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1 | Introduction

The digital data our society generates increase dramatically every year. Open Data initiatives [ABK+
07]

from science [Wea16] and government [Uba13] promote the sharing of these data, that easily reach
petabytes each year. For example the Large Hadron Collider alone has generated more than 200 petabytes1

and the city of Paris has openly given access to more than 200 datasets2. In addition, we get increasing
access to personally collected data, through API’s and SDK’s of tracking technologies in mobile phones
and fitness trackers3. These give us today access to an unprecedented amount of data.

Nevertheless, understanding data remains challenging, as their volume far exceeds what one person
can reasonably consume and understand. Statistic measures don’t tell the whole story. For example
very different datasets can have the same statistics as demonstrated by the Anscome’s Quartet [Ans73]
and by the more recent work from Matejka and Fitzmaurice [MF17]. Automated mining and machine
learning processes can search for patterns, nevertheless it is to this day an open problem how to explain
[AB18, RSG16] and communicate their suggestions4. Even when explanations are possible, automated
approaches do not necessarily help the user actually understand their dataset (i.e., the deeper global
relationships present in their data), may learn spurious correlations [RSG16], and still require training
(supervised and unsupervised) so they are unreliable when patterns of interest are not frequent in the
dataset. Thus sense-making approaches based on visually inspecting and interacting with data to make
sense of it [PC05], remain an extremely valuable alternative.

Information visualization as a field attempts to combine human computer interaction, visual design
and perception theory, in order to propose visual data representations that amplify cognition [CMS99] and
aid data understanding [Car03]. Alone or combined with data processing methods, these representations
support data exploration and visual analysis [TC05].

Coming from a Human-Computer Interaction (HCI) background, this definition of interactive visu-
alization resonated with me, as it invokes the more general definition of a user-interface. An interface
is traditionally seen as the means for humans and machines to communicate (or humans between them
through machines) [DFAB03]. When I started research in visualization during my post-doc in 2008, I drew
a parallel to this definition, seeing information visualization as a means by which humans can communicate with
their data and the machines that store and process them. If we consider visualization as a communication
channel, with humans on the one side and machines on the other, the higher the bandwidth the more
effective the visualization is. We are faced with the limits of this channel given the amount of data at
our disposal. Visually presenting large amounts of information remains a challenge, with previous work
[FP02] showing that a million items shown on a traditional screen is close to the practical limit.

As a continuous goal of visualization research is to find new ways to amplify cognition [CMS99] and
increase the amount and understanding of data communicated to us, this goal can be seen as an attempt
to increase the communication bandwidth between machines and humans. There are limits at both sides
of the communication channel (human and machine). I tend to characterize visualization research on a
high level based on what direction of the channel it attempts to amplify.

1https://home.cern/news/news/computing/cern-data-centre-passes-200-petabyte-milestone
2https://opendata.paris.fr/
3Android developer.android.com/wear, Apple developer.apple.com/healthkit, Fitbit dev.fitbit.com
4Workshop on Visualization for AI Explainability http://visxai.io/

1

https://home.cern/news/news/computing/cern-data-centre-passes-200-petabyte-milestone
https://opendata.paris.fr/
developer.android.com/wear
developer.apple.com/healthkit
dev.fitbit.com
http://visxai.io/
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On the one side, the human viewer is constrained in the amount of visual information they can decode
and process. Finding these viewer limits are a core topic of visual perception studies. These studies may
compare different traditional visual variables for encoding data (like length, area, angle [Cle85, HB10] and
color [JLMV06]), or newly introduced ones such as our own work on sketchiness [BBIF12]. They can study
the perception of specific visualizations like scatterplots [RB10], barcharts [TSA14] or linecharts [IBDF11].
They can consider how to best communicate uncertainty [HQC+

19]. Or examine the impact of different
visualization platforms like tabletops [WSFB07], wall-displays [BI12], mobiles [BLIC19] and smartwatches
[BBB+19], or even tangible visualizations [JDF13]. Increasing human computation power could also be
achieved by allowing multiple viewers to collaborate and share their expertise, for example by having them
collaborate in real time using large displays [JH14, LCBLL16, IFP+

12], or in distributed desktop settings
[VWvH+

07, HVW07]). Other approaches attempt to automate, or semi-automate, user tasks to reduce
their workload, for example by generating annotations [HDA13] or appropriate visualizations [DD19].

On the other side of the channel, as the amount of data increases, machines cannot always process
and render it in real time. And the display technology may not have the pixel density to display it.
New display technologies can show increased amount of data, for example large or multiple displays
[BNB07, RJPL15, RWM+

15] have a higher pixel count compared to traditional monitors. And mobile
[KJM+

07] or augmented reality [MSD+
18] devices can show data in contexts that were not available before.

Combining visualization with automated methods can also help guide the data mining algorithms towards
interesting visual patterns [BBTL15][BL09a], making better use of computational resources. And progres-
sively calculating and revealing results can address computational scalability issues, and help viewers get
quickly insights based on partial data and early approximations [FSME14, ZGC+

17, MFDW17].
Most work though falls in the middle, considering both human and computational or rendering con-

straints. New visual representations can distill the important aspects of the data, thus rendering poten-
tially less ink but more salient information for the viewer, amplifying both machine and human band-
width. Examples include hybrid graph-matrix network visualizations [HFM07], compressed timeline
representations [KL06], or facetted views of text corpora [CVW09]. And more recent work studies how to
better guide viewers to known insights through visual storytelling [RHDC18]. Moreover, visual analysis
tools [Kei02, KMS+08] are often designed with specific domain-users and their needs in mind, focusing
on accelerating the discovery of salient information in medicine [TLS+14], urban data [FPV+

13], etc. Most
of these approaches provide meaningful overviews of data [Shn96]. For example through appropriate
sampling or aggregations, like edge bundling in graphs [HvW09] and clustering of time series [vV99].
Or through combinations of multiple and coordinated data views that can reveal and focus on different
aspects in the data [Wea04, BCC+

05]. At the same time, appropriate general-purpose interactions (such as
filtering [SGL08] and zooming [BSM04]) or ones targeting specific visualizations or data (like interactive
horizon graphs [PVF13] or direct manipulation for time-varying data [KC14]), can help viewers focus on
parts of their data (details on demand [Shn96]) without being overwhelmed. When the amount of data is
hard to see in an overview, other approaches inverse the visual Information-seeking mantra of "Overview
first, zoom and filter, then details-on-demand", by start from subparts of their data and slowly constructing
a bigger view (e.g., [vdEvW14]).

Among these strategies, my own research attempts to increase this communication bandwidth in the
following two ways:

. Move away from traditional desktops towards larger displays that can both render larger amounts of
data and can accommodate multiple viewers (Chapter 2);

. Find appropriate visual representations and their limits, to show salient information that can be un-
derstood and acted upon (Chapter 3).

Figure 1.1 summarizes the focus on my work in a word cloud of my publication titles.
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Figure 1.1: Word cloud of terms from my paper titles, indicating the focus of my research on collaboration
and wall-display research, on perception and evaluation, and on visual exploration systems.

The high-level view of visualization research I have described above does not cover all possible work.
Enhancing data exploration, and amplifying and understanding the limits of data visualizations, is by
no means the only goal of visualization research. There is an increasing number of excellent work that
considers visualization both from a creation and a large-scale communication perspective. Researchers
have focused on making visualization authoring easier through the use of toolkits [BOH11, Fek04] and
the definition of common grammars of graphics [SRHH16]. Other work targets larger audiences, possibly
without programming expertise, introduce new authoring paradigms [NM17, SE19], combining visualiza-
tion creation with natural language [SBT+

16], and make more accessible the construction of creative and
personalized visualizations [KIHR+

19]. Recent work has also started to reflected on visualization and its
impact more generally, looking at visualization education and literacy [ARC+

17, BRBF14], examining the
impact of visualization use at large scale [VWvH+

07], attitudes of data-poor viewers towards visualization
[PAEE19], and ethical implications of visualization research [Cor19].

Before summarizing the content of the next chapters that describe my own approaches to increase the
human-machine bandwidth, I describe the methodologies followed in my research.

1.1 Research methodology and inspiration

I started out my research career in Human-Computer Interaction, with a PhD on interaction designs for
wall-display environments, in an institution and lab5 where HCI was a well established domain. This
gave me the opportunity to access several classes that covered HCI methods for design, evaluation and
analysis. Due to the interdisciplinary origins of HCI, the domain includes a plethora of methodologies
[DFAB03, S+19] that are adapted from domains such as experimental psychology and human factors
(more quantitative research, involving controlled experimental evaluations with users), sociology and
anthropology (often qualitative research, such as observations, interviews, contextual inquiries, usually
trying to understand user needs), design and software engineering (focusing on the design process, such
co-design and iterative prototyping), etc. A common chapter in most HCI textbooks is one covering these
methods and how to choose which one is best.

As such, HCI-trained researchers such as myself tend to be aware of, and open to, multiple methodolo-
gies for answering research questions and analyzing their findings. I have brought these methods to my

5DGP at University of Toronto http://www.dgp.toronto.edu/

http://www.dgp.toronto.edu/


Anastasia Bezerianos 4

research in visualization, choosing different methodologies depending on the goal of the work (mentioned
in each section and summarized in the end of each chapter). My research is user-centric, involving target
user groups in the design process, testing in the validation process, or both. But my methodology ranges
from qualitative controlled experiments when trying to isolate different factors that affect performance, to
participatory design and qualitative observations when introducing a new visual analysis system. When
I started to actively conduct research in interactive information visualization in 2008 (work on improving
the readability of social networks [HBF08]) the field had stated to reflect deeply about evaluation methods,
with the BELIV workshop that had just appeared in the AVI and CHI conference (and more visualization-
targeted manuscripts on evaluation methodologies started appearing [Car08, LBI+12, SMM12]). This
active reflection on evaluation methods for visualization systems, and my belief that I could contribute to
it, was one of the reasons my research focus shifted towards visualization research.

Visualization research has since come a long way when it comes to evaluation and validation of our
work. Much of the visualization research mentioned in the previous section varies in research methodol-
ogy, i.e., the steps we take and the evidence we provide. These are generally dictated by the goals of the
individual piece of research. For example, in our own work considering traffic control centers [PBC16a]
we started by interviewing analysts to understand their user needs before designing and testing visu-
alization alternatives. Whereas when we studied the impact of glancing speed on visualization reading
on smartwatches [BBB+19], we systematically compared in very controlled settings different speeds in
terms of accuracy. Nevertheless, I would argue that our research goals, as stated in our respective research
outcomes (publications, reports, systems) are not always the inspiration behind our work. More generally,
it is not always clear where ideas for visualization research come from.

Manuscripts on visualization design studies (e.g., [SMM12]) promote a user-centered methodology to
understand real-world data challenges and propose solutions. These include a thorough understanding
domain data and users needs, before introducing more appropriate visualizations. But what is the inspira-
tion behind these new designs, that often seem to magically appear, is not always clear. Was it knowledge
of the literature on specific data types that sparked an idea for a new encoding, was it a combination of
previous visualizations? Work that searches for theories and fundamental understanding (e.g., studies
on the limits of the human visual system or comparisons of visual encodings) often starts with specific
tasks or data representations. For these studies it is natural that the phenomena is studied in controlled
conditions (e.g., lab experiments). But is it always the task/data that is the origin of this investigation? Or
is it cross-pollination of findings and practices from other fields (e.g., vision science) that have inspired
the original question? Is it inspired by observations of how people use existing visualization systems?

As our research reporting is often "story driven" (i.e., present a coherent story), the knowledge of what
inspired our research questions and solutions may be lost (impossible for third parties to reconstruct or
even forgotten by the authors). Nevertheless, such knowledge could act as a valuable tool for future visu-
alization researchers attempting to form their own research agenda and process. In the following chapters
I first describe the goal of my research and my research methodology, and then reflect on the inspiration
behind my own work in the hopes to start a dialogue about better capturing and communicating visu-
alization inspiration. In the final chapter I discuss how approaches from other disciplines could help us
better document and share our research inspiration and evolution.

1.2 Manuscript Overview

This section briefly summarizes the remaining chapters of the manuscript, acknowledging my many col-
laborators that made this work possible, and providing representative papers of that work (attached at the
end of the manuscript). Publications that I have co-authored are rendered in bold in the manuscript.

I split my work in two parts, each describing a different aspect of my work that tries to increase the
communication bandwidth between human and the data we can process, the first is related to the use of
large visualization platforms, and the second on visualization design and understanding.
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Collaborative displays (chapter 2). Large, high-resolution displays such as interactive walls and tables,
can extend the rendering limits of desktop displays due to their large real-estate and high resolution.
They can also naturally allow multiple users to collaborate and explore data simultaneously. It is thus not
surprising that data visualization and monitoring applications (e.g., [WSK+

00, JLMV06, RWM+
15]) are

now migrated to digital walls, tabletops, or combinations of multiple such large displays. Moving inter-
active visualizations to large and multiple interaction surfaces creates many opportunities, but also raises
challenging questions. For example, there are still open questions on what are appropriate visualizations
for such environments, how to best help users explore and interact with these data, and more generally
how do they support collaboration.

This chapter focuses on my work that explores interaction and visualization challenges in these novel
display environments, examining first how to support interaction in a setting where mice and key-
boards are not necessarily appropriate as viewers are often standing and mobile. The work on Smarties
[CBF14] looks at prototyping interaction support and was done in collaboration with O. Chapuis and
S. Franzeskakis. The work on SketchSliders [TBJ15] allows analysts to sketch their own interfaces. It was
done in collaboration with T. Tsandilas and T. Jacob and received an Honorable mention award in CHI
2015.

Next, the chapter presents studies on how the large surface area of such displays can affect how we see
and understand visualizations, and opportunities for new types of visualizations. The work on perception
magnitude studies [BI12] was done with P. Isenberg, and the work on creating hybrid-image visualizations
[IDW+13] that can encode different information depending on viewing distance was a collaboration with
P. Isenberg, P. Dragicevic, W. Willet and J.-D. Fekete.

The last part of the chapter summarizes work on understanding and supporting collaborative visual
analysis in these novel display environments [PBC16a, PBC17a, PBC17b, PBC18, PBC16b, PBC15] was
conducted during the PhD of A. Prouzeau that I co-supervised with O. Chapuis. I also summarize briefly
other relevant work on collaboration with colleagues from the INRA institution [BBT+19] (N. Boukhe-
lifa, I.C. Trelea, N. Méjean and E. Lutton), and University of Sydney and NICTA [CBM+09] (A. Collins,
G. McEwan, M. Rittenbruch, R. Wasinger, and J. Kay).

The chapter closes with reflections on the methodology and the inspiration behind this work.
• Representative paper (Interaction): T. Tsandilas, A. Bezerianos, T. Jacobs (2015). SketchSliders: Sketch-
ing Widgets for Visual Exploration on Wall Displays. Proceedings of ACM CHI 2015 - the ACM SICGHI
Conference on Human Factors in Computing Systems, (10 pages), Honorable mention (top 5% of papers).
• Representative paper (Perception): A. Bezerianos and P. Isenberg (2012). Perception of Visual Variables
on Tiled Wall- Sized Displays for Information Visualization Applications. In IEEE InfoVis 2012 - the IEEE
Transactions on Visualization and Computer Graphics (Proceedings Scientific Visualization / Information
Visualization 2012), 18(12): 2516- 2525, (10 pages). [25% acc. rate]
• Representative paper (Collaboration): A. Prouzeau, A. Bezerianos, O. Chapuis (2016). Evaluating
multi-user selection for exploring graph topology on wall-displays. In TVCG - the IEEE Transactions on
Visualization and Computer Graphics, 14 pages.

Appropriate representations (chapter 3). Designing interactive visualizations is not trivial. As visualiza-
tion designers we need to ensure that the representations or systems we propose work well with real data
and support user tasks that may be complex. And while the utility of systems designed around real user
needs is undisputed for the users themselves, it does not necessarily help us understand the mechanics
of visually perceiving and understanding the presented information. Visualization research can approach
the question of what are appropriate interactive visualizations from different perspectives. For example it
can start by considering the end-user and their needs when introducing new designs. Or it can start by
the properties of the data and the tasks we want to perform on them. It can be motivated by the querying
algorithms or other available technologies. Or it can seek deeper understanding of fundamental properties
and impact of visual representations in order to provide design guidelines.
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This chapter presents my work on creating appropriate visual representations, that originate from dif-
ferent perspectives. It first describes work that attempted to address needs for specific users, starting with
Business Intelligence Analysts [EB11, EB12, EAB13], work done during the PhD work of M. Elias that I co-
supervised with M.-A. Aufaure. The chapter then briefly describes our work with genealogists [BDF+10]
(in collaboration with P. Dragicevic, J.-D. Fekete, J. Bae, B. Watson), and neuroscientists [GTPB19] that
part of the PhD work of A.Gogolou that I co-supervised with T. Palpanas and T. Tsandilas. Our work with
Business Intelligence analysts on storytelling received the Brian Shackel Award in INTERACT 2013.

Next, I report on work around fundamental questions on how we make decisions using visualizations,
which is the PhD work of E. Dimara [DBD17a, DBD18, DBD14] that I co-supervised with P. Dragicevic,
and later work on a taxonomy of cognitive biases and how we can mitigate them [DFP+20, DBBF19]
(with E. Dimara, P. Dragicevic, S. Franconerri, C. Plaisant, G. Bailly). I also summarize investigations on
perception for specific visual representations such as glyphs [FIBK17, FIB+14] (with J. Fuchs, P. Isenberg,
D. Keim and E. Bertini) and line charts [IBDF11] (with P. Isenberg, P. Dragicevic, and J.-D. Fekete). The
work on attraction effect with E. Dimara received an Honorable mention in IEEE VIS 2018.

Finally, the chapter describes work that started with particular visualization systems GraphDice [BCD+10]
and EvoGraphDice [CBL12a, BTBL13], both very different, but inspired by an existing tool [EDF08]. I ex-
plain how we adapted and used them in different contexts: for social network analysis (with F. Chevalier,
P. Dragicevic, F. Chevalier, N. Elmqvist, J.-D. Fekete) and in exploring very complex multi-dimensional
data with the aid of automatic learning (with N. Boukhelifa and E. Lutton). The chapter also reports
on research that started when with my colleagues we considered specific tasks such as correlation and
transmission in spatio-temporal data [PPB20, PBP20] (with V. Peña-Araya and E. Pietriga).

The chapter concludes with reflections on challenges faced, on the very different methodologies fol-
lowed, as well as inspirations behind the work.
• Representative paper (work with end-users): M. Elias, M.-A. Aufaure and A. Bezerianos (2013). Story-
telling in Visual Analytics Tools for Business Intelligence. INTERACT 2013 -IFIP International Federation
for Information Processing, Part III, LNCS 8119, (18 pages). Brian Shackel Award (Best Paper).
• Representative paper (fundamental questions): E. Dimara, A. Bezerianos, P. Dragicevic (2016). The At-
traction Effect in Information Visualization. In IEEE InfoVis 2016 - the IEEE Transactions on Visualization
and Computer Graphics, 23(1), (10 pages). Best paper Honorable Mention (4 best papers of conference).
• Representative paper (system): N. Boukhelifa, W. Cancino, A. Bezerianos and E. Lutton (2013). Evo-
lutionary Visual Exploration: Evaluation With Expert Users. Computer Graphics Forum (EuroVis 2013),
Eurographics Association, 2013, 32 (3), (10 pages).
• Representative paper (data & task): Vanessa Peña-Araya, Emmanuel Pietriga, Anastasia Bezerianos
(2019). A Comparison of Visualizations for Identifying Correlation over Space and Time. In IEEE InfoVis
2019 - the IEEE Transactions on Visualization and Computer Graphics, 26(1), 10 pages.

Perspectives (chapter 4). The last chapter concludes with a set of future directions and some closing
remarks on visualization inspiration and research.



2 | Collaborative display environments:
improving infrastructure &
understanding their use

Computer input and output technology has evolved in the last decades, allowing for computer environ-
ments that range from small mobile devices (phones and smartwatches) to very large displays of several
meters (high-resolution wall-displays, digital whiteboards and digital tabletops), with trends towards even
smaller and larger sizes. Collaboration environments, such as industrial design or command and control
centers, incorporate wall displays of over 5m x 2m in width and height, often coupled with digital table-
tops and smaller whiteboard size displays.

