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Abstract must be computed from input that is provided at query time,

and cannot be reduced to satisfiability checking.

g i . The problem of distributed reasoning considered in this pa-
reason locally but also solicit some of its acquain- o js quite different from the problem of reasoning over par
tances, _sharlng part of Its vocabulary. .Th's pa- titions obtained by decomposition of a theofpéchter and
per studies both theor_etlcally and _expe_zrlm_entally Rish, 1994; Amir and Mcllraith, 2049. In that problem, a
the problem of computing proper prime implicates ;o ajized large theory is given and its structure is etgth
for propos_ltlonal peer-to-peer systems, _the_global to compute its best partitioning, in order to optimize the us
theory (union of all peer th_e_ones) of which Is not of a partition-based reasoning algorithm. In our probldm, t
known (as opposed to partition-based reasoning). whole theory (i.e., the union of all the local theories) ig no

known and the partition is imposed by the P2P architecture.

1 Introduction Therefore, existing algorithmgAmir and Mcllraith, 2000;

Recently peer-to-peer (P2P) systems have received cmjti)-eChter and Rish, 1994; del Val, 199@re not appropriate

; : ; L finding problem.
siderable attention because their underlying infrastmect or our consequence .
is appropriate to scalable and flexible distributed appli- Section 2 defines formally the P2P inference problem ad-

cations over Internet. In a full P2P system, there isaressed in this paper. Section 3 describes the distributed
no centralized control or hierarchical organization: eachconsequence finding algorithm that we propose and states its
peer is equivalent in functionality and cooperates withProperties. Section 4 accounts for a significant experiaient
other peers in order to solve a collective task. FirstStUdy of the scalability of this approach. Section 5 deswib

P2P systems were simple keyword-based file sharing Syg_elated work and We.conclude in Section 6. o
tems like Napster (http://www.napster.com) and Gnutella2 Peer-to-peer inference: problem definition

(http://gnutella.wego.com), for which efficient lookuprse A peer-to-peer inference system (P2PIS) is a network of peer
vices (e.g., CHORDStoicaet al, 2001) have been invented. theories. Each peeP is a finite set of formulas of a lan-
Recently, schema-based peer.data management systems @@ageﬁp. We consider the case whefg is the language of
Edutella[Nedijl et al, 2009 or PiazzgHalevyet al, 20034 clauses that can be built from a finite set of propositiondtva
have been proposed. In those systems, query answering cogbles) , called thevocabularyof P. Peers can be seman-
plexity is directly related to the expressivity of the forlisen  tically related by having commoshared variablesn their
used to state the semantic mappings between peers schemagpective vocabularies. Each peer only knows its own lo-
[Halevyet al, 20033. The scalability of Piazza so far goes ca theory and that it shares some variables with some other
up to about 80 peers and relies on a wide range of optimizapeers of the P2PIS (iscquaintances It does not necessar-
tions (mappings composition, paths prunii@tarinov and iy know all the peers with which it shares variables. When
Halevy, 2004), made possible by the centralized storage ofy new peer joins a P2PIS it simply declares its acquaintances
all the schemas and mappings in a global server. in the network, i.e., the peers it knows to be sharing vaeiabl

Inthis paper, we make the choice of being fully distributed:yith, A P2PIS can be formalized as anquaintance graph
there are neither super-peers (as in Edutella) nor a centr

| .
server (as in Piazza). In addition, we aim at scaling up ti)efln_mon 1 LetP = {P;};=1.» be a collection of clausal
thousands of peers. We consider P2P inference systems {j€Cres on their respective vocabulariég,, let V =
which the local theory of each peer is a set of clauses define i=L.nVp,. AN acquaintance gfapho"ef V is a graph
upon a set of propositional variables. Each peer may share = (P,ACQ) where is the set of vertices andcQ C
part of its vocabulary with some other peers. We investigate’ % 7 * P is a set of labelled edges such that for every
the reasoning task of finding consequences of a certain forr: £i: Fj) € ACQ, i # jandv € Vp, N Vp,.
for a given input formula expressed using the local vocabu- A labelled edgdv, P;, P;) expresses that peefs and P,
lary of a peer. This reasoning task is important in many appli know each other to be sharing the variablé-or a peei and
cations (diagnosis, information integration), in whichtput ~ a literall, AcQ(l, P) denotes the set of peers sharing with

