ+2
as x→∞

b−
γ
γ+1

(γ + 1)Γ
(

γ
γ+1

) as x = 0

c1|x|
1−γ
2γ exp

(
−c2|x|

γ+1
γ
)

as x→ −∞

with
c1 =

1
√

2πγ
(
b(γ + 1)

) 1
2γ

and c2 =
γ

γ + 1

(
b(γ + 1)

)− 1
γ ,

leading to

ZL,N(σ̄2) ∝ L

V γ+2
ex

in the regime Vex = O(L).