Wall-sized displays (e.g., [BLHN+
12]) offer several benefits for data analysis: their large physical size

and high pixel count allow for the simultaneous viewing, comparison, and exploration of large amounts of
data. As such, they have been identified early on as intriguing platforms for data analysis [BNB07, RJPL15,
RWM+

15]. These previous studies provided early evidence of an increase in the number and quality of
insights gained when using these high pixel displays compared to traditional displays [RJPL15, RWM+

15].
Despite their promising nature for data analysis, wall-sized displays present unique challenges when

it comes to how to interact and view content on them. Given their high resolution, data may be viewed at
close proximity to see details, or from a distance to gain an overview [AEYN11, BNB07]. The importance
of physical navigation in front of such displays has been emphasized when it comes to improving spatial
memory [JSH19] and user performance in sense-making tasks [BNB07]. This need for mobility poses
challenges in how to best support interaction during data exploration, since using keyboards and mice
hinders mobility. Moreover, it raises the question of how our perception of data may be affected given
that viewing perspective can change as we move in the physical space. These aspects are discussed in
section 2.1 and section 2.2 (work conducted with colleagues from Inria and Univ. Paris-Sud).

The large physical size of wall-displays also makes them well suited to collaborative analysis as they can
comfortably accommodate multiple viewers around them [JH14, LCBLL16, LKD19], with researchers often
studying collaboration quality and movement strategies. Nevertheless, questions remain when in comes
to their integration in work settings and their impact in analysis tasks. The last section 2.3 of this chapter
discusses the use of wall-displays in collaborative data analysis and command and control contexts (work
in most part done within the PhD of A. Prouzeau).

2.1 Interaction with wall-displays
High-resolution wall-sized displays [AEYN11, BLHN+

12] allow viewing a large amount of visual in-
formation, and thus have applications in a wide range of domains related to visual data analysis and
exploration, such as healthcare [RTR+

16] or command and control [SBMR12]. Nevertheless, choosing
appropriate techniques to explore data in such environments is not a simple matter. Viewers are often
mobile, thus traditional mice and keyboards are less adapted for input.

My doctoral dissertation work in University of Toronto started looking at this input challenge. In

7
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particular, I considered how to interact when at close proximity to such displays, so as to gain benefits
of direct touch or pen input. While it is possible to envision a touch-based interface for visualization
applications, we need to consider that on wall-displays not all parts of the display are easily visible or
reachable through touch without significant physical movement (too high up or at the other side of the
display). To address the problem of quick access to remote areas of a wall display, in my PhD I designed
several interaction techniques that either bring interactive proxies of remote content close to the user
[BB05b], or aid layout management and context switching by providing fully interactive views (portals)
to different remote areas of the display [BB05a, Bez07].

Nevertheless, during visual analysis in front of wall-displays, it is natural to also move away from the
display to get an overview of complex visuals, and coming up-close to see details [AEYN11]. To help
such transitions, and interaction while at a distance, with my colleagues we consider mobile interaction
alternatives (work conducted since joining U. Paris-Sud).

Existing work has considered mobile devices as a means to interact with content on the wall display,
such as pointing [MI09] or panning+zooming [NWP+

11]. Nevertheless, this work is fairly limited to
basic navigation or pointing, ignoring complex interactions that take place when exploring visualizations
that often require dedicated widgets (e.g., filtering using sliders, loading datasets, click and drag when
selecting data points, annotation and tagging of content, etc.). We thus need to provide mobile interfaces
that can support complex interactions. Recent work introduced custom-made mobile interfaces to match
specific visualizations seen on a wall display. For example Kister et al. [KKTD17] show parts of a larger
network visualization on a mobile phone or tablet that can also act as input, and Horak et al. [HBED18]
render personal views of the data on an interactive smartwatch. Nevertheless, this requires considerable
effort both in design (the visualization designer needs to carefully consider how the mobile and wall
visualizations blend together), and development (develop both for the wall and the mobile device). Our
approach is different, we instead support a flexible way to provide complex interactions using mobile
devices, in a way that is easy to setup, develop, and use with different wall-display applications [CBF14].

Exploring complex datasets may require access to a large number of interactive controls in order to
manipulate multiple dimensions and adjust their visual parameters. Rendering all of them on a single
interface is problematic in our context, given that the mobile device is limited in space. We suggest instead
allowing analysts to decide what controllers they need, and allowing them to customize their parameters.
Work has also combined mobile devices with tangible controllers for data filtering [JDF12a], that analysts
map on the fly to desired dimensions when exploring visualizations seen on a wall display. Or introduced
tangible sliders [RCJN17] other deformable controllers [RCP+

16] for eyes free interaction. Our approach
is not tangible, but allows for flexibility in customizing parameters of controllers [TBJ15] .

We next discuss our two pieces of work that allow for flexibility in customizing the interaction inter-
face from the designer’s perspective (Smarties) and from the analyst’s perspective (SketchSliders) when
it comes to mobile interaction with wall-displays during visualization analysis.

2.1.1 Smarties [CBF14] - Input flexibility for visualization designers

Smarties [CBF14] is motivated by our own frustration, as designers of visualizations for wall-displays,
with the lack of input support. With O. Chapuis and S. Franzeskakis we designed the Smarties toolkit to
ensure we can customize the input for our different wall applications, without having to reprogram the
interface on the mobile device side.

Smarties is an open-source framework that combines a mobile input interface that can be customized
from the wall-display side, and a communication protocol between multiple mobiles running the interface
and the wall application. The library hides completely the communication between wall application and
mobile device(s) from the developer, allowing for fast development of input support for wall applications.
It also provides collaborative interaction support with just a few lines of code (the framework supports
multiple synchronized devices). Finally, it allows the customization of the mobile interface with very
simple instructions in the wall application side, without having to modify the code on the mobile devices.
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Figure 2.1: Smarties. On the left an example of a wall-display with multiple lenses on a map visualization
(a magnification lens, a DragMag and a fisheye). Each analyst is holding a mobile tablet. On the right,
the mobile client interfaces running on the tablets. In each tablet, the round colored pucks are attached to
the position of the different lenses. The active puck is the blue one for the device on top, and the green
for the bottom since each analyst is interacting with a different lens. The widgets added for this specific
application are seen on the widget area at the bottom of the tablet interface.

The mobile input interface includes several components for complex interaction and is highly cus-
tomizable by the designer without writing code for the mobile device. By default the mobile interface is
divided into two parts (Figure 2.1): the top is a trackpad-like area that acts as a proxy of the entire wall
on the top; and the bottom is a widget area. In the widget area the designer can include any number
of specialized widgets such as buttons, text fields, menus, or sliders, all with programmable interaction
behavior (e.g., program a button for gathering selected items, or a slider for filtering data). The proxy area
for the wall can act as a touchpad (with support for multi-touch gesture recognition). It can also include
pucks, round interaction elements that by default act simply as cursors on the wall-display. With a few
lines of code pucks can instead as shortcuts to data items or visual content on the wall display (e.g., a
shortcut for acting on a set of selected items, or for repositioning a lens). Pucks allow for persistent work
(e.g., create multiple selections of items), can be stored and shared with other users.

Smarties are natively multi-user. Without any additional programming, multiple devices can connect
to the same wall-display application and are by default synchronized. So puck location is reflected to all
devices and so is the state of all widgets (e.g., sliders for filtering). By default analysts can share their
work with each other by exchanging packs (that can be attached to content such as item selection, lenses,
etc.), although the designer can decide to deactivate sharing.

In our original publication we demonstrated, through 3 application examples, how the system supports
very different applications. These included a map visualization with lenses, a clustering application, and
a windowing application. Each had different interaction needs, developed using different wall display
software technology. Since then we have also used the toolkit in many of our own projects as the main
input, for early prototyping, as a control interface for running experiments, etc.

Smarties focuses on the input side only, offering an integrated system for adding mobile input to wall-
display applications, with a library that hides the complexity of the protocol for communicating with the
mobile device, for quicker input prototyping. It also comes with a ready to use (but customizable) input
interface running on mobile devices, that can handle advanced input in the form of widgets and multi-
touch gestures, as well as collaborative interaction. It thus allows visualization designers to easily add
and customize the interaction controllers required for their wall-display visualization. Nevertheless, we
acknowledge that as it is a general purpose input toolkit, it cannot provide visualization-specific rendering
on the mobile device side the way dedicated mobile software does (such as [KKTD17, HBED18]).



Anastasia Bezerianos 10

Figure 2.2: SketchSliders. On the left a screenshot from the user’s tablet, where they sketched the con-
trollers they need to explore a multi-dimensional dataset. They created a circular slider for periodic data
(left), a branching slider (top), and a transformation slider (bottom). Slider variations in width express
the data distribution. Light blue segments indicate selected points in the distribution and dark blue lines
are the ranges for these range sliders. Values of importance (bends, user selections, endpoints of ranges)
are shown on the sliders. In the branched slider, the lower branches provide a more detailed view of a
dimension. The transformation slider provides is a focus+context widget (different interaction accuracy)
and applies a transformation on the data. The right image is that of the analyst using the mobile device
running SketchSliders to interact with visualizations on a wall-display.

2.1.2 SketchSliders [TBJ15] - Input flexibility for visualization analysts

Our work on SketchSliders [TBJ15] with T. Tsandilas and T. Jacob also decouples control and visualization
in the wall environment, putting the interaction on a mobile device. Instead of having users interact with
a large set of predefined exploration widgets decided by visualization designers, we now let analysts cus-
tomize their exploration interface by sketching the controllers that best suit their needs. Visual exploration
and analysis tasks [AS04] often include filtering and range-selection. These can be expressed with selec-
tions and dynamic queries [AWS92] performed using slider widgets mapped onto a data dimension. So to
demonstrate our approach we focus on range slider controllers (SketchSliders). Users can sketch directly
the interactive sliders they require to conduct data exploration on the wall-display. These controllers
can be sliders of arbitrary forms, including circular, branched and transformation sliders, that support
complex queries over multiple data dimensions and multiple levels of control granularity (Figure 2.2).

Sketching has been used in visualization as a rendering style in our own work [BBIF12] and by others
[WII+12a], for expressing desired patterns when querying data [HF09, MA18, RLL+

05, Wat01], or for
rapidly generating charts [CMvdP10] and data stories [LKS13]. These approaches do not use sketching
as input for data exploration as we do. More relevant is SketchVis [BLC+

11] that allows users to create
visualizations using sketching, but also provides simple sketch interactions to switch between different
data views, select specific data categories, or apply simple functions such as averages or maximum. We
focus on more complex exploration, studying in detail one type of interactive controller, the range slider.

In our approach, any drawn line can be turned into a slider through a simple menu. When this is
done, the analyst is prompted to map the slider to one of the possible dimensions of a visualization on
the wall display. We support several slider designs, that are inspired by Wizard-of-OZ and participatory
design sessions with three visualization experts. Their feedback reinforced our choice of focusing on range
sliders as the most versatile controller. Next we list the possible benefits of using sketched sliders raised
by our experts, and explain how they were included in our prototype that runs on mobile devices.

• Customization/Special Shapes. Each stroke is unique and can encode information inside it (e.g., bending
the slider in a given point of interest). Thus in our system any line can be turned into a slider, and simple
crossing gestures can be used to add multiple range controllers on them. Detected bents/angles are
highlighted and the slider value at that point is shown. Analysts can sketch sliders in any shape they
want, including circular sliders to be used in the exploration of periodic dimensions.



Anastasia Bezerianos 11

• Granularity. The length of sketched slider affects the level of its control on the data. Long sliders allow
fine-grained control and more precise filtering of data, while smaller ones allow coarse-grained control.
Users can "graft" a fine-grained slider on top of a course-grained one when finer control is required.

• Parametrization. Sketched sliders can support multiple ranges, giving users the possibility to filter
the visualization in a discontinuous manner. Another way of parametrizing a slider is to write by hand
possible slider extremums or link specific data values to specific locations of the slider, which controls
completely the mapping between the slider and the data.

• Reusability. By deactivating controllers (that remain accessible for later use) they keep copies of their
sketched components, allowing them to explore alternative aspects of their data without losing past work.

• Annotation. A sketching environment naturally supports annotating and bookmarking of important
information that is crucial for long term analysis tasks. SketchSliders combine free-form notes taken by
users, as well as traces of the interaction exploration (controllers and values), that led to specific insights.

• Transformation. Inspired by our analysts sketched curves to communicate mathematical functions, we
also allow the creation of transformation sliders. We apply focus+context transformation functions that
affect the visualization of the plots on the wall-display: peaks of a slider curve represent areas of focus
while valleys represent areas of context. The transformation applies both to the visualization on the wall
and to the slider itself (values are sparser around peaks and denser around valleys).

Beyond these characteristics we included the following functionality. First, the slider width renders the
density distribution of data in the form of a violin plot [HN98], inspired by scented widgets [WHA07].
Second, we provide a view in the mobile device, that acts as a trackpad in order to create a cursor on the
wall-display and select data items. The cursor on the wall-display is a circular area cursor with excentric
labeling [FP99], for previewing and selecting data points directly on the plots. Users can pinch with two
fingers to resize the area cursor and reduce or increase the active area of selection.

To validate our prototype we conducted a user study with another six visualization experts, with
experience from 2 to 15 years (median 10). They conducted an open-ended exploration task in front
of the wall-display, interacting with a mobile tablet running SketchSliders. The experts re-iterated the
customization value of sketched widgets "There is something very compelling about sketching your own tools",
and the freedom it "this is vertical [indicating a dimension on a plot on the wall-display] so I drew a vertical slider".
They also highlighted the flexibility of the approach "I can focus either with branches or transformation, you
don’t have that in other interfaces". They also commented on how the sketching can help structure their
analysis process and thoughts: "[I] focus on one dimension, and see the result on other dimensions [using the
slider distributions], which reduced my cognitive load - helped me filter not just my data, but also my controllers".
This sentiment was shared by another expert "existing interfaces are too cluttered and it is hard to decide where
to focus on, here I can focus on one thing, and drawing a slider is a way for myself to decide what will be most likely
of interest next". More generally, they found the combination of wall-display and sketching controllers as
"very well integrated" and that "the setup really works well for me, they are complementary, as you cannot show
all the information on the tablet, and I don’t really want to directly interact with the wall all the time".

We showed how with a small gesture vocabulary users can creatively use sketching to create their own
controllers of various sizes and shapes, focus on parts of the data by changing the control resolution in
dense areas of data, explore variations of controllers by grafting alternative paths, and bookmark impor-
tant results and points. Due to the nature of sketching, users can naturally customize the controller’s
appearance and its effect on the exploration. For example, they can draw larger sliders and branches for
a finer control, circular sliders for periodic data, or shapes that describe transformation functions to focus
on a smaller range of the data. We were motivated by a scenario where users view large datasets on wall
displays, and require mobile interaction support. Nevertheless, our experts commented that sketching
customized controllers can be useful even in desktop settings, where visualizations are usually laden with
numerous inflexible controls. This is a clear topic for future research.

The SketchSliders work received an Honorable Mention (top 5% of all papers) in ACM CHI 2015.
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2.2 Perception on wall-displays

Physical navigation is an important means of accessing visualizations on wall displays [BNB07, EALN11,
YN06]. Viewers choose close or far viewpoints to zoom in and out, and pan physically by moving left
and right to see different parts of the display. In my PhD work I examined the notion of change blindness
[Ren02] in large display environments, examining if viewers can identify and understand dynamic visual
changes happening potentially outside their visual field. For example given the size of the display, if they
are close to the wall they may not be able to see the edges of the display. In that work I proposed a set of
techniques that identify changes that may have been missed, store these changes, and reveal them to the
user at a later stage [BDB06].

But even for non-dynamic visual information, there are still questions surrounding the visual percep-
tion of information in such environments. As viewers fluidly and frequently switch viewing distances
and angles, this may lead to discrepancies between the actual displayed information and its perceived ap-
pearance. This question has been in isolated display cases, but not walls-displays. For example, in digital
tabletops, researchers have assessed the relationship of view position and 2D object rotation on coordi-
nation, and comprehension [KCSG04], and the perception of simple charts from varying viewing angles
[AJI10]. While Wigdor et al. [WSFB07] investigated how varying screen orientation from a horizontal to
up-right position influenced the accuracy of perception, but they only considered static participants and
smaller display sizes. We studied instead how viewers’ visual perception changes depending at different
positions in front of the wall [BI12]. These discrepancies have implications for a single analyst comparing
content at different display locations, but also in situations where more than one analysts are trying to
establish common ground.

Nevertheless, differences in perception based on viewer position are not necessarily bad, if the visual-
ization designer controls them. With my colleagues we purposely altered visualizations in way that when
presented on a wall-display, they show different information depending on viewing distance [IDW+13].
These visualizations, that we call hybrid-image visualizations, can be used to enhance overview tasks from
a distance and detail-in-context tasks when standing close to the display.

We next discuss in more detail these pieces of work, focusing on how we perceive visual information
depending on different viewing positions in front of a wall-display, and on how we can encode additional
visual information on visualizations that change with viewing position.

2.2.1 Magnitude Tasks [BI12] - Understanding visual perception on wall-displays

As mentioned, when dealing with large wall-displays, physical navigation becomes an important means
of accessing visualizations [BNB07, EALN11, YN06]. Viewers choose close or far viewpoints to zoom in
and out, and pan physically by moving left and right to see different parts of the display. Thus, they
fluidly and frequently switch viewing distances and angles which may lead to systematic discrepancies
between the actual appearance of displayed information in physical space (as can be measured by rulers)
and its psychophysical appearance in a person’s visual space.

Understanding these discrepancies and where / when they occur is important for visualization design,
as fundamental data analysis tasks involve the correct assessment and comparison of elementary visual
variables such as areas, angles, positions, slopes, or lengths [Cle85]. To read a bubble chart, for example,
one has to compare the sizes of circles to one another and to a legend, as well as to relate positions in a 2D
coordinate space. Figure 2.3 gives an example of how the appearance of three visual variables is affected
when seen from different viewpoints and viewing angles on a wall-display. As researchers working with
this new technology, we were curious to see whether comparisons such as these are affected by the oblique
viewing angles which occur when viewing data from different positions in front of a wall-sized display.

Information understanding has been studied in other types of displays. For example, in digital table-
tops, researchers have assessed the relationship of view position and 2D object rotation on coordination,
and comprehension [KCSG04], and the perception of simple charts from varying viewing angles [AJI10].
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Figure 2.3: Two observers looking at the same angles, lengths, and circles displayed on a large wall display,
from different positions (Top). Experimental setup, the large interactive stimulus is close to the viewer
that can adjust it to match the remote modulus (Bottom). In a first study participants were not allowed to
move and we tested two distances from the screen (Near distance shown here). In a follow-up study they
could move freely.

In work related to ours, Wigdor et al. [WSFB07] investigated how varying screen orientation from a hori-
zontal to up-right position influenced the accuracy of perception. With my colleagues we examined visual
perception on wall-displays under conditions where participants were both static and could move [BI12].
Our findings differ from the similar study on tabletops. These perceptual differences across displays indi-
cates that we cannot generalize findings from one display to another, nor can we predict how information
will perceived when spread out across displays in complex environments.

With P. Isenberg, we began addressing these questions by studying how perception of elementary vi-
sual variables (Angle, Area, Length) was affected by varying viewing distances and angles. We contribute
two studies. The first assessed static viewing conditions and identified different parameters that can help
predict the perceived magnitude of the tested visual variables. The second contributes an understanding
of the influence of allowing participants to move in front of the display.

In the first study (static) participants were placed at either 60cm (close - desktop monitor distance) or
320cm (far - distance where the entire wall is in the visual field). In the second study (moving) participants
could move freely. In both studies our participants had to look at a remote modulus object (Angle, Area,
Length) and reproduce it in front of them, using an interactive stimulus shape whose magnitude they can
adjust. Before running the experiment we had calculated the visual angle of all remote modulus objects
and formed hypothesis based on these visual angles. For example, we expected areas to be underestimated
on average, while angles oriented towards the biggest axis of distortion (left-right distance) would be
overestimated (their line segments look smaller and they will seem more obtuse). We also expected
errors in estimation to increase with left-right distance, an effect that has not been observed in tabletops
[WSFB07], as we are the first to test such large left-right distances.