In peer-to-peer inference systems, each peer can



P EVE TRV query. Those ir7 arget(P) are immediately returned. Then,
those made of shared literals are splitted. For each shared
! K l K.C literal, a subquery is propagated to the neighbor peers shar
o —KvL ing the corresponding variable. When returned, conseguent
fo: 7IVP Ps lvakvpL R of the subqueries are respectively queued for future recom-
[ LpL T bination. As soon as one answer has been returned for each

_ _ subquery, they are recombined and transmitted back as new

Figure 1: Acquaintance graph for the tour operator exampleconsequents to the querying peer. This process continues in
crementally, as further consequents for the subquerieeare

the variable ofl. For each theory?, we consider a subset turned.
of target variablesTVp C Vp, supposed to represent the Forinstance, suppose tifais transmitted to peeP; by the
variables of interest for the application. The goal is, give user. The consequents that are locally computedtatend
a clause provided as an input to a given peer, to find all th&€ vV K. SinceE € Target(P), it isimmediately returned as a
possible consequences of the input clause and the union tfcal consequentSincel is shared withP,, it is transmitted
the peer theories, that belong to sotamget languageGiven  to P, which produces the clause SinceP € T arget(P,),
a setSP of peers, the target languadeurget(SP) is the it is transmitted back t&®; and returned as emote conse-
language of clauses (including the empty clause) involvingjuentof the initial query. The claus€ V K, being made of
only target variables of peers of SP. A shared variable musshared variables, is splitted a@dandK are transmitted sep-
have the same target status in all the peers sharing it. arately to the concerned neighbosS.is transmitted toP;,

Definition 2 Let P be a clausal theory and be a clause. A which returns (onlyH to P1, where it is queued for combi-
clauserm is called aprime implicateof ¢ w.rt. P iff p U hation. SimilarlyK is transmitted (independently) &, and

{g} = m and for any other clauser/, if P U {¢} = m’ and Py (both shareK with P). On P4, L is produced locally.
m’ = m thenm’ = m. m is called aproper prime implicate Sincel € T arget(P,) itis returned as a first consequentof

P L : to P;, where it is queued. OR;, after recombinatiord vV L
of g w.r.t. Piffitis a prime implicate ofy w.r.t. P but P . TR queut L Y
¢ P P i e m is then returned as a firsbmbined consequeri§the initial

Definition 3 LetI' = (P, AcQ) be an acquaintance graph query. Since. is also shared betwedp, and P, it is prop-
modeling aP2PIS, whereP = {P;}i—1 . is a collection  agated onPs, where the clauseK v PL is produced and, in

of clausal theories with respective target variables. Tha-  tyrn, splitted. P, is then asked foPL and returnsAM as its
sequence finding problens, given a peet” and a clause  only consequent.?; is asked for-K. This happens while

q € Lp to find the set of proper prime implicates@fv.rt.  the complementary quer is still under process. We will
Ui=1.., £ which belong tal arget(P). see in Section 3 that when a same reasoning branch contains

Since none of the peers of a P2PIS knows the union ofwo complementary literals (which is detected using a Injsto
the theories of the system, the consequence finding problemechanism), it is closed arid is returned as a consequent.
in a P2PIS is new and significantly different from the conse-Ps now combinesAM (returned byP, for PL), andD (re-
quence finding problem in a single global theory (even parturned byP; for —K) as a new consequent oK v PL, and
titioned). In a full P2P setting, each peer must run the saméhus, transmité&M back toP; as a new consequentbf For
reasoning algorithm locally and independently, while lpein lack of space, we do not detail all reasoning branches. The
able to distribute part of the reasoning task that it costtol ~ Set of consequents of the initial query eventually produced
some of its acquaintances_ is: {E, |, HvV L, HvV Al\/l7 HvV Y7 HvV PL}. Among those an-
Example : Let us consider 4 peers (Figure 1§, describ-  swers, let us note that some of them (el.v Y) involve
ing a tour operator, expresses that its current far destimst  target variables from different peers. Such implicates-can
(F) are either Kenyak) or Chile (C). These far destinations not be obtained by partition-based algorithms like Amir
are international destinationg)@nd expensiver). P, only ~ and Mcllraith, 2000 which only compute consequents that
concerned with police regulations, expresses that a pesspdelong to the target language of a single peer.
is required ) for international destinationsP; focuses on
sanitary condition_s fo_r travel_ers. It expresses that, iny&¢ 3 Distributed consequence finding algorithm
yellow fever vaccinationY) is strongly recommended and
that a strong protection against paludism should be take®ur distributed and anytime consequence finding algorithm
(PL) when accomodation occurs in Lodgég ( P, describes  is has been presented[iddjiman et al, 2004H. For this pa-
accommodation conditions : Lodges for Kenya and Hotelger to be self-contained, we describe the three main message
(H) for Chile. It also expresses that when anti-paludism propassing procedures, which are implemented locally at each
tection is required, accommodations are equipped withappr peer. They are triggered by the reception afiary (resp.
priate anti-mosquito protections (AM). Shared variables a answer, final) message, sent bySender peer to a receiver
indicated on the edges of the acquaintance graph (Figure Peer, denoted bgel f, which executes the procedure.
and target variables are defined b§ Vp, = {E}, TVp, = Those procedures handle historywhich is initialized to
{P},TVp, ={L,Y,PL}and7Vp, ={L,H,PL, AM}. the empty sequence. An histohyst is a sequence of triples