In the static experiment (15 participants), our analysis shows no significant difference for completion
time, but there is a difference for two error metrics: one calculating the amount of error, the other whether
the error was an over-estimation or under-estimation of the true magnitude. The absolute error follows
the ordering reported in tabletops [WSFB07], with angle being the most error-prone visual variable and
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length the least. Error also increases when viewers are close to the screen, and when the distance to the
remote object increases, with angle being again most affected. Moreover, the absolute estimation error
decreases with the increase of object size. The rate of decrease is more steep for angle (and somewhat less
for Area), until errors become similar across visual variables for the largest object sizes.

The nature of over- or under- estimation is different per visual variable: angle is consistently overesti-
mated, whereas length and area are less consistent in their tendencies. The generally observed nature of
overestimation is less pronounced in lower areas of the wall. Nevertheless, as we move upwards on the
wall the overestimation becomes more pronounced for angles and areas. This indicates that lower parts
of the wall-display may be perceived differently, a finding that may relate to physiology literature that
identified differences for visual activities in the upper and lower visual fields [Pre90].

In the follow-up walking study (with 9 participants who had taken place in the first study), partici-
pants could move freely. Here accuracy for estimations improves when participants are allowed to move,
although the task completion time was more than twice as long in the static study. Three moving strate-
gies emerged during our experiment. An overview strategy: walking to the center of the display, but at
a far distance. A move-to-target strategy: walking until they arrived almost in front of the remote modu-
lus. And a step-back strategy: moving slightly backwards from their original position (1m) to look at the
remote modulus. This step-back strategy was the least effective (almost twice the amount of errors).

Overall, we demonstrated that our perception is affected depending on where information is displayed
on the wall. When viewers are up-close, their judgement accuracy for angle encodings, and to a lesser
degree area ones, starts to drop for targets placed roughly at the center of our wall (3m from them),
whereas length is more robust. Distortion also seems asymmetric between the higher and lower parts
of the display. Appropriate movement strategies can mitigate these effect, stressing the importance of
physical navigation.

2.2.2 Hybrid Image Visualization [IDW+13] - Encoding additional information on wall-displays

We next consider situations where we’d like to enhance differences in perception depending on viewing
positions around a wall-display. Our work is again motivated by collaborative viewing situations, where
several viewers are situated in front of high-resolution wall-displays and can pan and zoom into the
data simply through locomotion. Physically zooming-out (to get an overview) can have several effects
on the perception of the data encodings. First, parts of the data will be perceptually grouped, forming
visible clusters and will be perceived as a unit [Gol99]. Second, parts of the data previously visible
will be lost as they reach the limits of visual acuity or contrast sensitivity [War04]. And finally, the
perception of color [Sto12] and quantitative estimation of magnitude of visual variables can change (as our
previous work demonstrated [BI12]). Thus the effectiveness of visualizations viewed from afar depends
on the visual aggregation of particular data encodings and whether the data analysis task can benefit
from visually aggregated data. To design effective visualizations for wall-sized displays, it is important to
choose encodings that allow viewers to get an effective overview of the data from afar, while at the same
time detailed information is available to viewers at a close distance from the display.

Some existing designs could be well adapted for such viewing, taking advantage of perceptual aggre-
gation, where local features come together to form global patterns when seen from afar. For example,
in a scatterplot, individual dots with carefully chosen background contrast and size, will begin to form
clusters naturally at a distance. Previous work has encoded extra information on node-link diagrams
by using specifically laid-out text to render both the links and the nodes of the graph [WMP+

05]; has
used automatic typographic maps where typography forms certain map features [AMJ+12]; or FatFonts
[NHC12] where the typeface of the numbers is such that their area (amount of ’ink’) is proportional to
the represented number. Natural groupings and aggregations have also been extensively used in art, such
as the famous Arcimboldo paintings of heads made up of vegetables or fruits, photomosaics [BDBFG07]
where are made up by small colored fragments that are themselves images (tiles), and Calligrams where
stylized text is arranged so it creates a visual image related to the text. One disadvantage of techniques
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Figure 2.4: On the left hybrid-image visualization containing different representations at each scale. From
a distance (top), bar charts show the average temperature by month between 1990-2012 for 32 cities. Up
close, viewers can inspect and compare the individual temperatures by day using linecharts. On the
right, a screenshot of our preview tools for reviewing and refining hybrid-image visualizations. Designers
can preview the image as seen from different distances (a) and can use the control panel (b) and power
spectrum visualizer (c) to refine their visualizations and tune how images are processed and blended.

based on visual aggregation is that the encodings are hard to control (layouts need to be crafted metic-
ulously) and as several researchers have pointed out [EALN11, Sto12], we need more research on how
features visually aggregate.

Other approaches separate global and local features, specifically assigning regions for fine and coarse-
scale information. NodeTrix [HFM07] is an example that encodes small matrix visualizations inside the
nodes of a large network graph. Lenses and more specifically focus-(and/in)-context techniques and radar
views, provide windows that show detailed local information next to a global view. In these techniques
the display is reserved for either close or far viewing distances, reducing the display space for either type
of information.

In our Hybrid-image visualizations, with many colleagues from Inria, we attempt to resolve both these
issues [IDW+13]. These visualizations (i) provide global information from afar and local information up
close, in a way local and global views can take advantage of all the display space; and (ii) are easy to layout
by bypassing the need to visually aggregate local views to create global ones. Our approach is inspired
by hybrid images [OTS06]. Hybrid images blend two images after applying frequency filters to achieve
distance-dependent perception. This works because the human perceptual system analyzes images at
multiple scales through a collection of band-pass filters, each narrowly tuned to a specific frequency
band [CR68, OS97]. We explore the use of hybrid-image visualization for data analysis in wall-display
environments. A hybrid-image visualization can show two representations in the same view and without
tracking viewers in the space: one is a detailed representation seen up-close to the display and one is a
global representation gives overview information when viewed from a distance.

Through a set of examples (Figure 2.4 left) we show how hybrid images can be used to overlay two
visualizations, one designed for near and one for far viewing, in a way that from close to the display, the
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encodings for far viewing distances practically disappear. Meanwhile, the information meant for close in-
spection does not hinder the overview from a far viewing distance. Hybrid image visualizations have the
advantage that the whole display space can be used for drawing both local and global information. And
the two overlaid visualizations can present very different encodings since there is no need for visual ag-
gregation. They also do not require interactivity to work (for example compared to lens-based techniques
that create areas of high/low magnification [TGK+

17]) and thus do not disrupt other users.
Our work contributes a detailed discussion of the perceptual background and practical considerations

when creating hybrid-image visualizations, example visualizations and a summary of encoding tech-
niques, and a set of tools for creating them. Nevertheless, it also opens up questions related to how well
these visualizations work in practice, and on whether this nice division between close and far viewing
remains when they become interactive (as human perception of motion needs to be considered).

2.3 Collaboration around wall-displays

In our previous work mentioned here on input infrastructure and perceptual questions when it comes to
viewers’ movement, there is always the underlying assumption that more than one user may be present
in front of the wall-display. For example Smarties subsection 2.1.1 support multiple users, while the
magnitude study subsection 2.2.1 and hybrid visualizations subsection 2.2.2 consider the perspective of
different users in the room. The importance of collaborative visual analysis has been acknowledged in the
visualization community (see [IES+11, IIH+

13] for reviews), and wall-displays are indeed a very attractive
environment to conduct such work given their large physical size that can accommodate multiple people.
Previous work has focused mostly on tabletops, and smaller vertical displays (SDG and whiteboards). For
example, when it comes to understanding coordination around collaborative tabletops, researchers have
explored how colleagues shift from tight to loose work coupling [TTP+

06], how they divide the space
(territoriality) [SCI04], how they coordinate document search [IFP+

12], etc.
There are fewer works that consider co-located collaborative work on larger wall-displays. Studies on

the behavior of a pair of users in a sense-making task [JH14] comment on how participants fluidly moved
from parallel and group work using different parts of the display. Others [LCBLL16] look at different
collaboration styles and interaction in a classification task. Or at how territories are formed when larger
groups work together [ARV+

12], commenting that the personal, storage and group territories that emerge
are more dynamic and fluid than in tabletops, due to users being mobile. More recent work [LKD19]
observes user behavior and movement when analyzing coordinated views of crime data.

Nevertheless, there are many questions that we have yet to answer when it comes to collaborative
visual analysis using wall-displays. In our work we have focused on aspects related to coordination. More
specifically, we try to determine if wall-displays they better than regular desktops when it comes to
coordination, and how coordination is affected by factors such as the interaction technique used.

Other remaining question relate to challenges and opportunities when considering possible contexts
of use for these displays. For example what are application domains that can benefit from them and
how could they be integrated in more complex display ecologies that include individual devices. The
second part of this section focuses on the context of command and control rooms, and how analysts
could transition from using wall-displays as awareness monitors, to collaboration platforms.

These questions are the focus of work described next, conducted during the PhD thesis of A. Prouzeau,
that I co-supervised with O. Chapuis. The chapter ends with a mention of my other work on collaboration.

2.3.1 Wall-displays vs. desktops [PBC17b]

Empirical studies support the idea that large displays foster collaboration. Nevertheless, studies that
compare a shared interactive surface to individual devices have mainly provided qualitative results. For
example, when comparing a tabletop with personal tablets for a sensemaking task, the table supports
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better prioritization and data comparison, and leads to more participation equality [WSM13]. In work
comparing two users working on a large display, versus one on a large display and one on a regular
screen, in a trip planning task [HKR+

05], participants feel that collaboration was more enjoyable and
efficient with the large display. And that communication was more difficult when having separate screens.
when comparing a large display, with a large display combined with three desktops [WSS+09], the large
display alone provides more awareness of partners’ activities, but can lead to distraction. With the three
desktops there is less distraction, but collaboration is more demanding. This previous work comparing
a single large collaborative display with smaller multiple displays shows that the single large display
provides more group awareness and aids communication. The downside is that using the shared surface
can distract colleagues working together, and thus possibly impact performance.

This previous work focuses mainly on subjective measures and on characterizing the nature of collab-
oration when participants perform high-level tasks. Results related to performance mainly refer to quality
of results. As researchers who conduct both qualitative and quantitative research, we want to investigate
if we can provide quantitatively evidence of differences in coordination when using these displays. We thus
decide to measure performance and coordination differences when pairs use a large display, compared to
them using two desktops that share a common view (Multi-Display Groupware - MDG) [PBC17b]. The
two desktops are motivated by setups where collaborators use individual workstations (e.g., command
and control centers), that are often distant and cannot support deictic communication, but allow for verbal
communication. In our setup the individual workstations share a common view of the virtual content.

A challenge in conducting quantitative research is the formation of hypothesis, and the isolation of
possible confounding factors. To do so, we have to chose tasks that are abstract enough to avoid confounds
(e.g., related to previous knowledge and familiarity with the data), being simple enough to repeat across
conditions, while being complex enough that coordination is required to solve them (as this is what we
study). We are inspired by previous work on studying collaboration under route planning tasks with
constraints. Examples of such tasks include planning a route in a subway map [HKR+

05], or creating
bus routes that have to pass through specific locations and at the same time not overlap [TTP+

06]. Our
task is similar to the latter. Within a grid, each participant has to form a path between two "end-nodes".
To encourage pairs to coordinate and make decisions, we enforced constraints in their planning: the two
paths were required to cross at two specific nodes but nowhere else, and could not overlap (they could not
share an edge). This type of constrained path-planning is an abstraction of resource-routing and planning
tasks common in real situations, such as traffic control centers, for example during accidents operators
can guide first responder teams to the location of the accident, and at the same time reroute regular
traffic. Our abstracted path-planning task is simplified (simple layout and no road context) to reduce
effects due to complex layout and due to context knowledge. It also has specific constraints to encourage
coordination. To avoid learning, we varied the locations for constraints and starting nodes. All these
characteristics together ensure that the task can be performed by participants without domain knowledge,
and the findings can be generalizable as we limit effects caused by factors not related to collaboration.

Figure 2.5 shows both our experimental setup and an example task with its solution.
We expected our pairs to develop collaboration strategies over multiple trials, that likely differ across

setups (wall-display vs. two synchronized desktops), eventually reducing the need for coordination and
decision making that are essential in collaboration [McG84]. As such, we did not provide any training
to our participants, but rather compared the learning phase across settings, as this is where pairs need
to communicate and coordinate to improve their strategy. Learning rate has been used in the past as
a measure of coordination [GG98a]. To study possible trade-offs between the setups, we also measured
other metrics that could shed light to differences in collaboration, such as the amount of communication
between pairs and their coordination strategies. Participants were recruited in pairs that knew each other
(32 participants) and each pair used only one setup (between subjects design), as we did not want them
to apply coordination strategies across setups.

Our results do not indicate a significant difference in learning between setups, but pairs are overall
faster using desktops. With desktops, pairs divided the task as much as possible, requiring less com-
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Figure 2.5: Wall vs. Desktops Comparison. Setup of the experiment, with both conditions: wall-display,
and two desktops with a common view (the wall-display was turned-off in the two desktops condition
and vice versa). The left cut-out shows a close-up of a task, and right a possible solution where the green
and blue user’s paths have met in exactly two places.

munication, but this seems to affect the quality of work. Indeed, the quality of the solution (defined as
the number of corrections needed to reach an optimal solution that meets the imposed constraints), is
more consistent with the large display. Pairs communicate and plan more ahead of time in this setup.
Thus with the large display, participants adopt strategies that included more planning and coordination,
which leeds them from the beginning to consistent, good quality results. In summary, it seems that when
participants are faced with a new task, they do not adapt more quickly using the large display, but they
can produce better results from the start. This observation may have important implications in situations
like crisis management, and command and control centers, where collaboration on large displays could
provide better quality solutions in unexpected crisis events.

2.3.2 Impact of interaction techniques [PBC17a]

Continuing our investigation of coordination during collaboration, with my colleagues we start consid-
ering different factors that may affect it. Given our own background work on interaction techniques in
wall-display environments, we naturally thought of interaction as one factor that may affect how col-
leagues coordinate on a shared display. We initially prototyped our application and study using our
Smarties toolkit [CBF14] while exploring different interaction techniques. Nevertheless, in the end we
focus on touch-based interaction techniques. Our reasoning is that direct touch provides awareness of
others and their actions, and thus would be a better candidate for coordination.

In this work [PBC17a], we focus on analysis of complex graph/networks. Graphs exist in various
application areas such as in social networks, in molecular biology proteins interaction networks, in trans-
port networks, etc. Graph structures are frequently represented as node-link diagrams, but they can be
too wide to view comfortably on regular screen monitors [VLKS+11], and thus well adapted for viewing
them in wall-displays. Moreover, collaborative analysis has been identified as one the next challenges of
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Figure 2.6: Propagation Selection. (Top) Two users in front of the wall-display using propagation
selection. (Bottom) Details on propagation selection. On the left we see multiple propagations: (a) a first
tap on node 0 selects it; (b) a second tap propagates the selection to immediate neighbors; (c) and a third
tap to 2nd degree neighbors (notice the difference in link width according to distance); (d) a tap on node 7
selects it with a new color; (e) a second tap selects its neighbors, one of which (node 8) is shared with the
first propagation and has both colors; (f) a fourth tap on node 0 propagates the first selection a third time,
resulting in nodes 6, 7, 8, and link 8 − 7 being shared between propagations, with the color and width
on shared link 8 − 7 alternating. On the right we see gestures to undo one propagation step on a node,
or to do chained undo for backtracking multiple steps. The lower part shows variations for displaying
propagation distance using color intensity (top) and node-link size (bottom).

the analysis of graphs [VLKS+11]. Existing graph analysis systems support mainly remote collaboration
(e.g., [ZK14]). Less work has targeted co-located analysis of graphs on wall-displays. For example our
previous work [ICB+09] retrofitted an existing graph visualization application to run for multiple users.
Nevertheless, that work only supports multiple analysts with mice and keyboards, which cannot accom-
modate physical navigation around the wall-display. In the work presented in this section, we study the
analysis of graphs by multiple users moving freely in front of wall-displays. Figure 2.6 shows our setup.

In particular, we looked at how pairs use a wall-display to solve topology based tasks, that are com-
ponents of more complex graph analysis tasks [LPP+

06]. Our main goal was to study how the choice of
interaction technique supports or hinders pairs collaborating on these tasks. We focus on techniques for
selection, as it is a pre-requisite to many interactions such as filtering, comparisons, details on demand, etc.

We adapt two general purpose graph selection techniques for use by multiple users on a touch-enabled
wall-display. Our baseline selection technique is an extension of basic node/edge selection for multiple
users, using simple clicks on nodes and links to select them. The nodes/links selected by multiple users
are colored in a combination of their colors. This technique is easy to master, and has a limited, and
thus fairly localized, visual footprint on the wall-display, that does not interfere with colleagues’ work.
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The second interaction technique is a propagated selection, that extends for multiple users the idea of
transmitting a selection to neighboring nodes/edges [HB05, MST+

14]. With each consecutive tap on a
node, the selection progressively propagates to the neighboring edges of first-degree (Figure 2.6-bottom).
Appropriate visuals indicate how far the selected links are from the node of origin, and how many users
have selected them. This propagation interaction highlights the connectivity structure of the graph, but
may have a large visual footprint that disturbs colleagues (depending on the connectivity of the graph,
the selection can quickly propagate to the entire graph). We conducted two user-studies to compare
these interaction techniques. As there is little work on graph analysis on wall-displays in general, we also
studied an individual user context, to tease out effects due to collaboration and ones due to the techniques.

In the first study, we chose a well-defined topology task, the identification of the shortest path between
two nodes, a task used often in graph studies [TTP+

06, DHMM13]. Finding the shortest path can be fairly
involved in complex graphs, as it requires an understanding of both the local context of nodes (identifying
neighbors), as well as more global structure information since a shortest path is not necessarily small in
absolute distance. It is also a task that is not clearly divisible, as a more global understanding of the graph
structure is required. Thus it is unclear if multiple users working together would fare better than single
users. And very importantly for our purposes, it does not bias against basic selection, as it is a task not
trivial to do with propagation: propagation highlights a large number of possible paths (transmission can
quickly cover well connected graphs), revealing issues with visual clutter caused by propagation. We also
chose carefully the graphs used in the study. We consider two graph types with different connectivity:
planar graphs (common in transport networks) and small-world graphs (common in social networks). In
both cases we varied the number of nodes and links to create difficult and easy variations for each type.

We recruited 16 participants, that conducted the tasks alone and in pairs. Our results show that prop-
agation is faster in both individual and multi-user contexts, and propagation is also more accurate in
multi-user contexts. In single user contexts basic selection requires a lot of walking (slowing users down).
And in multi-user contexts, with basic selection it is difficult to acquire an overview of all choices consid-
ered by one’s partner, and thus maintain a global view of the work. On the contrary, with propagation it
was easier to verify at a glance the work of one’s partner and check for errors.

In a second study, participants used propagation to conduct other topology tasks related to graph
connectivity, such as finding the shortest distance between two nodes (the number of links rather than
which links), finding common neighbors, articulation points, and connected components (communities)
[LPP+

06]. Participants had taken part in the previous study, and were not given instructions on how to use
the technique for these new tasks. All pairs were able to devise correct strategies for the majority of tested
tasks (apart from articulation point), and even in this case they were able to identify good candidates for
a solution (even if some participants could not provide proof as to why).

Overall, we observed that even when tasks are not clearly divisible, pairs divide the wall spatially. For
many topology tasks identified in the literature, and used in our experiments, there is no clear strategy
to divide them in space, as they require a global understanding of subgraphs that may extend across the
display. Nevertheless, irrespective of task and technique, pairs divided the wall spatially. Even when
not optimal, they each took responsibility of one part of the wall, and then combined their work. While
space division has been observed in spatially divisible tasks [JH14, LCBLL16, THSG04], we have not seen
it before in tasks that are not clearly spatially divisible. As designers, we should anticipate this division
of space and encourage tighter collaboration when tasks are not spatially divisible. Techniques like prop-
agation selection can encourage such tight collaboration (when compared to simple basic selection). As
propagation has a large visual footprint, it requires higher coordination when used by multiple users,
to avoid disruption of others’ work. This tighter coordination leads to an increase in accuracy overall,
irrespective of graph types and difficulties. When using basic selection, that has a small visual footprint,
accuracy dropped for pairs, most noticeably in complex graphs. Here pairs tend to work independently
and loose awareness of each other’s work, which proved detrimental for the quality of non-divisible task.