We now illustrate the behavior of the distributed conse-(i, P, c) (where! is a literal, P a peer, and: a clause). An
quence finding algorithm detailed in Section 3. When a peehistory [(L,,, Py, ¢n), - - -, (I1, P1,c1), (lo, Po, co)] represents
receives a query, it first computes all local consequentseft a branch of reasoning initiated by the propagation of the lit



erall, within the peerP,, and the splitting of the clausg: Algonthm 1 Procedure handling queries. It takes care of the
for everyi € [0..n — 1], ¢; is a consequence éfandP;, and ~ Propagation of the literaj by Sel f.
li+1 is a literal ofc;, which is propagated i, ; . Rl?{?fE('VEQL;ER\;lMfSSAGE(m(Sendeh Self,query, hist, q))
The reasoning is initiated by the user (denoted b (g, -,-) € his
particular peerUgser) sending toya given pe(eP a mes-y 2) sendm(Self, Sender, answer, [(q, Self, 0)|hist], 0)

. ! (3) sendm(Self, Sender, final,[(g, Self,true)|hist], true)
sagem(User, P, query, 0, q), which triggers the procedure (A)else ifq € Self or (g, Self, ) € hist
RECEIVEQUERYMESSAGHm(User, P, query, ), q)) that is (5) sendm(Self, Sen;len f%;ml, [(q, Self,true)|hist], true)
locally executed byP. In the description of the procedures, (g)else ' '
we will use the notations: (7) LOCAL(Self) « {q} U Resolvent(q, Self)

o for a literal ¢, ¢ denotes its complementary literal and (8) if O € LocAL(Self)
Resolvent(q, P) denotes the set of clauses obtained by reso{9)  sendm(Self, Sender, answer, [(¢, Sel f, 0)|hist], D)
lution betweeny and a clause oP, (10)  sendm(Self, Sender, final, [(q, Self, true)|hist], true)
« for a clause: of a peerP, S(c) (resp.L(c)) denotes the (1) else
disjonction of literals of whose variables are shared (resp. (12} LOCAL(Self) —«— {c € LOCAL(Self)| L(c) €

. : - Target(Self)}
not shared) with any acquaintance®f S(c) = O thus ex- (13)  if for everyc € LOCAL(Self), S(c) = O

presses that does not contain any shared variable, (14) foreach ¢ € LOCAL(Self)

e © is the distribution operator on sets of clausés: © (15) sendm/(Self, Sender, answer, [(q, Self, ¢)|hist], c)
@Sy ={aaV--Veu e € 81,00 € Spt IFL = (16) sendm(Sel f, Sender, final, [(q, Sel f, true)|hist], true)
{l1,...,1p}, we use;c . S; to denoteS;, @ --- @ Sy, (17) else

The main properties of the resulting distributed messagé¢18) foreach c € LoCAL(Self)
passing algorithm, stated [Adjiman et al, 20044, can be  (19) if S(c) =0 _
summarized as follows: (20) sendm(Sel f, Sender, answer, [(q, Sel f, ¢)|hist], c)

1) The algorithm is sound: the answers that are returne %g el?c?reachliterall € S(0)
are all implicates of the literal having triggered the raa@ag. ) if | € Target(Self)

2) The algorithm terminates and the user is notified of theypy) ANSWER(, [(q, Self, ¢)|hist]) — {i}
termination, which is crucial for an anytime algorithm. (25) else