There is thus a coordination / visual disruption tradeoff. Techniques with a large visual footprint
(like Propagation) can visually disrupt and affect the partner’s work, but can also promote coordination,
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providing higher degree of workspace awareness [DB92, GG02]. While techniques with small visual
footprint (like Basic) are less disturbing, but pairs can loose track of each other’s work due to the wall
size and graph complexity. We should support both types of techniques, allowing colleagues to transition
between them depending on how divisible their task is and what degree of coordination they require.

2.3.3 Collaboration in traffic control centers [PBC16a, PBC18]

Our previews work reinforced the trade-off between awareness of others for coordination vs. visual dis-
ruption, in particular when it comes to the quality of their work. There are situations where quality is
extremely important, such as crisis management and command and control room situations. Previous
work has highlighted the importance of awareness of others in these settings [MPBW07]. The goal of our
work described next is to promote awareness in such settings and investigate how to best integrate wall-
displays in them. I have mentioned command and control rooms as motivations behind our decisions
(when we studied individual desktops vs. wall-displays [PBC17b]), as they represent extreme collabo-
ration environments, where many operators may be present at any given time, and the quality of their
collaboration is considered critical [MPBW07].

Understand user needs

With my colleagues we fist set out to understand the needs and practices of this user group, focusing
in particular on traffic, as we had access to road-traffic operators through previous contacts. In 2016 we
visited the two control centers in the city of Paris, one that monitors all traffic inside the city, and one
that monitors the Periphérique, a motorway surrounding Paris. Together, they are responsible for 1500

Parisian intersections and its tunnels, with more than 2 million cars and 2.5 million pedestrian movements
daily. We observed two operators in each of the centers, and interviewed two of them in depth (one per
center) as well as an operator supervisor. All interviews lasted approximately 1h. We distill next findings
important for our research (full report is available in A. Prouzeau’s thesis [Pro17]).
• Room Layout. Both control centers are furnished with a large shared visualization wall-display showing
the monitored network, surrounded by smaller screens with live camera feeds. Road segments are colored
depending on traffic congestion from green (no congestion), to yellow, orange, and red (high congestion).
Gray is used to indicate segments with faulty loop (traffic) detectors. Individual workstations are located
in front of the wall, and they are also displaying the network visualization, alerts and other statistical
information. This setup motivated our comparison of wall vs. desktops [PBC17b]. Due to the small scale
and resolution of their monitors (w.r.t. the scale of the monitored network), operators tend to focus on
localized areas of the network in their workstations, using mouse and keyboard to navigate. While they
use the wall as an awareness monitor to acquire the "big picture" of the network state.
• Forecasting and Traffic Plans. An automated system manages the traffic lights, with a library of traffic-
light plans (a collection of consistent traffic light durations that are automatically chosen depending on
the current traffic situation, the day of the week and the time of day). To optimize traffic flow, operators
can change traffic-light duration, activate/deactivate lanes, reroute drivers using variable message signs,
and evacuate tunnels. Our interviewees explained that due to their experience, operators can accurately
predict the impact of their actions and interventions (e.g., traffic rerouting) but only in a local scale, such
as a crossroad. It is difficult to assess the impact of actions at a more global scale, for example it is often
unclear how a change in a crossroad can affect the entire network. One operator gave a recent example,
when a tunnel had partially flooded in both directions for 11 hours, but the operators did not risk closing
it down as they did not have a clear picture of potential global effects on the rest of the network.
• Coordination. Crisis management is a good example of a situation where colleagues switch between par-
allel and collaborative work [LB16] - monitoring and intervention respectively. Our interviewees explained
that they generally work independently, but during crisis they need to coordinate with other organisms,
such as firefighters when a fire is suspected in a tunnel, police in cases of accidents or rerouting for special
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events (such as state visits), and first responders. Representatives of these organizations are often present
in the center full-time (as is the case for police representatives), or may be invited in periods of crisis.
In such times, the awareness of where others are focusing on is very important, and so is the sharing of
resources. One example provided by an operator is the flood of the Loire crisis [FBDM+

15], that involved
more than 23 agencies including police, fire brigades, first responders, public transportation, managers
of water/power/communication/road networks, and flood forecasting services. Each agency had their
own tasks to perform (monitoring the road traffic, coordinating firefighters or first-responders, managing
public transport, etc.). But they also needed to occasionally coordinate, for example an operator of the
power company needed to guide her team to a damaged power unit in the fastest way possible, avoiding
traffic and first responder units.

Our interviews and observations revealed two situations where wall-display technology could be ben-
eficial: (i) provide a means for operators to visualize predictions / forecasting of the impact their actions
can have on the network; and (ii) consider additional awareness mechanisms to aid in coordination in
situations where operators have both their individual desktops and access to a large visualization wall.

Traffic forecasting using wall-displays [PBC16a]

This project is not related directly to coordination (our main research goal). Instead it stemmed from the
needs of our users. As we were creating a prototype to test and demonstrate coordination in traffic-control
rooms, we decided to explore it as well. Our interviews suggest that it would be beneficial to incorporate
visualization of predictive models with real-time monitoring tools, as the impact of actions is often hard
to predict. Operators should be provided with likely outcomes of their interventions both globally on
the entire network, and locally on specific sectors or intersections. We thus considered combining forecast
visualizations running different simulation models, with the general monitoring visualization of real traffic
[PBC16a]. These forecasting visualizations are only needed periodically (so not constantly visible) when
operators need to plan around an incident.

Large displays in current control rooms tend to be of low resolution and designed to be seen only
from afar, as awareness monitors. We suggest instead replacing them with high-resolution walls that
are interactive and can be seen up-close. For our prototype we decided to show the visualization of the
prediction models on the wall-display, and test the limits of how many such prediction models users can
comfortably monitor at a given time.

We created a prototype software for initializing predictive simulations based on the possible actions
available to the operators. Operators can control the time-frame of the simulations, and the speed to
play-back the results (described in detail in [PBC16a]). To show simulation results, we chose difference
maps (as Lampe et al. [LKH10]). The colors of roads do not indicate an absolute measure of traffic density,
but rather a positive or negative distance from a baseline situation (real traffic). We chose a blue-brown
diverging color scheme, adapted for viewing on the wall-display, to highlight differences [VP04]. Our
forecasting simulation model [CHP04] is an extension of the well-known Nagel and Schreckenberg one
[NS92], but can be substituted by others.

We propose two techniques for viewing multiple simulations in combination with real traffic:
• Multiple views [JE12, Tuf86, WBWK00]. These show the global state of the network and are thus well
adapted for situations where operators need to see the impact for the entire network.
• DragMagic an extension of DragMags [WL95] and magic lenses [BSP+

93], to visualize localized sectors,
and are better for showing local effects in a specific location of the network (Figure 2.7).

Nevertheless, the situation is more complex when operators need to consider several areas of interest
(critical areas) on the network. Due to the higher number and sparsity of areas of interest, this task is
neither clearly local nor global, and thus it is unclear which technique fares best. DragMagic likely works
well for few areas of interest, but as their number increases they approximate the entire network, and as
such MultiViews may be better. Finally it is unclear how hard it is to follow multiple simulations running
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Figure 2.7: Traffic forecasting. Visualization of traffic in central Paris, with two DragMagic lenses (white
rectangles) showing one (left) and two (right) simulations associated with different possible interventions
on the traffic. The simulation visualizations use difference color maps to highlight differences from the
real traffic. Blue hues indicate improvement, brown ones deterioration in traffic.

at the same time in order to decide between alternatives, using either technique. We thus designed an
experiment to compare viewers’ performance using DragMagic and MultiViews for this intermediate case,
varying the number of simulations and areas of interest.

We designed a control experiment, where participants had to monitor 2-6 simulations, focusing in
increasing number of areas on the map, that varied between 3 − 7. To study how well participants could
follow the simulations, we interrupted their monitoring at pre-specified intervals and asked questions on
the present state of the areas of interest (best simulation currently), and on their past history (simulation
with globally the best performance so far). These questions were inspired by tests accessing situation
awareness (i.e., participants’ awareness of the past and current state of the system) [ICH+

13].
Our task is perceptual in nature (track color changes), and as such we run it with 16 non-expert

volunteers for measuring perceptual situation awareness (similarly to previous work [ICH+
13]). Our

results show that DragMagic is easier to master (learning was faster), but that both techniques are good
design options in terms of accuracy. We were surprised to observe that even for several simulations
and areas of interest, the accuracy and time of the task remained almost constant. This is contrary to
the model of Plumlee and Ware [PW06], that predicts a clear growing relation between time and the
number of comparisons needed to perform the task, in particular when it comes to the increase of areas of
interests. This can be explained by the temporal nature of our task. Based on their comments, participants
continuously compared simulations in the time between our interruptions to ask questions, and were thus
able to identify and ignore ahead of time non-promising simulations, providing answers more quickly.
Thus, the Plumlee and Ware model does not extend to tasks that have a temporal continuity.

Expert traffic-control operators also provided encouraging feedback and suggestions after seeing the
prototype, appreciating in particular the use of DragMagic to follow forecast simulations while keeping
the context of real traffic. They also stated that the specific visualizations could be useful to compare
real-time and historical data to help identify possible problematic situations.

Aiding awareness in control centers using wall-displays [PBC18]

As we saw from our interviews, crisis management is a good example of a situation in which operators
often switch between parallel and collaborative work [LB16]. Previous work has already investigated the
use of multiple devices in such situations. For example, Chan et al. [CASM16] developed an emergency
operation center that combines a tabletop, a wall display and several tablets and wearable devices.
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However, this previous work does not focus on providing awareness to aid transitions between the
different displays when operators need to move from parallel work to closely coordinated actions. We
decided to investigate how a wall-display could be integrated in such contexts as a means to improve
workspace awareness (awareness of the work of others) but also as a surface where operators can collabo-
rate closely. We propose techniques specifically aimed at identifying opportunities for close collaboration
and for improving the transition between parallel and close work. In a similar vein, Bortolaso et al. looked
at transitions in a military command and control context [BOP+

14], focusing on tabletops. They intro-
duced different types of lenses on the tabletop and on the tablets, to support workspace awareness in
different collaborative configurations. We follow a similar approach on a wall-display setup, and addi-
tionally focus on techniques to facilitate transitions between multiple devices.

Based on our interviews with traffic-control operators, as well as documented crises (derailment of a
freight train in a tunnel in Baltimore [Sty01], a helicopter crash in the center of London [BBC], and the
flood of the Loire river in France [FBDM+

15]) we draw design goals for such collaborative environments:
• Different roles. The environment should accommodate colleagues with different roles (from different
agencies), and access to different information. Other types of collaborative contexts, such as sensemaking
and brainstorming, can also bring together individuals with different expertise [GG98b].
• Sharing. Colleagues should be able to share only data useful for the situation. During crisis management
operators have access to various data [LB16] that are specific to their roles, and that are important to share
with others when coordinating. But access to data that are not relevant to the situation can confuse them
and alter their understanding of the situation [Con93]. Thus it is important to be able to share specific data
only. A need to only share content relevant to the collaboration also affects other collaborative analysis
situations where colleagues bring with them their own data.
• Current Opportunities and Past actions. Ideally, colleagues should be able to serendipitously identify op-
portunities for collaboration and coordination. Thus it is important to have a good mutual awareness of
where others are working on, and on what. Moreover, when colleagues work concurrently in different
sub-tasks they partially loose awareness of others [GG95]. So when they want to transition to closer coor-
dination tasks, they may need contextual information about the recent work and focus of their colleagues.

To this end we built a prototype, meant to support multiple users with different roles. It is composed
of a very high resolution interactive wall-display, several workstations and other peripheral displays. Our
vision is that wall-displays will act as monitoring and awareness infrastructure while colleagues conduct
personal work, and as a surface where they can collaborate actively when close coordination is needed.

We designed three techniques to aid workspace awareness and help identify opportunities to transition
from personal to close collaboration, by displaying information about the activities of others. Our designs
vary with respect to where this additional information is placed in the environment (in the focus of the
shared display or on the periphery), and with how long they are displayed (transiently or permanently).

The three techniques, shown in Figure 2.8 are:
• Awareness Bars show the current focus of other operators’ workstations on the edge of the wall display
only. They are permanently displayed, but on the periphery of the wall display.
• Focus Maps show the history of the areas of focus of seated and walking operators. These are activated
on demand when colleagues are considering transition to close collaboration. And they fade over time.
• Step Maps are displayed on the floor of the room. These permanently follow standing operators and
show their position in front of the wall, but also show only a temporary trace of the operators’ position,
with history fading over time.
Finally, we provided mechanisms to move personal content on the wall-display in order to share it with
colleagues when close coordination is required. This sharing can be initiated on their desktops, on the
wall-display and on mobile devices.
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Figure 2.8: Awareness techniques. Top images illustrate the techniques on the wall-display, bottom
images are pictures taken from the prototype. (Left) Awareness bars. The colored bars on the border of
the wall represent the areas on which each operator is focused on on their workstation. These are always
visible. The dashed lines are added for illustration purposes. (Middle) Focus Map on a specific area. In
the illustration the blue operator explicitly asks for a focus map for a specific area (dashed rectangle) by
selecting the area using a tracked smartphone (operation that can also be done from their desktop). The
history of focus of both operators is displayed for this area, but fade over time. On the bottom a picture
showing a temporary focus map for a specific area, with two operators’ colors interleaved. (Right) Step
Map. The red and blue operators work in front of the wall. The fading red circles on the floor indicate
that the red operator was previously closer to the blue one but moved recently to the left. A close-up of a
Step Map trace in the room can be seen at the bottom picture.

We recruited 8 participants to take part in a usability study, that followed a scenario inspired by the
crisis incidents that motivated our designs. After being presented to the techniques, participants were
introduced to a fictitious scenario, where they arrived late in the crisis and had to find out, using any
technique, on which area of the map they should focus on (area of high activity by other operators).
This tasks was put in place to simulate situations where colleagues explicitly request information about
others’ activities. They were then asked to sit on their desk, access specific data related to their role
(traffic controllers) and share them with a first responder dispatcher, in order to coordinate together to
which hospital to evacuate casualties and what route to follow. An experimenter impersonated the first
responder. Finally, they were asked to conduct a personal task (path tracing), but were interrupted and
asked if they were focusing on the same area as other operators in the room. This task was designed to
test if our techniques help users be peripherally aware of the current focus of others.

Overall, participants made use of different (often unexpected) combinations of techniques for finding
and verifying their answers, indicating that the exact technique to use may be a matter of preference. We
observed two strategies adopted by participants. The first strategy was to use only one technique to find
the answer to the task, for example used awareness bars to identify areas where other operators have
focused on. The second was to one technique to find the answer (awareness bars) and another to confirm
their answer (confirm areas where others are working with focus maps). Such strategies are known in
decision-making as satisficing and maximizing [Sim78]. The first one consists in choosing a solution that
is good enough, the second in making sure that the chosen solution is the one with the highest expected
utility. We also observed that participants tend to use the display closest to them to interact. It is thus
important to support flexible sharing mechanisms from all displays in the environment. It is worth noting
that when discussion was necessary to make a decision (coordination task), all the participants asked their
colleague (experimenter) to go in front of the wall-display.
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2.4 Other work on collaborative displays [ICB+09, CBM+09, BBT+19]

While wall-displays can comfortably accommodate several analysts working at different distances, they
are fairly specialized and expensive equipment. Alternatives include tabletops that are generally smaller
in size, but more affordable; or projectors that are large and can be viewed by multiple people, but do not
have the resolution of wall-displays and thus do not support close viewing. Although not discussed in
detail, in my past work I have also explored these alternatives.

When it comes to vertical displays (such as projectors) of lower resolution, with my colleagues we
explored different factors and characteristics that make existing single-user visualization applications good
candidates to be used by multiple users in a shared display [ICB+09]. These factors include visualizations
with minimal global changes when users interact with it (to avoid disturbing others) and free workspace
organization (so that analysts can share and organize their work). Given the lower resolution of the
displays considered here, they are not meant to be seen up-close. Thus we consider input with mice and
keyboards from a seated position. After retrofitting an existing application for analyzing social networks
[HFM07], we performed a user study observing users conducting social-network analysis tasks on the
large shared display. Based on this work we proposed guidelines for supporting visualization analysis in
shared interactive setups, including considerations for awareness, and the need for per-user undo actions.

When it comes to tabletops, we studied differences in collaboration when colleagues have different
access mechanisms available for sharing their content [CBM+09]. We compared the use a regular filesys-
tem access mechanism (e.g., Windows Explorer) for participants to load and share their content with each
other, with that of an associative retrieval filesystem [CAK07]. The associative one retrieves all files related
to a focus file, across all computers irrespective of the owner of the file. We found that colleagues are less
open to sharing content when it is presented in traditional filesystem access methods. Whereas associative
file systems promote sharing and make more efficient use of the workspace available on the tabletop.

More recently, we also looked at collaboration of teams of data-workers exploring together visualiza-
tions shown on a shared display, that is smaller in size than walls [BBT+19]. We are motivated by experts
in different domains, that rely increasingly on simulation models of complex processes to reach insights,
make decisions, and plan future projects. These models are often used to study possible trade-offs, as ex-
perts try to optimize multiple conflicting objectives in a single investigation. Understanding all the model
intricacies, however, is challenging for a single domain expert. We thus propose a simple approach to
support multiple experts when exploring complex model results. First, we reduce the model exploration
space to only consider the Pareto front of the simulation results (i.e., the non-dominated simulations that
are possible solutions to the optimization problem). Then we present to the experts the simulation dimen-
sions (input parameters and output objectives) on a shared interactive surface, in the form of a scatterplot
matrix and linked views. Alignment of understanding across different expertise is a process that is less
common in sensemaking tasks, and has identified before in model exploration [CRMH12]. However, our
work considers more complex models, multiple computational stages and co-located expertise. To un-
derstand how multiple experts analyze trade-offs using our approach, we carried out an observational
study with real analysts, focusing on the link between expertise and insight generation during the anal-
ysis process. Our results reveal the different exploration strategies and multi-storyline approaches that
domain experts adopt during their trade-off analysis. We found similar processes to those described in
general sensemaking literature [KPRP07, PC05]. Our contribution here, however, is in identifying why
these processes tend to occur, for example storytelling approaches are used to recap findings in the group.
And when they occur, for example in large groups storytelling was periodically done throughout the ex-
ploration to achieve common ground, but for smaller groups it was done in the end of the exploration as
a means to plan future actions.
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2.5 Conclusions and Reflections
This chapter focuses on the use of wall-display environments for visual analysis in an effort to increase
the amount of information rendered (from the machine side) and allow multiple analysts to come together
(increasing human computation power). I describe different challenges, but also opportunities, that arise
when designing interactive visualizations in such environments.

I start out this chapter (section 2.1) by introducing two approaches for providing interactions in situa-
tions where viewers are mobile in front of the display. Both use interfaces on mobile devices that viewers
can hold, but were designed and validated using very different methods.
• Smarties [CBF14] provides flexibility to visualization designers. It is a framework for easily developing
a mobile interface for wall-applications, allowing designers to customize the touch surface and widgets
of synchronized mobile devices. As a toolkit, the utility of Smarties was demonstrated with example
use-cases and applications.

Nevertheless, its development involved considerable iteration. Smarties was motivated by our own
frustration when developing wall-display applications and the lack of input support beyond mice and
keyboards. The initial versions of the framework included complex cursor behavior (such as copying,
linking or mirroring cursors/pucks), fewer widgets, and did not have a touchpad. By using the initial
versions of the framework on our own, we realized that complex cursor behavior was challenging to
code on the application side. Whereas touchpad interactions and a variety of widgets better reflected the
interfaces of actual desktop visual analysis applications, and could make easier the transfer of existing
application controls to the mobile interface. The details of the iterative design process we followed, of
all the alternatives we considered before reaching our final choices, as we as our inspiration behind this
work, now only exist in our personal notes and versions of the system that are not well documented for
sharing. I cannot help but feel that others could have benefitted from this experience, to avoid making
similar mistakes, or even to inspire them to revisit our failed designs.
• SketchSliders [TBJ15], provides flexibility to analysts, that can sketch on the fly the interactive compo-
nents they need during their exploration, creating personalized and customized interfaces. The methodol-
ogy behind the design of SketchSliders was different. We started by understanding under which situations
analysts would be interested in sketching their interface. We used a Wizard of Oz setup, where partici-
pants would sketch the interaction they desired and an experimenter would apply it to data. This helped
us collect a concrete set of designs, that were then added in our prototype. Given the creative nature
of sketching, controlled experiments are not appropriate in the validation of our prototypes. Instead,
we conducted open-ended analysis sessions with visualization experts, in order to observe how they use
SketchSliders in practice.

While our methodology and the motivation for using sketching (allowing analysts to customize their
interface) is well documented in the relevant publication, the inspiration behind this work is not. The
idea behind sketching widgets originated when I was working with mobile touch phones, and wanted to
allow users to customize and parametrize common sequence of actions (calling specific people, looking at
particular calendars, revisiting a webpage ...). At that point I was considering sketching simply as a way
to visually customize the shortcuts. But as I started investigating how to generalize this approach to create
shortcuts to arbitrary widgets such as sliders, I realized sketching could help parametrize the interaction
(smaller sliders for coarse control, larger ones for detailed interaction). This led me to consider sketching
interfaces as a possible solution in situations where (i) too many controllers are available but only few
needed, and (ii) where we need to access information in different granularity. This resonated with my
experience using visualization tools for multi-dimensional datasets, that are often weighted down with
controllers. In particular in wall-display settings when users are mobile, the space we have available for
interfaces can be ironically small (the space of a mobile device, or else we need to consider more com-
plex gesture or voice interactions). The actual design of the final prototype was of course refined by our
workshop with the visualization experts. I find it nonetheless interesting that work started on small scale
devices (mobile phones) inspired work to address issues in very large wall-displays.
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In the second part of the chapter section 2.2, I focus on how information is viewed and perceived in
wall-display environments. Again, the work is designed and validated using different approaches.
• In Magnitude Tasks [BI12], we examine three visual variables (length, area, angle) that are considered
building blocks of complex visualizations. And show that our perception of them changes depending on
our location in front of the wall-display. This raises questions regarding how we should encode and view
visualizations on wall displays, and once again stresses the importance of physical movement, as it can
help correct this distortion. The methodology followed in our work is similar to other perception experi-
ments, starting from the seminal paper by Cleveland and McGill [Cle85] and other work in psychophysics
[Wag06], that calls for a controlled experiment, with well counterbalanced conditions of varying difficulty,
and repeated trials per condition.

The inspiration behind this work is also unsurprising. It was driven by our curiosity of the limits of the
new visualization platform (wall-display) and our own observations that when interacting up close it was
difficult to see remote content. Previous work of a similar nature conducted in other novel platforms (such
as tabletops [WSFB07]) also served as inspiration. One aspect that we report on our paper, but do not have
the space to elaborate on, was the fact that we run two separate studies. In the first, that we consider as a
pilot, we adopted the exact same approach as previous work on tabletops, asking participants to compare
two different objects and express one as the percentage of the other (magnitude estimation). Nevertheless,
we found that participants tended to round their results to the closest 10%, likely because they had trouble
making more accurate estimations due to the distortion. We thus changed our estimation approach, to
magnitude production (asking the viewer to replicate the size of the remote object). This provided us with
more nuanced results. But also raises the question if previous work that uses magnitude estimation may
have also suffered from rounding approximations.
• In Hybrid Image Visualizations [IDW+13], we demonstrate how to take advantage of viewing differ-
ences depending on distance. We show how to combine two visualizations that are filtered using high-pass
or low-pass filters, so that one becomes visible when seen from afar and the other when seen up-close, thus
increasing the amount of information that can be rendered on the wall-display. Our main contribution
here was the explanation of the theory behind the approach, and the tools to create such visualizations.
As such (similar to Smarties) our methodology consisted of providing many diverse examples, exploring
the limits of the approach, rather than running a user study.

The inspiration behind this work was a popular post that had the famous hybrid image by Oliva
combining the faces of Einstein and Monroe, and reported in our published work. While our related work
section covers examples of our taxonomy for grouping visualizations that work on multiple scales, it does
not reflect our process for creating it. We individually collected examples from art, nature pictures and
visualizations, that were never shared outside the project, even though they were analyzed and grouped
by us (a process not reported in the paper due to lack of space). It also does not include all informal pilot
tests we conducted to discover the limits of visual aggregation based on distance (using different basic
visual encodings such as color and size). Moreover, aspects of how we immersed ourselves in the work are
hard to communicate but could inspire other researchers. For example for months several of us had large
printouts of images of what we considered multi-scale visualizations pinned in our doors and office walls,
that we would often look at while moving in our space. I personally felt this constant presence of examples
in spaces where we moved freely helped us distill the properties that multi-scale navigations that are seen
at different distances. While it is not always possible to replicate crucial properties of research questions
we are working on (in our case seeing visualizations at different distances), I feel there is potential in this
notion of instrumenting one’s environment with research inspiration.
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In the third and final part of the chapter section 2.3, I describe my work on coordination and collabora-
tion in wall-display environments, for which again we followed different methodologies.
• We start out by examining if there are quantitative differences in collaboration between a shared wall-
displays and a collaborative environment made of coordinated desktops [PBC17b]. In a simple coor-
dination task, we showed that the wall-display was slower but leads to more consistent quality results.
We pursued this work because as researchers in the field we are still looking for measurable evidence of
the trade-offs in using these expensive setups in collaborative settings (compared to less expensive coor-
dinated desktop views). And more generally whether the benefits of this infrastructure outweighs the
cost of constructing and maintaining wall-display environments (in all institutions I have worked in, such
environments are only used when there is dedicated engineering support put in place). This is still an
ongoing investigation, although we do have increasing evidence of such benefits. Given the quantitative
nature of our question, our methodology consists of a controlled experiment, where trials are of equivalent
difficulty (as we need repeated measures to test learning), but not clearly identified by our participants (to
avoid copying their previous solution).
• We next consider the impact of selection technique on coordination in collaborative situations, focusing
on more realistic graphs [PBC17a]. We found that with basic selection, a technique with small visual
footprint, participants tended to divide a non-divisible task, resulting in lower accuracy. While with a
propagation-based selection, that has a larger visual footprint, participants were noticeably more accurate.
In this work we use a mixed methodology, starting with a controlled experiment to compare the two
techniques, under a specific task (shortest path). As propagation is a novel technique in collaborative
contexts, we wanted to see how participants would appropriate it in other analysis scenarios. Thus we next
conducted a more open-ended study where they conducted other topology tasks without any training.
• Finally, we consider collaboration in a specific context of use, command-and-control centers. Given
the focus on a specific user group and their needs, this work followed a slightly different user-centered
design methodology. Instead of starting with a specific solution in mind, we conducted observations and
interviews, looking for ways to intervene and improve collaboration. This led to a side question (design-
ing and testing different visualizations for traffic forecasting [PBC16a]) and a prototype with awareness
techniques to help operators coordinate and transition from individual to group work [PBC18]. While
the user needs were identified through our sessions with the expert operators, the inspiration behind the
individual designs themselves does not come from our user sessions, but rather by our knowledge of HCI
research in other contexts (e.g., our floor step map awareness technique was inspired by floor interaction
work in the UIST conference [AKM+

10]).

Overall, the work presented in this chapter has strengthened my belief that wall-displays can increase
the communication bandwidth between humans and their data. When it comes to human computation
power, they can bring together colleagues with diverse expertise [BBT+19, PBC18], and even in cases
where expertise is not in question, they can lead to high coordination compared to other collaborative
setups (such as coordinated desktops) [PBC17b]. When it comes to communicating for information from
the technical side, their high pixel density can clearly accommodate more information than traditional
monitors. Beyond that, they also allow viewing of information at different granularities based on view-
ing distance, and can even combine two different visualizations that are each seen at specific distances
[IDW+13].



3 | Appropriate representations:
applied visualizations &
fundamental understanding

Using visual encodings to amplify cognition [CMS99] is at the center of visualization research. To help
potential users process and act upon large quantities of data, visualization designers aim to provide
viewers with appropriate interactive visualizations. But what constitutes an appropriate visualization?
And how do we design it?

There are multiple ways a visualization designer or researcher can go about deciding what is an appro-
priate visualization. They can start from the user, understand first user data and needs (what the visualiza-
tion should communicate). Then create new, or adapt existing, interactive visualizations to support them,
reflecting on the process and utility of the solution. This approach is common in design-studies in our
field [SMM12], and can impact the end-user domains (from medicine [TLS+14] to urban data [FPV+

13]).
This approach has driven much of my own work covered in this chapter, focusing on needs of business
intelligence analysts [EB11, EB12, EAB13], genealogists [BDF+10] and neuroscientists [GTPB19].

Another is to start from the visualization. With an existing visualization or system in mind, researchers
study what are the data, tasks, and even domains that can benefit from it, and what are its limits. This
is often an approach used by researchers that have build complex interactive systems that combine visual
and computational aspects. Classic examples include Jigsaw [SGL08] that was built around VAST chal-
lenges for investigative and intelligence analysis of text documents, and was later considered for more
use-cases of sensemaking tasks (e.g., organizing literature, understanding business transaction data, etc.
[KS12]). Or more recently Zenvisage [SKL+

16] that provides a means to query for visual patterns and
was considered for several application domains and scenarios. Our own EvoGraphDice tool [CBL12a],
falls under this category. It combines a scatterplot matrix visualization with evolutionary computation
to suggest interesting data views. The tool was originally built for viewing simulation input and out-
put parameters, but has since been tested with different domain experts that have multidimensional data
[BTBL13] (biologists, surgeons, and analysts looking at energy consumption or baking processes).

Alternatively, researchers can start from the data, exploring what are appropriate visualizations to use
for specific data types. Examples include investigations on multidimensional data [KK96a, FL03], temporal
data [AMST11], graph data [VLKS+11], text data [KK15], etc. This division is backed-up by the traditional
way we teach information visualization in our institutions. Surveys such as the ones mentioned here
are extremely valuable, and reflect a collection of work that focuses on more specific aspects of the data,
for example how to best visualize dynamic graphs [BPF14], directional graphs [HIvWF11], small world
graphs [vHvW04, ACJM03], etc. Our work on geotemporal data fits this category [PPB20, PBP20].

Very relevant, is the approach to start from the task, designing and comparing visualization systems
or representations, in order to identify ones that best support specific tasks. Tasks can be low level,
such as comparisons of basic visual elements [CM84]; to common but more high-level tasks, such as
identifying correlations [Ren17] or similarity [PKF+

16]; and even to more involved and complex tasks
such as decision making [DBD18], visualization authoring [SLR+

20], or communicating uncertainty in

30
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the data [HQC+
19]. Questions about best designs for specific tasks are naturally combined with the data

that is under consideration, e.g., what are the best visualizations for detecting similarity in timeseries
[GTPB19] or in scatterplots [PKF+

16]. It is thus not surprising that our community has long worked to
create task taxonomies that range from general visual analysis tasks applicable across data types [AS04,
AES05, BM13], to ones delving into specific data like graphs [LPP+

06] or time oriented data [AMST11].
This chapter gives examples of my own work that consider appropriate representations for given tasks.

Researchers can also start from fundamental questions. These often relate to our attempt to understand
what influences our perception and understanding of data generally. For example, does the size of visual
marks affect how we perceive color [Sto12]? Or do cognitive biases affect visualizations [DFP+20]? Realis-
tically, we go about answering these questions by narrowing down our investigations to concrete systems
or visual representations and tasks (test how color perception is affected during comparison tasks when
varying the size of different visual marks [Sza18], or test one specific bias in choice-making tasks using
scatterplots [DBD17a]). The fundamental questions can also target very specific use-cases or visual repre-
sentations, for example our own work on how adding contours affect multi-dimensional glyph similarity
perception [FIB+14]. These fundamental questions may not lead to visualization designs or systems per-
se, but rather to design guidelines that can inform how we create or adapt visualizations for specific con-
texts of use. Our work in decision making falls under this category [DBD17a, DBBF19, DBD17b, DBD18].

Finally, research can start from the technology. For example, consider what are appropriate ways to visu-
alize and interact with data when dealing with new technological paradigms, such as particular querying
mechanisms (e.g., approximate query processing [MFDW17]), new computation approaches (e.g., progres-
sive computation [ZGC+

17]), or understanding ML processes [SSSEA19]. Or investigate the constraints
and limits imposed by the technology and how that can affect visualization and vice-versa (e.g., dealing
with latency in visualization [BCN+

20] or how to visualize missing data [SS19]). Another example is
much of my work from the previous chapter on wall-displays, that describes our investigations of appro-
priate visual representations and systems for new hardware technology, as well as our more recent work
on visualizations on smartwatches [BBB+19] mentioned briefly in this chapter.

Of course these approaches for approaching the question of how to create appropriate representations
do not function as silos, but are interrelated. As mentioned, approaching the problem from the point of
view of tasks is often combined with the data at hand. And even though we may start our investigation
from user needs, we immediately need to consider the types of data they have at their disposal and the
tasks they want to achieve. Or when constructing visual analytics systems that are applied to multiple
domains, these systems may have been originally driven by the computational technology behind them.

The above list represents for me the ways we tend to often frame our research questions. Depend-
ing on how the problem is approached, appropriate validation methodologies may differ, ranging from
providing use-case scenarios and informal user feedback, to empirical studies [LBI+12] that can go from
user-centered design approaches to controlled laboratory experiments, or a mix of multiple methods.

This list is not necessarily complete. For example, work on visualization toolkits and making construc-
tion broadly accessible, starts with specific users in mind like visualization designers [BOH11, Fek04], or
lay people such as our recent work on using images to create visualizations [ZSBC20]). But the design
study methodology approach [SMM12] mentioned above does not apply any more, given the broad and
diverse audience. Rather, more nuanced validation methodologies need to be taken into account, that
consider creativity, usability and limits of our tools [RLBR18, SLR+

20]. Moreover, fundamental questions
can focus on broader, high-level topics. For example reflect on the evolution of visualization research
topics [IIS+17], understanding how visualization are seen by members of society [PAEE19], ethical im-
plications and responsibility of visualization designers [Cor19], and visualization literacy and teaching
[ARC+

17, BRBF14]. Here again we cannot necessarily apply traditional empirical methodologies.
Nevertheless, this categorization provides a means for me to organize the majority of my work, that

has as a goal to create appropriate interactive visualizations that increase the communication bandwidth
between humans and machines. The remaining chapter will give examples of my past work that differs in
how with my colleagues we start investigating the question of what consists an appropriate visualization.
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3.1 Start with the user - Business intelligence analysts and other experts
The value of a new interactive visualization or visual analysis system, often comes from the utility it
provides to people who would use it in practice. As visualization designers we are often confronted with
real users and their data challenges, and need to work with them to reach design solutions [SMM12].
I have had the fortune to work with several domain experts, most notably with business intelligence
analysts, work conducted within the PhD of M. Elias that I co-supervised with M.-A. Aufaure.

3.1.1 Business Intelligence analysts and their needs [EB11, EB12, EAB13]
Our collaboration with business analysts starts in 2011, when SAP Business Objects1 co-financed M.Elias’
PhD. The fact that M.Elias spent a substantial part of her thesis in the company led to very close collabo-
ration with business analysts and tool designers. Business Intelligence (BI) analysts collect large business
datasets, that relate to processes, sales, malfunctions, client requests, and other types of business data.
They analyze, organize and present their results to decision makers, that are often clients from external
organizations). The value of visual presentation in the domain is key, and it usually takes the form of
visualization dashboards [Few06], that combine collections of multiple visual components, such as charts,
on a single view so that information can be monitored at a glance. The purpose of the dashboard can be
strategic (provide quick overviews of the health of an organization), analytic (to provide a detail overview
of past events), or operational (to monitor real-time data).

Dashboard Creation [EB11]. At the time our collaboration started, the creation of a BI dashboard in-
volves multiple actors, including end-users (consumers of analysis reports based on these dashboards)
and business analysts (creators of the dashboards). It is often the case that end-users intervene and pro-
vide feedback to the business analysts that adapt their customized dashboards to meet user needs. This
feedback comes at different stages of the dashboard design and setup, and involves a large amount of
communication between business analysts and end-users, in order to define functional specifications and
a positive user experience. It is interesting to note that this distinction between dashboard creators and
consumers often still exists, as evidenced by a recent study on dashboards [SCB+

19], even though there
are now tools such as Tableau2 that make dashboard creation accessible to broader audiences.

In an effort to make dashboard creation accessible to end-consumers (rather than experienced analysts),
we investigated how novice users construct and customize BI dashboards and how these practices differ
from BI expert analysts. For this purpose, we developed in collaboration with SAP Business Objects a
new platform called Exploration Views (EV). The details of this work can be found in [EB11]. The design
of the EV system was based on a set of principles to allow novice visualization users to easily build and
customize BI information dashboards, but also provides functionality needed by experts. These include:
• Easy creation. As identified in previous work [GTS10], visualization novices often have partial mental
specifications for their visualization needs and tend to refine and change their designs. To ensure a user-
friendly dashboard creation, the sequence of steps needs to be simple, with continuous visual feedback.
Novices often have no previous knowledge of what visual templates and representations are possible for
different data types. In EV this need is met by providing chart suggestions and templates to choose from
(also suggested in previous work [GTS10, HvHC+

08]) for common data formats.
• Easy customization. As novice users create dashboards, they may need to try out alternative visual
templates and representations to learn what meets their needs. Thus dashboards should support itera-
tive visualization specifications [GTS10] by being easily customizable and adaptable. In EV this is done
through simple drag-and-drop operations that allow users to switch charts, select parts of a chart to make
new charts, rearrange charts, or adjust the chart properties (representations, dimensions, etc.).

1SAP Business Objects https://www.sap.com/products/bi-platform.html
2Tableau https://www.tableau.com/

https://www.sap.com/products/bi-platform.html
https://www.tableau.com/
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• Visual Analysis support. Finally, any dashboard is a general purpose visual analysis tool, and as such it
needs to supports functions such as saving and sharing, text search mechanisms, fully linked visualiza-
tions and visual queries, and other data exploration mechanisms such as filtering.
EV was designed around these goals, in the hopes that both low-cost experimentation with visual tem-
plates and visual analytics support, can help novice users to become more accustomed to visualization
creation and analysis, promoting learning.

We evaluated EV with both BI experts (7 experts) and novice visualization users (8 participants). We
asked them to perform a series of tasks including dashboard creation, chart customization, and dashboard
layout, as well as analytic tasks (finding trends, doing comparisons, etc.). Novices used our tool to ex-
periment with different charts and some reported learning about new ways to represent data based on
the system recommendations. Novices also tended to make use of undo/redo functionality to experiment
with chart customization. This behavior was not observed in experts. Other practices were shared by both
groups of users: they started with 2-3 "base charts" that they then copied and/or customized to answer all
questions. And they preferred to create one chart per analytic task (starting from the base charts). Based
on those and other observations we provide a set of guidelines that augment previous work on designing
for visualization novices, in the context of interactive visualization systems in the form of dashboards.

Dashboard Annotation [EB12]. Dashboards are inherently visual analysis tools. As such they need to
support information foraging and sensemaking [PC05]. Annotations have been traditionally used to sup-
port interpretation (sensemaking) and record insights (e.g., in systems like ManyEyes [VWvH+

07]). They
can help frame relevant information together, clarifying connections [KPRP07], record further opportu-
nities for investigation [AHW10], aid communication with others [VWvH+

07] and aid hand-off between
analysts in asynchronous sensemaking tasks [ZGI+18].

While working with BI analysts, we studied their annotation needs. This led as to the first system that
provides context aware annotations that attach annotations to queries and data-points rather than charts or
images. These annotations support new functionality, like "annotate once, see everywhere" for visualiza-
tions (not just text [CG09] as was the case up to that point), multi-chart annotations, and annotations that
are transparent across hierarchical data dimensions and aggregations.