3) The completeness of the algorithm is guaranteed if eaclp6) ANSWER(L, (g, Self, c)|hist]) — 0
local theory is saturated by resolution and if the acquaicea (27) FINAL (1, [(q, Self,c)|hist]) « false
graph is such that if two local theories have a common vari{28) foreach RP € AcQ(l, Sel f)
able, there exists in the acquaintance graph a path betweé#d) sendm(Self, RP, query, [(q, Self, c)|hist], 1)

those two theories, all the edges of which are labeled withalgorithm 2: Procedure handling answersis returned as a

that variable. If that property is not satisfied, the algurit  consequent of the last literal added to the histaiyt

still applies but does not guarantee to return all the propeReceveANSWERMESSAGHM(Sender, Sel f, answer, hist, r))

prime implicates when it terminates. (L)hist is of the form[(I', Sender, ¢'), (g, Self, c)|hist']

Note thatO can be returned by our algorithm (lines 1 to 3 (2)ANSWER(l’, hist) «+ ANSWER (I, hist) U {r}

and 8 to 10 in RCEIVEQUERYMESSAGE. Therefore, our  (3)RESULT— @ies(c)\ {1} ANSWER(, hist) @ {L(c) V r}

algorithm can be exploited for checking the satisfiabilify o (4)if hist' = 0, U—User elseU — the first peetP’ of hist’

the global theory at each join of a new peer. For the sake of5)foreachcs € RESULT

simplicity, our aigorithm is presented as applying to kst~ (6) sendm(Self,U,answer, (g, Self,c)|hist'] cs)

However any clause can be handled by splitting it into lteera Algorithm 3: Procedure handling notifications that answer

and recombining the results obtained for each literal uieg  computation for the last literal addedAgst is completed.

© operator. RECEIVEFINAL MESSAGHm(Sender, Sel f, final, hist, true))
(1)hist is of the form[(I’, Sender, true), (q, Self, c)|hist']

4 Experimental analysis (QFINAL (I', hist) < true

T ) (3)if for everyl € S(c), FINAL(I, hist) = true

In order to study scalability issues of our P2P algorithm we(4) if hist’ = ) U—U ser elseU — the first peet?’ of hist’

have conducted a significant experimentation on networkss) sendm(Self, U, final, [(g, Self, true)|hist'], true)

composed of 1000 peers. To the best of our knowledge, thi&) foreachi e S(c)

is the first experimental study on such large P2PIS. Our mok7)  ANSWER(, [(I, Sender, .), (g, Sel f, c)|hist']) « O

tivation was twofold. First, to study how deep and how wide

reasoning spreads on the network. Second, to evaluate thpeer node, and rewire each node with a given probabyjtity

time needed to obtain answers and to check to what exteitt has been shown that between regular graphs= 0) and

the P2PIS is able to support the traffic load. uniform random graph¢ = 1), the graphs generated with

Since we want to use out infrastructure in real Web ap-pr = 0.1 have "small world” properties.

plications, we have chosen to generate acquaintance graphsin the following experiments, the numbegof shared vari-

having the so-calledmall worldproperty, which is admitted ables labelling each edge varies, and each of the 1000 local

[Newman, 200Das being a general property of social net- theories is a 2+p clausal theory composed of clauses ofiengt

works (including the Web). FollowinfWwatts and Strogatz, 2 and a varying rati@ of clauses of length 3. Each local the-

1994, we start from a regular ring of 1000 nodes, 10 edgesory is generated in two steps. First, 70 clauses of lengtie2 ar



uniformly generated over 70 variables that are proper to the CDF of queries’s depth

local theory, among which 40 are chosen as target variables. Y
Then, we add clauses, involving shared variables, of leRgth
or 3. We denotét3cn f the percentage of clauses of length 3
to generate in the whole set of mapping clauses. Each map-
ping clause is randomly generated by picking a variable in
each of the two peers and by negating it with probaliilfy

(if the clause is of length 3, the third variable is chosen at
random between the variables of the two peers).