We interviewed 8 experienced BI analysts (3-11 years), who up to then tended to annotate their dash-
boards outside their analysis tools, by taking screenshots and embedding them into documents together
with textual explanations. They all emphasized the importance of their annotations. As one mentioned
"The data has no meaning without our analysis and contribution we add to it, so charts and dashboards would
be useless without explanations". Based on our in-depth interviews we extracted a set of design goals for
dashboard annotations, that we then applied to a dashboard prototype (details in [EB12]). These include:

• Multiple Targets. Annotations need to connect and refer to multiple data points and chart targets.
• Chart Transparency. Annotations need to be attached to data-points, rather than charts. Few systems up
to that point (e.g., Tableau) actually allow data, rather than visualization annotations, and make sure these
annotations are visible across different charts.
• Granularity Transparency. This is a need that comes from the nature of BI data that is often in the form of
OLAP data cubes, that have many hierarchical dimensions (like time/date/year or city/province/country).
Experts requested that annotations should be optionally preserved across dimension granularities. We are
aware of no other system that supports this.
• Validity & Lifetime. As some dashboards are operational (monitor real-time data), it is possible that the
values of data points change. Experts requested that annotations should be archived even if the context
of the annotation (annotated data) changes, together with a visual snapshot of the data at the time of the
annotation. Moreover, users should be able to define the annotation lifetime, based on a time period or
data related rules (cross threshold values). We are aware of no system that supports both these aspects.
• Sharing. Analysts should have the option to share annotations with specific users groups, or kept them
private for personal use.
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Figure 3.1: Context Aware Annotations. Our dashboard prototype with context aware annotations. (a)
The main dashboard contains icons with the number of annotations for each data-point (b). Bellow the list
of all dashboard annotations in (c), is a set of recommended annotations (d) emphasizing their similarity.

Based on these findings we implemented a dashboard prototype that supports such annotations. Our
annotation system is build on a common data model layer that sits on top of the underlying data sources.
Our approach can be used to annotate points, but also the results of more complex queries done on the data
layer (e.g., aggregated or filtered data). It can also be used to perform cross-application annotation, and
information foraging outside the visualization system (see [EB12] for details). Overall, the system supports
annotations that keep a record of their surrounding context (the multiple data points, queries, and charts
they are attached to). They also have as special annotation properties, such as their hierarchical visibility,
validity, and lifetime. Using annotation context also allows us to provide annotation recommendations
[SGL09] for free, as we can identify similar contexts and suggest existing annotations to analysts. A view
of our dashboard prototype (that was built upon EV [EB11]) can be seen in Figure 3.1.

After several iterations of the prototype with the original group of experts, we evaluated it with a
different group of experts (6 new experts, 1 returning), to explore if they can use it and benefit from
the different aspects of context aware annotations for their analysis. All participants found attaching
annotations to data points (vs. entire charts) very important for verifying annotation relevance to their task
irrespective of which view they used: "at a glance I can determine the important data points, no matter where
I am". They also noted the usefulness of recommending annotations for re-use or peer learning ("learned
from notes of others"). Our system takes snapshots of annotated data points whose context changes, a
behavior that was deemed very important: "annotating important data points acts as a way to see their changes
through time". In some cases annotations served as learning tools because they acted as a reference between
visualizations: "the radar chart was unfamiliar for me, so I switched it to a scatterplot and I was able to still see the
annotated data points. The annotation helped me to understand the radar".

Apart from the relevant publication in ACM CHI [EB12], this work led to a patent (US20130124965A1)
and was integrated in SAP Business Objects analysis tools.
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Figure 3.2: Storytelling in BI. Top image shows the normal analysis dashboard. Our dashboard can move
into narrative mode, together with annotations, seen in the lower image. (a) Narrative board containing all
story entities arranged by the story teller: information, relational (arrows), organization (groupings) and
emphasis entities, and numbers indicating author reading sequence. This sequence appears in a list (b),
where authors can define playback properties and add audio commentary. Below is a pallet of relational
and organization entities (c), and the Playback panel (d) to control playback through the story time line.

Dashboard Storytelling [EAB13]. Data visualization has become an important asset both during sense-
making analysis, but also when communicating findings to other analysts, decision makers or to a broader
public [SvW08]. A story is a powerful abstraction to conceptualize patterns as part of the analytical pro-
cess, but also a powerful means to present the analysis results [BCB08]. It is thus not surprising that data
storytelling has become a major research thread in recent years [RHDC18]. At the time we conducted
this work, the community’s interest was starting [SH10, MLF+

12] and there were few notable examples
of systems that supported data storytelling (e.g., [EKHW07, LJ12, MLF+

12]). Given that BI analysts often
create dashboards that are meant for the consumption of third parties (clients or decision makers) we set
out to understand their practices in presenting their analysis to others, and identify gaps and needs.

We start our investigation by interviewing 5 BI analysts (experience from 6 months to 12 years). At
the time all experts communicated their analysis or read analysis from others in the form of BI reports.
These contain an entire dashboard, often accompanied by several single charts and tables. Details can be
additional visualizations, tables, annotations, links to the data used in the visualizations, and finally block
text. Experts explained that reports are difficult to understand without detailed explanations from the
creator. On the other hand, our experts also occasionally provide the interactive dashboards to their clients
in case they want to search for additional details. There is thus a trade-off in curating and presenting the
desired story, and allowing story readers to explore the data openly. Based on our in-depth interviews we
extracted a set of design goals for dashboard storytelling support (details are in [EAB13]). These include:



Anastasia Bezerianos 36

• Fluid transition from Analysis to Storytelling. Analysis tools used to explore data and create visualizations
are different from report creation tools. Our storytelling tool should be able to fluidly transition from their
analysis and meta data associated with it (e.g., annotations), to report/story creation.
• Integration. To tell their stories, BI creators need tools that combine all materials used currently in
their story creation: BI reports, interactive visualizations, ways to indicate story structure, highlighting
capabilities, presentation of the story in sequence, and textual or audio explanations.
• Narrative visual aids. Report creators need to add focus expressions to draw attention to specific visual-
ization data, such as highlighting, coloring, annotating and zooming. They also require ways to indicate
reading sequence (e.g., vectorial references, like arrows).
• Interactive visualizations. Visualizations on shared reports are often non-interactive when read outside the
organization. A storytelling tool should have completely interactive visualizations, although the way that
readers interact with the data should be limited (by default to brushing and linking) and be controlled by
the creator. This balance has been identified as a challenging aspect of storytelling [MLF+

12].
• Appropriate BI Story templates. BI stories have specific structure not necessarily shared by other story
narratives identified by Segel et al. [SH10]. Our experts identified templates of interest and highlighted
the need for a new template that consists of an annotated dashboard.
• Reuse. Although BI reports and data changes from analysis to analysis, often the underlying structure of
BI stories remains the same. It is thus important to be able to easily reuse the structure of stories created
within the tool both for stories of evolving data and similar future stories. We are not aware of other
domains where this is crucial and systems that support it.

We informed the design of our system based on these goals and an additional participatory design
session we conducted with an expert BI analyst. The requirements and participatory design sessions were
the basis for building our storytelling prototype seen in Figure 3.2, that was combined with our analysis
and annotation dashboard prototype [EB12], to allow easy transition from analysis to story creation and
sharing. The storytelling view keeps the annotations and charts from the original dashboard, but also
allows the creation of chart groupings and rearrangement, the definition of reading sequence for the charts,
the addition of free text, of entities for emphasis, as well as relational indicators (arrows). Designers can
also determine the level of interactivity for the different charts.

To validate our prototype we conducted two user feedback sessions to assess the usability and effec-
tiveness of the system, both from the creator’s and the reader’s perspective.

In the first session two BI experts (that had taken part in the interviews) used the tool to create a story
based on an existing BI report. Both experts were very enthusiastic with the prospect of having access to
storytelling functionality within their analysis tool. They reaffirmed that story reading must be guided by
the story creator, else the goal of the story may be lost. Both experts suggested our system should support
two types of BI narrative stories: (i) Fixed stories, that present snapshots of datasets at specific points in
time, yet are interactive (e.g., for filtering); and (ii) Online stories, that present dynamically evolving data,
and can have the same analytic scenario regardless of data values. Thus stories may be repeated: they
can have the same chart descriptions (what type of data is shown), and the same reading sequence, but
different data values. Here visualizations in stories are no longer snapshots, but are updated with data
changes. We have implemented this extension.

We then ran a second session to evaluate the prototype from the reader’s perspective, and thus close
the story communication cycle. We conducted 40 to 50 minute sessions, with 5 BI novices. Participants
were asked to read a classic BI report created by one of our experts, and to also read a BI story created by
an expert in the previous session that gives the same information as the report in the form of a story. All
participants found that reading a story was easier as "it showed the facts in an understandable manner". They
felt more confident that they had understood the story (compared to lower confidence with the report)
and were able to better remember the gist of the analysis message and results.

Our work [EAB13] received the Brian Shackel Award (best paper award) in INTERACT 2013.
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Figure 3.3: GeneaQuilts. Left image shows the GeneaQuilts System with part of the European Royal
families. It consists of (a) the main visualization, (b) an overview, (c) a timeline and (d) a query and details
panel. The Right image shows multiple selections in the Bible. (a) Selecting Milcah’s bloodline in red and
her husband’s in blue reveals their common descendants, but also a close common ancestor (Terah) shown
by the two lines blended in a dashed pattern. (b) The blending of these bloodlines in the overview.

3.1.2 Work with other experts [BDF+10, GTPB19]

Beyond dashboard design, I’ve had the pleasure to work closely with genealogists and neuroscientists.
This section presents a summary of this work.

With Genealogists [BDF+10]. The study of family relationships, is a popular activity pursued by mil-
lions of people, ranging from hobbyists to professional researchers [Mil03]. They mostly use visualizations
are based on node-link diagrams, which have been shown to quickly become unreadable as graph size
grows [GFC05]. Considering that genealogical databases built by individuals can reach thousands of
nodes, and those built by organizations tens of thousands, there is a need for a more scalable visualization
solution. To this end, we introduce GeneaQuilts, a new visualization for representing large genealogies of
up to several thousand individuals. The visualization takes the form of a diagonally-filled matrix (gener-
alizing the Quilt visualization [WBS+08]), where rows are individuals and columns are nuclear families.

We conducted three extensive interviews with 8 users involved in genealogy research (3 historians
investigating transmission of land and title ownership across families in France, 4 anthropologists inter-
ested in inter-marriage strategies within small tribes worldwide, and a semi-professional genealogist who
investigates family ancestry of clients). Based on these, we identified unique needs in this domain, such as
the need to find all paths linking two individuals and examine if they are consanguine or conjugal, inter-
marriages between multiple families, marriages across generations, etc.. These needs led to the refinement
of GeneaQuilts and in the design of a visual analytics system around it, to support interactive genealogy
exploration. The system Figure 3.3 includes an overview, a timeline, search and filtering components,
degree-of-interest views of entities, and a new interaction technique called Bring & Slide that allows fluid
navigation in very large genealogies. Four of our original experts came back to try our system with their
data and found it to be very clean (as they were used to very complex node-link diagrams) and were able
to spot new insights in their data (e.g., intermarriages they had not seen previously).

GeneaQuilts, presented in IEEE VIS/InfoVis 2010 [BDF+10], has since been downloaded hundreds of
times, appeared in popular media and has been incorporated in several genealogy software platforms3.

3GeneaQuilts is incorporated in: Puck www.kintip.net, Progeny Genealogy (referred to as Trellis Charts) progenygenealogy.
com, in Généapro github.com/briot/geneapro/wiki, and in The Gramps Project gramps-project.org

www.kintip.net
progenygenealogy.com
progenygenealogy.com
github.com/briot/geneapro/wiki
gramps-project.org
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Figure 3.4: Timeseries Similarity. Two queries for which different visualizations resulted in different
choices. Boxes show the number of participants (out of 12) who chose the specific answer. Left: Experi-
ment considering temporal position variations. This example shows that colorfields can be more sensitive
than line charts and horizon graphs to stretching deformations along the time axis (DTW). Right: Exper-
iment considering amplitude. A strong preference for normalized measures (Euclidean Distance ED) in
line charts and colorfields and a strong preference for non-normalized measures under horizon graphs.
Overall, horizon graphs exaggerate flat signals and are more sensitive to deformations along the y-axis.

With Neuroscientists [GTPB19]. Timeseries are temporal sequences of data points that are of interest
in different domains, including electroencephalography (EEG) signals. These are the focus of our experts
from the ICM Brain and Spine Institute, that we met in two separate 1h sessions (3 and 2 experts re-
spectively). They explained that they are looking for "epileptiform discharges", abnormal patterns that
have been linked to various cognitive disruptions and reoccurrences of epileptic seizures [SFLGM15]. As
opposed to epileptic seizures that produce large disturbances in the EEG signal of a patient, epileptiform
discharges are especially hard to detect. According to our experts, data-mining algorithms for detecting
these patterns [IES+08] result in many false positives and are not useful in practice. This is because epilep-
tiform discharges often resemble normal background activity due to regular artifacts (pulses of the heart,
the eyes, or the muscles [JDR+

16]), and vary greatly across patients. Thus neuroscientists visually inspect
a large set of EEG timeseries (300 sensors, with several thousand data points each).

In an attempt to aid them, we suggested they manually identify a small number of epileptiform dis-
charges and use them as patterns to automatically detect similar subsequences. The experts could then
visually verify if these are also potential discharges. To detect these similar sequences we set out to choose
an automatic measure to compute timeseries similarity, such as Euclidean Distance [FRM94] or Dynamic
Warping [BC94]. Each measure considers different patterns as similar, often called invariances, for exam-
ple normalized Euclidean distance considers patterns as similar irrespective of their amplitudes, whereas
DTW considers as similar patterns stretched along the time dimension. When we requested information
about what types of variations or deformations in the patterns could indicate similar signals, our experts
explained that some of their decisions remain subjective, and past work has shown that agreement be-
tween different experts can be low [JDR+

16]. This raised an interesting question for us as visualization
designers. Do visualizations actually help viewers understand what temporal patterns are similar, or are
there aspects of the invariances of interest that are not communicated well in some visualizations?

We set out to investigate if different types of visualizations communicate or de-emphasize invariances
in a similar way, or if visualizations need to be chosen appropriately to help experts reach consensus.
The visualization literature has examined similarity perception and its relation to automatic similarity
measures for line charts [EZ15, MA18, CG16], but has not yet considered alternative visual representations
of timelines that are space-efficient, such as horizon graphs [SMY+

05, Rei08] and colorfields [CAFG12,
ACG14, NC07, SMY+

05]. Motivated by how neuroscientists evaluate epileptiform patterns, we conducted
two experiments (18 participants each) that study how these three visualization techniques affect similarity
perception in EEG signals. We seek to understand if the timeseries results returned from automatic
similarity measures are perceived in a similar manner, irrespective of the visualization; and if what people
perceive as similar with each visualization aligns with different automatic measures and their invariances.

Our findings indicate that horizon graphs align with similarity measures that allow local variations in
temporal position or speed (i.e., DTW) more than the two other techniques. On the other hand, horizon
graphs do not align with measures that are insensitive to amplitude scaling (i.e., like normalized Euclidean
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distance), but the inverse seems to be the case for line charts and colorfields. Overall, our work indicates
that the choice of visualization affects what temporal patterns we consider as similar, i.e., the notion of
similarity in timeseries is not visualization independent.

This work [GTPB19] was part of A. Gogolou’s thesis (co-supervised with T. Palpanas and T. Tsandilas)
and was followed by work on optimizing similarity search performance, discussed in the last chapter.

3.2 Start with the question - Decision Making and Perception Studies

When A. Dimara, co-supervised with P. Dragicevic, started her PhD on decision making using visualiza-
tions, the replication crisis had raised questions about research practices [JLP12], and whether confirma-
tion bias affects how we researchers frame our work and make decisions about what is relevant. This
drove our interest to study how visualization can help us make better decisions, and more generally how
we make decisions using visualizations. This was the main question that drove our research, that we tack-
led by breaking the question down into easier to manage interrogations. This section mainly focuses on
my decision making work, and only briefly mentions my other work that started from specific questions.

3.2.1 Decision making [DBD17a, DBBF19, DFP+20, DBD17b, DBD18]

The Attraction Effect [DBD17a]. In visualization research we tend to consider as effective visualizations
that help viewers accurately access information [CMS99, ZBK15]. Decision making research cautions that
this may not be the case when it comes to making decisions. It is now well known that full access to
information does not necessarily yield good decisions [Kah11]. When dealing with complex decisions,
humans often resort to heuristics, “simple procedures that help find adequate, though often imperfect, answers to
difficult questions” [Kah11]. Heuristic strategies have evolved because they can be very effective [Gig08].
Unfortunately, they can also have imperfections that manifest themselves as cognitive biases [Kah11]. With
E. Dimara and P. Dragicevic we set out to understand if cognitive biases, detected in other contexts, can
affect people when they attempt to make decisions using visualization.

In an attempt to answer this question, we started looking at candidate biases that may appear when
we use visualizations. After going through literature in psychology, economics and sociology, we decided
to focus on the attraction effect (also called decoy effect or asymmetric dominance effect). The attraction
effect is a cognitive bias that appears when people are faced with three options, two that are uncomparable
(there is no best option, as they represent trade-offs, such as price/quality) and a third option that is called
the decoy. The decoy is similar, but slightly inferior, to one of the two uncomparable options (often called
target). When this third option is introduced, it tends to shift peoples’ preference towards to uncomparable
option that resembles the decoy. This shift in preference is irrational because it violates a basic axiom of
rational choice theory, the principle of regularity, according to which the preference for an alternative
cannot be increased by adding a new alternative to the choice set [HPP82].

We focus on the attraction effect for several reasons. First, it is one of the most studied cognitive biases
in fields such as psychology, consumer research and behavioral economics. And second, these studies
generally employ very small sets of alternatives (typically three) and numerical presentation formats, so
it is still unknown whether the bias generalizes to data visualizations.

To investigate the existence of the attraction effect in visualizations, we conducted two crowdsourced
experiments. In the first between-subjects study (305 participants), we replicated an existing study from
psychology that only had three alternatives in tabular format [MHH13], where participants had to choose
a gym based on its cleanliness and variety of equipment. But we introduced a new condition where
alternatives were instead presented in a scatterplot visualization. Even though past work has not tested
visualizations, it has used scatterplots when reporting their results to illustrate the alternatives used in
attraction effect experiments [HC95, HPP82, OP95, Sim89]. Scatterplots can also scale to more than three
data points, which is important for our next study. Trails of our first study can be seen in Figure 3.5-left.
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Figure 3.5: The Attraction Effect experiments. The left image shows examples of experimental stimuli in
the first study, for the table (a,b) and the scatterplot (c,d) conditions. The left decision task (a,c) has no
decoy, while the right decision task (b,d) has a decoy on B. The right image shows experimental stimuli
from the second study, for the two matched decision tasks AC and CA (black-and-white background
images), and explanatory annotations (box overlays).

Results for the tabular condition show a shift in preferences (consistent with the attraction effect) that is
nonetheless lower than the original study (replication studies often have smaller effect sizes [O+

15]). When
it comes to scatterplots, we also have evidence for an attraction effect, indicating it does exist when using
visualizations. This observed shift in preference after adding a third irrelevant option gives credence to
the idea that people may make irrational decisions even when they use visualizations as decision making
aids. Thus we decided to explore the effect further, using scatterplots with larger sets of alternatives.

In the second study Figure 3.5-right we were inspired by a within-subject study (that generally have
higher statistical power) that again dealt with three alternatives [Wed91]. In it, participants had to select
a lottery ticket with a probability and a chance to win: two being the uncomparable alternatives and one
being the decoy. We adapted the study to add more decoy objects, the majority of which are dominated by
(inferior to) one of the two uncomparable alternatives (target). Our results (from 72 participants) showed
again a clear shift in preference depending on where the decoy objects were placed, even though these
decoys are rationally not relevant to the choice (the best choices are always the uncomparable alternatives).
We were thus able to generalize the attraction effect procedure to more than three alternatives, and verify
that the effect can persist when participants are presented with more realistic scatterplot visualizations.