The experiments have been conducted on two different
platforms. For the measurements concerning the behavior of
query processing (number of messages, depth and width of
each query processing) we have used a single computer run- &
ning 1000 peers. Such measurements, consisting in building >
reports on all peer traces are easier to perform when all data
are available on a single computer. In contrast, when time % e w % w w0 o
was part of the measurement, we deployed our algorithm on X = Depth of queries
a cluster of 75 heterogenous computers (Athlons with 1GBrigure 2: Cumulative Distribution Function of queries dept
of RAM: 26 at 14GHZ, 9 at 1.8Ghz and 40 at 2 GHZ) In The Y scale is re-centered @14 _ 1]

these last experiments, each computer was running around 14 . but the litt L hard. The sl
peers, randomly selected. Ing is easy, but the little remaining is very hard. The slow

As we will see, results often exhibit a@xponentiatlistri- growth observed is due to the timeout, a side-effect of which
bution: some queries may need a very long time to completé.S to bound the query depth. Without such a timeout, previous

It was thus not always possible to perform our experimentafXPeriments suggest that there would exist some queries re-
analysis without introducingimeoutparameter. Each query dUifing very long reasoning branches. This point is outline

is labeled with its remaining time to live, which is decregise O the ci”‘z’e Cogesp%nd'”g to the hard?s(;[ Ca?&bs @ and 20
each time a query needs to traverse a peer to be processgd>c”/ = 20) where there is no query of depth between 20
When necessary, thaneouthas been set to 30 seconds. and 60. This suggests that when hard processing appears, it i

We first report on the distributed behavior of query pro- very hard In experiments that are not reported here, we have

cessing by measuring the number of peers that are involveﬁf)en th%t Sl:]Ch aﬂ exponential d|str|but;10nhof values W?S not
in query processing. Then, we report on the time of quer)Pt setrve ‘k’JV ten ¢ e;cqualjntance grap s aa/e Svreﬁu ar rllng
processing and on the number of answers. structure, but was observed on random graphs. We have also

measured thimtegration degreef queries, which is the num-
4.1 Distributed behavior of query processing ber of distinct peers involved in the query processing. We

T have observed the same kind of exponential distribution of
We have measured the distribution of the depth of query Proyaiues than for the depth, but wig9% smaller values: 1/5

of the peers are repeated in the histories. That phenomenon

o ) . §vas not observed on random acquaintance graphs and seems
veloped by the distributed algorithm for returning an answe closely related to the small-world topology.

The width of the query estimates the number of neighbors Figure 3 shows the cumulative distribution function for the

that are solicited, on average, for processing a query. . . .
. . L : width of the queries. Each curve summarizes 20000 runs.
Figure 2 shows the cumulative distribution function of theWith g = 2 and%3enf — 0, more than 75% of the queries

gﬁg:g dof,;ﬁggg;%l?sédvégegnﬁeﬂ?;aé%gfxa tgfe r:;g%% are solved locally and 15% other are solved by asking just one
i . neighbor. Withg = 5 and%3cn f = 100, 25% of the queries
;lzlijsstiensc?;fgr%/tﬁ. Each point on the figure reports a run, for solicit 10 neighbors on average, each of them soIiciting 10
The four top 'curves show a relatively small query depth peers, W|th_25% cha_nce and so on. Such_result explains the
‘combinatorial explosion observed on hard instances.

For instance, withy = 2 and%3cnf = 0 no query depth . ; . .
is greater than 7, and none of those four curves have a que Our experiments have pointed out a direct impact of the
%3cn f value on query processing, which is not surprising

depth greater than 36, which suggests that our algorithm b considering the hardness of clauses of length 3 for prime im-

haves well on such networks. plicate computation. Those experiments also suggest an ex-
As soon as the value dfdcnf increases queries have ponential distribution of query depths, due to the shorhpat

longer depths: witly = 3 and %3cnf = 20, 22% of the length between two peers in the acquaintance graphs, and
gueries have a depth greater than 100 (the maximum being. gih & pe: € acq grapns,
ith an important repetition of solicited peers, due to drgé

134). If we focus on the last three curves on the right, a shar, : fici f I I . h
threshold clearly appears, showing three phases: a sha ustering coefficient of small world acquaintance graphs.

growth, representing query processing with small depth, fo .
lowed by a plateau, and then a slower growth. The smalf"2 Time and number of answers

depth query processing and the 'plateau’ are charactsisti We now report a time performance study of our algorithm
of an exponential distribution of values: most of the pr@ees when it is deployed on a real cluster of 75 heterogeneous

o
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is that there are on average 5 answers, and they are produced
very quickly.