Our work on the attraction effect [DBD17a] is the first to provide evidence of the existence of a cogni-
tive bias when using visualizations to make decisions, and received an Honorable mention (top 4 papers)
in IEEE VIS / InfoVis 2016.

Mitigating the Attraction Effect [DBBF19]. While we were trying to generalize the attraction effect to
more than three alternatives, we ran a pilot study (published as a technical report [DBD16]), where the
two uncomparable data points were highlighted. In that study we were unable to detect a decoy effect.
This got us thinking that maybe highlighting the two choices is a way to mitigate the bias and a few years
later we set out to investigate this further.

Cognitive bias mitigation methods, also known as debiasing, are challenging. They tend to focus pri-
marily on educating the decision maker, (e.g., through statistics training [FKN86]), have shown limited or
only temporary success [Poh16], and are often ineffective [Fis82, Ark91, Kah03, SSS02]. Another approach
is to debias the environment instead of the decision maker [KB93]. Previous studies that use this approach
altered the design of textual information [KB93, HP13], but did not consider the use of visualizations.

Given our pilot findings we start out to study if highlighting the Pareto front, i.e., the uncomparable
choices, would prevent participants from shifting their choices based on the decoys present in the scatter-
plot. In a first crowdsource study (207 participants), we replicated our attraction effect study [DBD17a],
highlighting the uncomparable points (non dominated alternatives). A trial can be seen in Figure 3.6-Left.
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Figure 3.6: On the Left, the stimulus of the PARETO ex-
periment. Non-dominated (uncomparable) datapoints have
a colored outline. On the Right, the stimulus of the DELE-
TION experiment. When the mouse is pressed, a red out-
line indicates that the cursor will delete datapoints. Partic-
ipants deleted all datapoints but one - their final choice.

We found suggestive evidence that
showing the Pareto front indeed weakens
the bias, but does not eliminate it (when
compared to a condition where the Pareto
front is not highlighted). The highlighting
also reduces task time. However, we exam-
ined only one design and others remain to
be tested (e.g., indicate the Pareto front more
strongly, with a stronger visual cue such as
a line, or fading out the decoy objects).

As we are considering mitigation strate-
gies, we looked at literature on models of
how humans chose between items of differ-
ent attributes, that represent trade-offs. One
model includes strategies in which attribute
values are considered (compensatory strate-
gies). A common example is the "weighted
additive" strategy the advocates that the de-
cision maker weights all attributes by impor-
tance and chooses the one with the highest
weighted sum [PBJ93]. This strategy is often

supported in visualization systems [CL04, GLG+
13, PSTW+

17] by allowing analysts to weight attributes
and rank options based on a combined score. Another model (called non-compensatory) includes strategies
where the decision maker can reject an alternative with a bad value for one attribute, even if it has per-
fect values for the other attributes [Wri75]. A known non-compensatory strategies is the "satisficing” one
[Sim56], where the decision maker chooses the first that satisfies some thresholds. If no such alternative
exists, the decision maker relaxes the thresholds and repeats the process, or chooses a random alternative
[PBJ93]. Another, less common example in this category is the "elimination by aspects" strategy [Tve72]
in which the decision maker rejects all alternatives that do not satisfy a given threshold and repeats until
only one alternative is left [Plo93].

We focus on this last strategy of elimination, allowing participants to explicitly delete data points until
only their choice is left. A typical attraction effect choice task is divided into two subtasks: the decision
maker is expected to first recognize the dominant points by rejecting the decoy(s), and, second to choose
between the two trade-off choices [CG15]. We suspected in our previous work [DBD17a] that it is the first
part (dominance recognition/comparison) that causes the bias. We thus attempt to differentiate these two
tasks (dominance recognition and choice) with interaction - ask participants to delete undesirable choices.
A trial of this experiment is seen in Figure 3.6-Right. In our second study (203 participants), participants
saw two conditions, one where they had to delete points they did not want as their choice, and one where
they could click on their choice. We observed a very strong drop in the attraction effect when using
deletion, proving it is a very effective debiasing strategy.

Apart from significantly reducing the attraction effect, this work illustrated that visualization and
interaction can help reduce cognitive biases in decision making processes.

Task-based Taxonomy of Cognitive Biases [DFP+20]. At the end of her PhD, E. Dimara started orga-
nizing the literature for her thesis, thinking of what would be a good way to present it to a visualization
audience. This is literature that comes from many domains (economics, psychology, sociology, ...) and the
biases mentioned are not always empirically proven. We realized that this research is not really accessible
to visualization researchers ("as a visualization designer, when I create a new visualization for a specific
purpose, what are the cognitive biases I should worry about?"). Existing bias taxonomies are organized by
cognitive theories (reasons behind the biases) and as such are hard to associate with visualization tasks.
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We thus set out to construct a more actionable taxonomy for visualization designers and researchers.
In our taxonomy we first, aim to help bridge the gap between cognitive psychology and visualization
research by providing a broad review of cognitive biases, targeted to information visualization researchers.
Second, we define a taxonomy of cognitive biases classified by user task where the bias appears, instead of
by proposals for psychological explanations for why biases occur. Finally, we provide starting points for
finding studies that have investigated the bias, and we highlight open research problems.

After a standard bibliographic search we gathered an initial list of biases, and searched for the most
representative paper that empirically tested each of the biases in our list. We then categorized the cognitive
biases, using a bottom-up grouping method similar to card sorting. And finally, we reviewed each bias
from a visualization perspective by 1) searching for existing relevant visualization work (if any) and 2)
brainstorming future opportunities for visualization research.

We ended with a classification of biases that have been experimentally observed, grouped in seven
categories depending on the tasks they appeared in. These were:
• ESTIMATION. This category includes biases that appear when people need to estimate likelihoods.
Examples include the Base Rate Fallacy (ignoring the base rate probability of the general population) that
visualization researchers have already looked at [MDF12, KBGH15].
• DECISION. This category includes biases that appear when people need to conduct any task involving
the selection of one over several alternative options. The Attraction Effect that we studied [DBD17a,
DBBF19] is one such bias.
• HYPOTHESIS ASSESSMENT. Biases in this category appear when people are tasked to investigate
whether one or more hypotheses are true or false. The Confirmation Bias, where people tend to favor
reasoning or information that confirms a preferred hypothesis, is one such example [Mah77].
• RECALL. This category includes biases observed when participants were asked to recall or recognize
previous material. An example is the Serial-Positioning effect, where people best recall first (primacy) and
last (recency) items in a series [MJ62].
• CAUSAL ATTRIBUTION. Biases in this category appear when people explain the causes of behavior and
events [Kel73]. An example is the Self-serving bias, that suggests that people tend to attribute success to
their own abilities and efforts, but ascribe failure to external factors [CS99].
• OPINION REPORTING. This category includes biases observed when participants were asked to answer
questions regarding their beliefs or opinions on political, moral, or social issues. An example is the
Bandwagon effect, where peoples’ reported beliefs can change according to the majority opinion [NCG93].
• Finally, the OTHER category includes biases that are not necessarily tied to a task.

The taxonomy lays out the problem space, facilitates hypothesis generation, and hopefully will guide
future studies that will ultimately help visualization designers anticipate, and possibly alleviate, cognitive
biases. The details of the taxonomy creation process, details of the categories, examples of opportunities,
and a full list of biases and references for them are available in our TVCG paper [DFP+20].

Are decision making tasks different to analytic tasks? [DBD17b] While working on cognitive biases
we started considering more generally the notion of decision making tasks when validating visual analytic
systems. When evaluating a system, what determines if the participants conduct a decision or an analysis
task is the narrative the experimenter provides. For example, if we ask participants to select a house to buy,
this simulates a decision. When we ask them to find the cheapest house, this is an analytic task. Given the
idea that there is a decision strategy that is "satisficing” [Sim56] (e.g., chose an item that is good enough),
we expect that the nature of the participants’ answers could change depending on the narrative. It more
generally made as consider the question, how does the narrative we provide to our participants when
we evaluate our systems affect their results? This question is particularly challenging when conducting
studies in crowdsourcing platforms (as was the case in all our cognitive bias research).

Crowdsourcing platforms have become very popular in visualization research as they can access a large
and diverse pool of participants, and allow for rapid evaluations [HB10, KCS08, MDF12, BBIF12, BRBF14].
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Figure 3.7: Framing Narratives. Stimuli used in the Extremum, Correlation and Comparison tasks. Correct
answers are shown in blue. Axes were labeled (X, Y) for Abstract task instructions, and (size (m2), price
($)) in all other conditions. The title was Diagram Z : Datapoints in Abstract task instructions, and was
Diagram Z : Houses in Semantic instructions (all tasks) and in the Decision making narrative. In all other
conditions the title was Agency Z : Houses. Z was an integer (1, 2, 3, or 4) identifying the scatterplot.

However, engaging crowdworkers and obtaining high-quality responses is challenging [Hul11, ECD14].
In particular, task instructions need to be carefully crafted in such remote studies, where the instructor
cannot help or motivate participants. We thus want to understand how task instructions and the narratives
we provide to participants affect the quality of responses when evaluating visualization tools. Researchers
and practitioners have already use narratives in the context of data analysis and communication, in order
to improve data understanding and engagement of the users [HD11, SH14]. Nevertheless, the effects of
adding these narratives is unclear, in particular in crowdsourcing settings where incentives vary across
people, and attention and motivation are hard to control for. For example, what would be the difference
between instructing participants to identify the data point with the minimum value, and between instruct-
ing them to imagine they are trying to find the cheapest available house. Both questions are equivalent
at the task level and consist of finding an extremum. The second version is possibly more salient and
engaging, and with a context that is easy to understand, characteristics linked to good crowdsourcing
performance [Hul11, MW10]. At the same time, the first version is more succinct and less demanding in
terms of time and patience, aspects that have also been emphasized in crowdsourcing guidelines [ECD14].

To determine if the type of narrative instructions affect performance, we chose three tasks that we
presented to participants with different types of narratives. The tasks (seen in Figure 3.7) were:
• Extremum, where participants had to find the data point with highest value according to the X dimension.
• Correlation, where they had to chose the scatterplot with the highest correlation (among four).
• Comparison, where participants had to compare data points across their two dimensions simultaneously.
The task consisted of finding a data point without any "competitor". A competitor was defined as a data
point that has both larger X and smaller Y (i.e., an uncomparable alternative on the Pareto front). The task
had four possible correct answers.

To test the influence of narratives, we studied the effect of providing very different task instructions. The
examples seen here are for the Comparison task. The narratives move from:
• abstract task instructions that provide no contextual information for the dataset (e.g., “Select a data point
that has no competitor”);
• to adding minimum semantics to the dataset (e.g., “Select a house that has no competitor”);
and to further adding a backstory narrative that justifies the purpose of the task. For the backstory
narratives, we compared two popular types of narratives from the visualization literature:
• analytic narratives involving answering investigative questions about data (e.g., ask them to put them-
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selves in the situation of a real estate analyst and to find answers to analytical questions (e.g., “Given what
you read, select a house that is a good deal.”);
• and decision making narratives involving making personal choices based on data (e.g., put themselves
in the situation of a house buyer and, given some criteria and constraints, to make choices (e.g., “Given
what you read, which house would you buy?” ).

We ran a between subjects design crowdsourced study (405 participants), where participants each saw
the three tasks with one type of narrative. Our findings indicate that adding minimum data semantics
can provide subjective benefits (such as confidence, perceived easiness, and enjoyment). However, we
found no evidence that it increases accuracy. We even found some evidence that our longer backstory
narratives could hurt accuracy. Finally, in the comparison task, that represents a trade-off and thus has
elements of real-life decision making, we found that the decision making narrative was less accurate than
the analytic narrative. Most likely, the decision making framing caused participants to focus more on
subjective preferences and less on giving a correct answer. This is of interest to researchers conducting
evaluation of visualizations for decision making. Our findings imply that decision making tasks are more
error-prone than equivalent analytic tasks, and that evaluating a decision-support system with standard
analytic questions may not reflect a realistic use of the system and may overestimate its performance.

Details of the wordings for the other tasks, as well as experimental hypothesis and detailed results can
be found in our ACM CHI 2017 paper [DBD17b].

Visualizations for Decision Making Tasks [DBD18]. Our previous work on narratives [DBD17b] sug-
gests that decision tasks may be more error-prone than equivalent analytic tasks. Thus when researchers
evaluate their tools, finding good performance with elementary analytic tasks does not necessarily guar-
antee good performance in decision making tasks. Since many decision tasks have no clear ground truth,
evaluating visualizations for their ability to support decisions is difficult, and there is a lack of method-
ological guidance on how to do so. So we set out to explore conceptual and methodological issues in
evaluating visualizations for their ability to support decisions. We focused on multi-attribute choice tasks,
that consists of finding the best among a set of alternatives that have several attributes. One example
is buying a house, where each available house is defined by its price and a number of features such as
area, number of bedrooms, orientation, etc.. There is no unique way of defining a "good" alternative, and
the best definition depends on the context. "Goodness" can be defined in objective terms (e.g., Pareto
dominance) or in subjective terms (e.g., personal satisfaction with the choice).

Since in a multi-attribute choice task all alternatives are known in advance, and defined across a set of
attributes, all information can be provided as a data table [OL03] where rows are alternatives and columns
are attributes. Several visualizations exist to visualize such multidimensional datasets, that we cover in
detail in our IEEE VIS/InfoVis paper (see [DBD18] for details).

For our study we focus on three common visualization techniques, that fall under the Lossless geomet-
ric projection categorization by Keim and Kriegel’s taxonomy [KK96b]: Scatterplot Matrix, Parallel Coordi-
nates and Tabular visualization (Figure 3.8). These are common components of existing visualization tools
that have been presented with scenarios related to multi-attribute choice tasks (e.g.,[EDF08, AS94, CL04,
GLG+

13]). There is also extensive work on evaluating these tools in analytic tasks, such as value retrieval
[WS92, BC08, CCH+

14], range tasks [WS92, ROF12], finding extrema [YMSJ05, BC08, CCH+
14], finding

outliers [WS92], and identification of patterns [WS92], correlations [YMSJ05], and clusters [YMSJ05]. In
other words, a number of evaluations have employed analytic tasks to study these visualizations. Never-
theless, they have not been compared under decision making tasks.

In our paper we expand on how such a comparative study should be constructed, emphasizing the
need to: (i) include all features that are considered standard for each visualization (e.g., provide ordering
of attributes not just for Tabular or Parallel Coordinates, but also Scatterplot Matrix); (ii) keep the visual-
izations as comparable as possible through a consistent visual design (e.g., colors, labels, space allocated),
a consistent interaction design (e.g., allow for range selection in Tabular visualizations and Scatterplot
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Figure 3.8: Visualization Techniques for Decision Making. The visualizations we evaluated: Parallel
Coordinates (PC), Scatterplot Matrix (SM) and Tabular Visualization (TV).

Matrix), and by having all interactions present the same amount of information across visualizations. We
stress the importance of creation of datasets that are of equivalent difficulty for the trials in each technique.
And we introduce a procedure by which participants ranked their a-priori preferences for all attributes, in
order to create a decision score that is tailored to each participant. Finally, as another measure of decision
quality we look at participants’ attachment to their decision (we ask them to imagine that an automatic
recommender system could suggest another choice taking into account their preferences, and then inquire
whether they would switch to this choice or not).

To verify that our 21 participants were able to understand the visualizations and use them effectively,
we first evaluated the visualizations on analytic tasks: a value retrieval, a range task and a correlation task.
As these three techniques have not all been compared together for all these analytic tasks, we summa-
rize briefly the results. All three techniques yielded close-to-perfect accuracy. There were however large
differences in completion times: Scatterplot Matrix was slowest for value retrieval and range tasks, but
by far the fastest in correlation tasks. The lower performance of Scatterplot Matrix in the two low-level
analytic tasks can be explained by the difficulty of dealing with two axes concurrently. On the other
hand, its efficiency for correlation tasks is not surprising, as scatterplots are known to convey correlation
effectively [LMvW10, KH16a]. Furthermore, Scatterplot Matrix shows all pairwise correlations simultane-
ously, while both Parallel Coordinates and Tabular required manual attribute reordering to examine them
in sequence. Though Parallel Coordinates is often considered a good choice for conveying correlations
[HYFC14a, HLKW12, LMvW10], it was outperformed by Tabular both on time and accuracy. Overall,
tabular visualizations seem to be a compelling choice, despite the low attention they have received in the
literature on multidimensional visualization.

The second part of our evaluation involved actual decision-making tasks. We found the techniques
to be comparable across metrics, with a slight speed advantage for Tabular. Participants also preferred
Tabular over Parallel Coordinates overall. Participants reported being more attached to choices made with
Scatterplot Matrix on average. The reasons for this are currently unclear, although one explanation could
be that Scatterplot Matrix supports overview tasks (confirmed by our results with the correlation task),
which made participants more confident that they did not miss a particularly interesting alternative.

Evaluating visualizations for their ability to support decision making is challenging. The quality of a
decision is hard to capture with objective measures, as decisions often involve personal preferences which
are themselves hard to capture reliably. Our new metrics for decision quality showed a large variability
in responses compared to the analytic tasks. This is likely due to the fact that our multi-attribute choice
tasks involve personal preferences and are inherently subjective. In addition, participants may not be
able to perfectly express (or be aware of) their criteria preferences, which likely adds further noise to our
accuracy metrics. As a result, many of our metrics are not sensitive enough to capture differences across
conditions that likely exist [Coh94]. Additional work is needed on establishing more sensitive metrics of
choice quality. It seems though that the time metric can become a useful tie breaker when participants
achieve sufficient decision accuracy across techniques.
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Figure 3.9: Star Glyph Variations. Three types of star glyph variations we tested in our contour exper-
iments. Data lines only (D): only the data lines encode the data; Data lines+Contour (D+C): data lines
are connected at the endpoints to create a closed shape; Contour only (C): only the contour line is drawn.
Additional variations are tickmarks (in b, e), gridlines (in c, f), and fill style (in g, h).

3.2.2 Other specific questions [FIB+14, FIBK17, IBDF11, DBJ+11, BBIF12, BBB+19]

Beyond the work I have been involved in regarding how we make decisions using visualizations, I have
contributed on several other pieces of work that also start from a very specific question. These center in
how we visually perceive information under different conditions. A common theme across all my work
that starts from such specific questions is the methodology. These questions most of the time can be turned
into a hypothesis, that can be in-turn tested in one or more controlled experiments, varying only a small
number of variables between conditions in order to isolate the impact of these variables.

Multi-dimensional Glyphs. As I mentioned in my work with neuroscientists on timeseries similarity
(subsection 3.1.2), the notion of similarity is an important task as it allows viewers to detect patterns,
group information and identify outliers. With colleagues we investigated aspects that affect the perception
of similarity for star glyph visualizations [FIB+14].

A Star glyph is a small, data graphic that represents a multi-dimensional data point, often used in
small-multiple settings, on maps, or as overlays on other types of data graphics. In these settings, visual
comparison of the star glyphs, to group similar ones or find outliers, is important. There are many
variations of star glyphs, that differ in the amount of reference structures they use, the existence “rays,”
or whether or not the individual rays are connected to form a contour for the glyph [War02]. For example
there is a version of the star glyph with unconnected rays, sometimes called whisker or fan plot, or a
connected version also called star plot [War04]. We hypothesized that contours would affect the detection
of similarity, as previous work has showed that a closed contour influences the perception of a coherent
shape [EZ93]. Possible star glyph variations that we tested are seen in Figure 3.9.

To test this hypothesis, we conducted three experiments. In the first, we explored if contours influenced
how visualization experts and trained novices chose glyphs with similar data values. We found that
contrary to what we expected, star glyphs without contours make the detection of data similarity easier.
Given these results, we conducted a second study to understand the intuitive notion of similarity when
it comes to star glyphs. This second study confirmed that star glyphs without contours most intuitively
supported the detection of data similarity. In a final experiment, we tested the effect of star glyph reference
structures (like tickmarks and gridlines) on similarity. Our results show that adding reference structures
does improve the correctness of similarity judgments for star glyphs with contours only, but does not
seem to influence the perception of similarity for the standard star glyph. Based on this, we have evidence
that the simple star glyph without contours performs best under several criteria, reinforcing its practice
and popularity in the literature. Contours seem to enhance the detection of other types of similarity, (e.g.,
shape similarity) and are distracting when data similarity has to be judged.