Even on hard and very hard instances, our algorithm pro-
duces a lot of answers coming from a number of different
peers. For instance, we measured on average 1006 answers
for Hard, and 1004 answers fafery Hardproblems, which
already represents a large amount of data. In addition, on
thoseVery Hardinstances, 90% of runs produced at least one
answer. It is noticeable that such hard instance may also be
hard for checking the satisfiability of an equivalent, cahtr
ized, theory. The formula corresponding to the centralized
version of all the distributed theories has70 000 variables
andm=120 000 clauses 50 000 of which are of length 3. It
has been shown ifMonassoret al, 1999 that, for such 2+p
formulas, if one does not restrict the locality of variables
the SAT/UNSAT transition is continuous f@r < pg, where
po = 0.41, and discontinuous fgs > py, like in 3-SAT in-
stances. Intuitively, fop > pg, the random 2+p-SAT prob-
lem shares the characteristics of the random 3-SAT problems
Let us emphasize here that, with the characteristics of our
Very Hard network, we have = 0.416 for which the tran-

computers. Based on the previous observations, we have chsition phase between SAT and UNSAT instafitonasson
sen to focus on 4 differents kinds of acquaintance graphs, deet al., 1999 occurs atn/n=1.69. Here, we have:/n=1.71,
notedEasy Medium Hard andVery Hard(see Table 1).

Network
Easy Medium Hard Very Hard
q=2 q=3 q=3 qg=>5
%3enf =0 | %3enf =20 | %3enf =100 | %3enf = 100
1"Tans. 0.04s (100%) | 1.26s (99.6%)| 1.58s (95.6%)| 1.39s (89.3%)
10" ans. 0.06s (14.3%)| 1.37s (25.6%)| 0.99s (33.3%)| 1.13s (12.0%)
100*"ans. - 2.11s (12.7%)| 0.84s (27.0%)| 4.09s (10.7%)
1000*" ans. - 4.17s (6.80%)| 4.59s (21.2%)| 11.35s (7.15%)
all 0.07s 5.56s 14.6s 21.23s

% timeout 0 13.96 375 66.9

#answers 5.17 364 1006 1004

Y%unsat 4.4 3.64 3.76 1.84

which is near the transition phase to confirm that this is wher
the hard instances would be in practice. Of course, such a
comparison is only indicative, because there is no variable
locality restriction in the standard 2+p model.

To summarize, when deployed on a real cluster of hetero-
geneous computers, our algorithm scales very well. Even on
very hard instances that shares characteristics of a vagg la
2+p formula at the crossover between the 2-SAT/3-SAT and
the SAT/UNSAT transitions, our algorithm was able to gen-
erate a large number of answers in a reasonable time, for a
majority of runs.

Table 1: Characteristics of the query processing on easy to
very hard networks.

5 Related work
The distributed message passing algorithm that we have de-

The values reported in the Table 1 are mean values oveicribed in Section 3 can be viewed as a distributed version
more than 300 different queries. For each column, we showf an Ordered Linear deductidiChang and Lee, 19730
the time needed to produce th&, 10", 100" and1000t"
answers of a query. Each mean time is followed by the per1987 in order to produce all implicates of a given clause be-
centage of initial queries that are taken into account in thdonging to some target language, and further extended to the
averaging. For instance, for the Medium case, 12.7% of thdirst order case iflnoue, 1992 The problem of comput-
queries have produced more than 100 answers, antie
answer was given on average after 2.11 seconds (the averagsponds exactly to the problem of computing proper prime
does not take into account queries that did not producestt leaimplicates w.r.t. a theory. It has been extensively studied
100 answers). Thall row is the mean time needed to produce the centralized case (s@darquis, 2000 for a survey).

all answers, including queries that lead to time out, the per
centage of which is reported in tlétimeoutrow. The last

produce new target clauses, which was extendeBisgel,

ing new derived clauses (a.k.d., ®)-prime implicates) cor-

We have already pointed out the differences between our
work and[Amir and Mcllraith, 200Q. First, in a full peer-

two rows report the mean number of answers and the ratio ofo-peer setting, tree decomposition of the acquaintaraggr
proven unsatisfiable queries w.r.t. the network. _ _ _ _ _ _
It is not surprising to find that there is no timeout for the rithms as ifAmir and Mcllraith, 2000, our algorithm is able

Easycase. It is knowr[Marquis, 2000 that satisfiability

is not possible. Second, in contrast with partition-badgd-a

to combineanswers from different peers in order to compute

checking and prime implicates computation are tractalle foimplicates involving target variables of different peers.

sets of clauses of length 2. Moreover, the high partitiorihg
the global theory induced by the low value @{number of

The model-based diagnosis algorithm for distributed em-
bedded systemEProvan, 200p exploits the knowledge on

shared variables) is often a witness of “easy” cases fooreas the distribution of the system to diagnose for optimization

ing for centralized theories. The point to outline for thésse

purpose. In distributed ATM$Mason and Johnson, 1989



agents exchange nogood sets in order to converge to a globchang and Lee, 19T3C. L. Chang and R. C. Le&ymbolic
ally consistent set of justifications. Such a distributed vi  Logic and Mechanical Theorem Provingcomputer Sci-
sion of ATMS relies on a global knowledge shared by all the ence Classics, Academic Press, 1973.

agents and aims at getting a unique global solution. We thinkpechter and Rish, 1994R. Dechter and I. Rish. Directed
that our peer-to-peer inference system can be applied ferha " yego|ution: the davis-putnam procedure revisited KR
dling fully distributed model-based diagnosis and fullg-di 1994.

tributed ATMS, in which no global knowledge is required.
Some recent work deals with distributed first order logic.*~~. < A .

A model-based and a proof-theoretic semantics has been de- finding and compilation in restricted languages. ARAl,

fined in [Ghidini and Serafini, 199&or a collection of first 1999.

order theories communicating through bridge rules thaneefi [Ghidini and Serafini, 1998C. Ghidini and L. SerafiniDis-

semantic mappings between their respective domains afinte  tributed First Order Logics Research studies Press, 1998.

pretation. Based on that work, distributed descriptioridsg [Halevyet al, 20033 A. Halevy, Z. Ives, D. Suciu, and

[del Val, 1999 A. del Val. A new method for consequence

has been introduced ifBorgida and Serafini, 2003and @ | Tatarinov. Schema mediation in peer data management
distributed tableau method has been proposed for satisfiabi  systems. IHCDE, 2003.
ity checking.

[Halevyet al, 2003 A. Halevy, Z. Ives, |. Tatarinov, and
. Peter Mork. Piazza: data management infrastructure for
6 Conclusion semantic web applications. WWW 2003.

We have presented a peer to peer inference system basfidloue, 1992 K. Inoue. Linear resolution for consequence
on propositional logic and we have shown that it scales up finding. Artificial Intelligence (56), 1992.

to a thousand of peers. The peer to peer i_nfrast_ructure th%/larquis, 2000 P. Marquis. Handbook on Defeasible Rea-
we have developed is used in a joint project with France " q,ning and Uncertainty Management Systems, Algorithms
Telecom, aiming at enriching web applications with seman  ¢;. Defeasible and Uncertain Reasonjngolume 5

tics and reasoning services. _ _ chapter Consequence Finding Algorithms, pages 41-145.
So far, we have restricted our algorithm to deal with a k| wer Academic Publisher. 2000.

vocabulary-based target language. However, it can be edapt

to more sophisticated target languages (implicates of engiv (Mason and Johnson, 198€.L. Mason and R.R. Johnson.
language, e.g., based on literals and not only variables, of Distributed Artificial Intelligence I} chapter DATMS: a
bounded size,...). This can be done by adding a simple tag framework for distributed assumption based reasoning.
over all messages to encode the desired target language. Pitman, 1989.

We plan to extend our current work in two main direc- [Monassoret al, 1999 R. Monasson, R. Zecchina, S. Kirk-
tions. First, we want to tackle Semantic Web applications, patrick, B. Selman, and L. Troyansky. 2+p-sat: Relation
in which the bottleneck is to deal with distributed resosrce  of typical-case complexity to the nature of the phase tran-
shared at large scale. RDF(S) ($&etoniou and van Harme- sition. Random Structure and Algorithms(414), 1999.
len, 2004) is a standard for annotating web resources, whicliNedjl et al, 2004 W. Nedjl, B. Wolf, C. Qu, S. Decker,
we think can be encoded in our propositonal setting. Second, \, sintek, A. Naeve, M. Nilsson, M. Palmer, and T. Risch.

we want to handle more sophisticated reasoning in order to  Equtella: a p2p networking infrastructure based on rdf. In
deal with a real multi-agent setting, in which possible imco WWW 2002.

sistencies between agents must be handled. [Newman, 200D M. E. J. Newman. Models of the small
world. J. Stat. Phys.101:819-841, 2000.
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