This work on glyphs led us to realize that beyond star glyphs, there are many different glyph variations
that have been introduced in the literature to better fit certain data types, or to solve specific tasks more
effectively. There are in fact nearly endless possibilities on how to map data dimensions to visual glyph
encodings [Mun15]. This flexibility allows designers to envision new glyph representations for specific
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contexts, but at the same time it is overwhelming. Understanding when and which types of designs work
best or are preferred by viewers, can guide designers and practitioners. Many user studies in the literature
have investigated different data glyph designs and their variations (in particular Chernoff faces [Che73]).
Nevertheless, up to our work, there was no systematic overview of these studies. With my colleagues we
present an overview of past studies on glyphs, by systematically sampling the literature (64 papers from
the visualization literature as well as work from statistics and psychology) [FIBK17]. We list their designs,
questions, data, and tasks. We also discuss the types of glyphs and their design characteristics analyzed
by researchers in the past, and a synthesis of the study results. Based on our meta analysis of all results
we further contribute a set of design implications and a discussion on open research directions.

Dual-Scale Charts [IBDF11]. Line charts, are arguably among the most common data representations.
One of their problems in practice is that they become difficult to read when the amount of data goes
beyond the available display resolution. In particular, there are cases when the density of data points (or
their degree of interest) is not uniform, e.g., in historical timelines with dense event clusters and large
empty spaces in-between. One way to overcome visual resolution limitations is to use more than one scale
(number of data units per display unit) in the same chart. This results in charts where there are some
regions with high magnification and others with low magnification. There are several ways to visually
integrate these different scales. A popular approach is cut-out charts, where part of a high scale (context)
chart, is seen in a cut-out rendered in a lower scale for detail (focus). Another is superimposed charts
(Figure 3.10), where both focus and context regions are drawn along the full width of the chart and share
the same y-axis. Yet another, consists of changing the resolution along a single axis, i.e., applying a non-
occluding step function [Car99]. With my colleagues we set out to investigate if indeed the best approach
is to split the chart as it is commonly held, or if other variations fair well under elementary graphical
perception tasks such as comparing lengths and distances [IBDF11].

Figure 3.10: Superimposed
chart (the red line is plotted ac-
cording to the left and the blue
according to the right y-axis).

After discussing the design space of dual-scale charts, we compare
five chart variations using a traditional magnitude estimation task for
the visual variables position, distance, angle. These visual variables
are the most highly ranked among Clevelands tasks [Cle85] and we
hypothesized them to be most impacted by changes in scale. In our
experiment design, we varied the location of the item that participants
had to estimate (in the high magnification area/focus, the low magni-
fication area/context, and across both areas). An experiment with 15

participants showed that cut-out charts which include collocated full
context and focus are the best alternative, and that superimposed charts
in which focus and context overlap should indeed be avoided.

Animated Transitions [DBJ+11]. Animated transitions are often used to smoothly convey the transfor-
mation between visual states in visualization design, to switch between data dimensions [EDF08], visual
representations [HR07, YFDH01], or when navigating in time [CDBF10][Gap06]. Apart from the aesthetic
appeal, research suggests that it also helps users to understand the underlying data [BB99, HR07, TMB02].

Cartoon animators sometimes use a “slow in” or “slow out” effect [CU93a, JT81], causing more frames
to be dedicated to the beginning or end of the animation. Essentially, slow-in and slow-out distort time
throughout the animation. Computer applications have adopted this idea [KB84], and so have many
graphical toolkits (e.g., [BGM04, BOH11]). There are several arguments for using slow-in/slow-out, the
most important being the claim that the slow-in/slow-out pacing helps users to anticipate the begin-
ning and ending of the animation. However, no perceptual studies have been performed to confirm this
informal design rule. We set out to investigate this question [DBJ+11].

We study the question under an object tracking task: tracking a single point within a moving point-
cloud. We vary the type of temporal distortion: constant speed transitions, slow-in/slow-out, fast-in/fast-
out, and an adaptive technique that slows down the visually complex parts of the animation. In our paper
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we explain in detail the different types of these timing profiles. Our 12 participants tested the different
timing profiles in one real and one artificially generated dataset, where we controlled the movement
profiles and number of distractor objects. Our results showed that slow-in/slow-out indeed outperforms
other techniques, but we also saw other subtle differences depending on the type of visual transition.

Sketchiness for Uncertainty [BBIF12]. Often the quality of the data we collect (and want to visualize)
is uncertain and researchers in visualization have long studied how to best represent this uncertainty
[HQC+

19]. With a colleague that has worked in the past with utility companies, we observed that this
uncertainty is often not in numerical form, but rather it is qualitative. For example, past work on utility
maps discusses types of uncertainty in their maps of assets as being (from least certain to more certain):
schematic, assumed, indicative, third party survey, and internal survey [BD09]. Such ordinal data can
be visualized using Bertin’s [Ber10] visual variables texture, value, or size. When it comes to visualizing
uncertainty, a set of visual variables are considered more ‘intuitive’ for this domain; examples include blur,
dashing rendering of lines, and color saturation. These variables may bear direct perceptual resemblance
to what the uncertainty indicates and, thus, may provide an easier reading of uncertainty [CR00, Mac92,
SMI99]. As we are not aware of any study that actually tests if indeed these particular encodings are more
intuitive, and how good they are at communicating uncertainty, we investigated further [BBIF12].

Figure 3.11: The established levels per uncertainty
visualization technique.

Apart from the visual variables of blur, sharp-
ness of focus, and color saturation, we considered
an additional one sketchiness as a visual variable.
Sketchiness has already been used to portray un-
certainty, in the domain of archeology visualiza-
tion [SMI99, PGG+

09] and for the visualization of
3D shape concepts in CAD [NKD06]. We thus
want to explore if sketchiness as a visual vari-
able can be used to depict uncertainty informa-
tion in line marks such as for graphs, hierarchies
and route maps. To generate different levels of un-
certainty, we provide an empirically-based method
that results in strokes that resemble hand-drawn
strokes of various levels of proficiency (ranging from child to adult strokes), where the amount of devia-
tions in the line corresponds to the level of uncertainty in the data.

To test our hypothesis we ran two crowdsource studies that compare in a qualitative and quantitative
way the four uncertainty visualization techniques (blur, dashing, color saturation, sketchiness). Overall,
our results show that sketchiness is as intuitive as blur when it comes to viewers spontaneously associating
it with uncertainty. People can comfortable recognize up to 3-4 different levels, that we found is very sim-
ilar to other visual variables (Figure 3.11). We thus think sketchiness is a viable alternative for visualizing
uncertainty in lines (and has indeed been used by others [WII+12b]). Nevertheless, it is interesting to note
that in terms of preference people subjectively prefer dashing style over blur, grayscale and sketchiness
for depicting uncertainty for line marks. Some of their comments indicate that sketchiness (and to a lesser
degree blur) changes the line geometry, and so tend to consider squiggles as being related to the actual
underlying spatial features. Thus as a variable sketchiness should be avoided for spatial contexts such as
maps to indicate uncertainty, but rather be used in abstract contexts such as hierarchies and diagrams.

Glanceability in Smartwatches [BBB+19]. This final work starts from a specific question, but is largely
motivated by the new available technology of smartwatches. Field studies of smartwatch use show that
most interactions with them involve quick glances or peeks at the smartwatch [PBML16], which were often
shorter than 5 seconds. These quick glances limit the amount of information a viewer can take in. Given
this short viewing window, with my colleagues, we set out to understand if smartwatches are appropriate
for viewing visualizations, and what visualizations are better suited for them [BBB+19].
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Figure 3.12: Example images of the stimuli used for
Bar, Donut, and Radial visualizations, with 7, 12, and
24 data items. On the right, one stimulus shown on
the smartwatch.

We focus on three visualizations that we saw of-
ten in smartwatch faces: bar charts, donut charts,
and radial bar chart (Figure 3.12). We first empir-
ically derive metrics on how people position and
orient a smartwatch when reading information, by
capturing participants’ hand and head positions
while reading a watch [BBB+18]. Then we study
how "glanceable" the three visualizations are. To
do so, we ran lab studies where participants per-
formed a simple data comparison task (comparing
the size of two marks). The visualizations were
shown using a staircase procedure that varied pro-
gressively the duration participants had at their
disposal [KP10]. We tested this task for three data
sizes 7, 12, and 24 data values, with 18 participants
each. The difference between studies was that in
the first study, the compared marks had a controlled size difference of 25%, while we used randomized
data for the size of the targets in the second study.

For both studies, participants performed the task on average in <300 ms for the bar chart, < 220 ms for
the donut chart, and in <1780 ms for the radial bar chart. Glanceable time thresholds in the second study
were on average 1.14–1.35× higher than in the first study. Our results show that bar and donut charts
should be preferred on smartwatch displays when quick data comparisons are necessary. Nevertheless,
all glanceable thresholds (even for donut) were less than the 5 seconds that field studies have identified
as the time spent glancing at a smartwatch. This indicates participants can reliably do quick comparison
tasks on smartwatches using visualizations.

3.3 Start with the tool - EvoGraphDice

In 2010 I got involved in a national project that brought together researchers from complex systems, visu-
alization and learning. There we started a discussion about how to best explore large multi-dimensional
spaces, such as these represented by simulations of complex systems (such as aircraft air quality, wine or
backing production). With colleagues from visualization (N. Boukhelifa) and Evolutionary Computation
and AI (E. Lutton) we started thinking about combining ScatterDice [EDF08] existing multi-dimensional
tool we had access to, with learning from users’ actions, in order to guide them when exploring large
multi-dimensional spaces. This resulted in a series of published work [CBL12a, BTBL13, TBBL13, BBTL15,
BBT+19] around EvoGraphDice, the tool we developed. Figure 3.13 shows a screen shot of the tool.

3.3.1 EvoGraphDice [CBL12a, BTBL13, TBBL13, BBTL15, BBT+19]

Scatterplot Matrices are a often used to visualize multi-dimensional data (as discussed in section 3.2).
Nevertheless, it still suffers when it comes to the number of possible dimensions it can show in the matrix.
Nevertheless, visually exploring a large space of alternative views on the data (individual scatterplots) to
find interesting patterns is challenging. One way to aid users navigate the a space is the “grand tour”
method [Asi85] which provides a complete view of the search space through a sequence of projections
showing various viewpoints of the data. However, the time required to inspect these views may be
prohibitive [Hub85]. A related approach is “projection pursuit” [Fri87], where the aim is to only visit
interesting views (projections that deviate more from a normal distribution). The criteria for deciding
whether a projection is interesting have mostly been defined prior to user exploration, using objective
measures such as the quality metrics [BTK11].
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Figure 3.13: EvoGraphDice showing an exploration session of a synthetic dataset. An overview scatterplot
matrix (a) showing the original data set of 5 dimensions (x0..x4) and the new dimensions (1..5) suggested
by the evolutionary algorithm (colored yellow). The main plot view (b) with two selection queries active,
in blue and red. The tool bar on the right (c) changes attributes for the main plot view. On the left (d) is a
tool bar for controlling the evolutionary generation, with (top to bottom) "favorite" toggle button, "evolve"
button for generating new dimensions, a slider for analysts to give a subjective rating of cells, and a restart
(PCA) button. Tool with the history of selections (e) and the favorite cells (f), as well as a selection query
window (g). Finally, on the lower part is the main control window for IEA (h) that opens on demand,
with a window to limit the search space of dimensions (i) and a dimension editor (j).

To aid this exploration, we build a visual analysis tool to explore multidimensional datasets [CBL12a].
The system proposes interesting views based on both: objective measures, such as visual patterns in the
two-dimensional projections of the data (like scagnostics [WW08]); and subjective measures corresponding
to user satisfaction with the presented view. These subjective measures are not known prior to user
exploration. We combined the ScatterDice tool [EDF08], with low dimension projection to handle data
multi-dimensionality. Projections can be linear and non-linear combinations of dimensions for an axis of
the projection. User exploration is guided by an Interactive Evolutionary Algorithm (IEA) which can both
generate new views and adapt to user interest. At the start of the exploration when no user rankings are
available we use PCA to propose new dimensions. The tool can be seen in Figure 3.13.

Evolutionary Algorithms (EA) are stochastic optimization heuristics that copy, in an abstract man-
ner, the principles of natural evolution that let a population of individuals be adapted to its environ-
ment [Gol89]. They have the major advantage over other optimization techniques of making only few
assumptions on the function to be optimized. In short, an EA considers populations of potential solu-
tions (in our case projections of the data) and individuals that reproduce are the best ones with respect
to the problem to be solved. Whether an individual is a good solution is judged in our system both by
objective metrics, and subjective user feedback. Evolutionary optimization techniques are particularly ef-
ficient to address complex problems (irregular, discontinuous) where classical deterministic methods fail
[Ban97, PLM08], but they can also deal with varying environments [JB05], or non computable and sub-
jective quantities [Tak08]. Our relevant publications in both EA and visualization venues explain in more
detail the visualization and algorithmic aspects of the system [CBL12a, BTBL13].
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EvoGraphDice Evaluations. From the beginning of our work on the system we were considering how to
go about validating the tool. EvoGraphDice is at it’s core an Interactive Visual Machine Learning system
(IVML) where, a human operator and a machine collaborate to achieve a task (also known as human-in-
the-loop [BKSS14] or mixed initiative systems [Hor99]). It is by no means the only one, there are examples
of such tools for classifying or clustering a set of data points [Ame12, BLBC12], for finding interesting
data projections [BKSS14, CBL12b], or for designing creative art works [Lut06, SPCL+

13]. The underlying
assumption is that the human-machine co-operation yields better results than a fully automated or manual
system. But how does one go about validating such a system?

We first look at the usability and utility of the tool for different types of experts that need to analyze
multi-dimensional data [BTBL13]. We reached out to our research institutions and networks and recruited
five domain experts which explored their data using our tool (from domains like scientific simulation,
medicine and geography). Due to the open-ended style of exploration using EvoGraphDice, and the
subjective nature of the goals of each expert, we chose a qualitative observational study methodology
[Car08]. Our goal was to determine first if our tool is understandable and can it be learnt. And second if
it was of value to the experts, in particular (i) if they could confirm known insight in their data, and (ii)
if they were able to evolve new views with combined dimensions that contain new insight, allow them to
generate a new hypothesis, and if so how easy or difficult is it to reach those findings.

Almost all participants were able to easily confirm prior knowledge about their datasets. One expert
found this task challenging because of the lack of data aggregation that her type of analysis requires.
Overall, participants were able to confirmed known insights in their data, such as correlation, clusters or
outliers. If we include hypothesis formation as part of insight generation (as is done in other insight based
evaluations [SND05]), four of our participants generated new insight in the form of distinct observations
about the data and formulated better hypothesis, and one formed new hypothesis. They highlighted the
following benefits of the tool: try out alternative scenarios by editing dimensions, think laterally, quantify
a qualitative hypothesis, formulate a new hypothesis or refine an existing one. We observed that the
frequency of evolving new dimensions or limiting the search space of dimensions varied across experts,
depending on whether they had an a-priori hypothesis. The looser the initial hypothesis, the more often
they tried to change the search space; and the more focused the hypothesis the more generations they
inspected. These two strategies of exploration and exploitation are supported by EAs [Ban97] where on the
one hand the user wants to visit new regions of the search space and on the other hand they want to
explore solutions (combined dimensions) close to one region of the search space.

We then look at the algorithmic behavior of the tool [TBBL13, BBTL15]. To do so, we conducted a more
controlled experiment to observe how users leverage the system and how the system evolves to match
their needs. The goal of the user study was to collect data about user interactions (ratings, evolutions,
favorites) and the fitness function that they system is trying to optimize. In particular, we wanted to
understand user strategies in solving an exploratory task, and the algorithmic convergence, focusing on
the learning behavior of the algorithm across generations and its ability to adapt to user focus. The task
was designed as a game. We synthesized a 5D dataset with two curvilinear dependencies between two
variables (x0 and x1) and random data for the rest of the dimensions (Figure 3.13). Participants were asked
to evolve a scatterplot where it is possible to separate the two curves in with a straight line (equivalent
to separating the two corresponding convex hulls). Of our twelve participants ten successfully separated
the two curves, while the remaining participants evolved views very close to a correct solution within the
allocated time of 20 min.

We examined the collected data in terms of: user strategy analysis to understand the different ap-
proaches users took to solve the task, convergence analysis to assess the algorithm’s ability to steer the
exploration toward a focused area of the search space, and diversity analysis to assess the richness and
variability of solutions provided by the algorithm. When it comes to participant strategies, we show that
they centered around three dominant scagnostics (skinny, convex and sparse) that are relevant for the
game task. And that the stability of the exploration strategy may be an important factor for determining
the outcome of the task and the speed of convergence. Successful game sessions had a more consistent
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strategy when compared to the unsuccessful ones, and they converged more quickly on average. When
it comes to convergence, again user strategy seems to play a role. On average the surrogate function
the system is optimizing follows the order of user rating of scatterplots fairly consistently, even though
users seem to take different rating strategies: coarse - tending to lump evaluation scores to fewer levels,
or fine-tuned - covering all possible rate levels, or a combination of both). Our results suggest that when
users taking a more consistent approach (either fine-tuned or coarse) the system seems to converge more
quickly. Finally, our diversity analysis shows that, in terms of the visual pattern, the system provides more
diverse solutions at the beginning of the exploration session, before slowly converging to a more focused
search space for most sessions. These effects correspond to the exploration component (random search)
and the exploitation component (focus) of the genetic engine.

Overall, we found this type of dual evaluation provided us with a wide perspective of our tool. Looking
at the system as a general visual analysis tool gave us evidence of its utility. And evaluating its conver-
gence to user strategies provided us with evidence that it can evolve based on user needs. Moreover, it
highlighted interdependencies in the combined human-machine system: consistent searching and rating
strategies from the human side led to faster conversion and solutions. We expect that as users use the tool
more they will adopt these strategies (following the notion of co-adaptation [Mac00], where both humans
and machines adapt to each other). In a recent publication, we list a number of such systems and the
types of evaluations they employ [BBL18] and found that the majority usually evaluate one aspect of the
tool, focusing on the quality of the user interaction with the system (human-centered evaluations), or the
robustness of the algorithms that are deployed (algorithm-centered evaluations), and only in a few cases
detailed attention is drawn to the quality of human-machine co-operation and learning. We are still inves-
tigating what are best ways evaluate such systems [BBL18] an interest we share with other visualization
researchers as we saw in a workshop on the topic in IEEE VIS 2019

4.

3.3.2 Another tool - GraphDice [BCD+10]

The EvoGraphDice tool was not the only one inspired by ScatterDice[EDF08]. In 2010 when I was visiting
the AVIZ team that built the tool we had the inspiration to see if it would be possible to extend it to use in
multivariate graphs. This led to GraphDice [BCD+10] that is the first tool to use a plot matrix to navigate
multivariate graphs. Node-link diagrams can be seen as extensions of scatterplots where data points are
connected with links, thus the use of node-link diagrams in the system is consistent with the ScatterDice
"dice rolling" paradigm. Because in multivariate data, attributes can be categorical (e.g., in a social network
it can be Gender or Country), this results in multiple nodes overlapping on one or more dimension axes.
To provide a clearer visual indication of this overlap, we use jitter [AS07], with overlapping nodes being
placed around a circle. The design of links is more challenging. For edges with a numerical or an ordered
categorical attribute, we automatically create an associated interval node attribute and aggregates the edge
values at each node. For example, in a co-authoring network, edges are articles with a publication year.
GraphDice automatically creates an interval node attribute for the "year" attribute named "e:year" Links
are drawn as curves with their endpoints positioned according to the value of their "year’"attribute. Thus
GraphDice allows the exploration of node and edge attributes in a unified way.

Early on in the design of the tool, we felt it would be of interest for Social Network analysis [WF94], as
they typically associate data to both vertices and edges. For example, if vertices are persons, they can have
a name, a birth date, a position in a company, and many more attributes. Similarly, relations can also have
attributes, such as date of friendship connection. To this end we early on also added the option to apply
social network analysis (SNA) algorithms to the visualized network, producing additional attributes such
as degree, centrality, and clustering coefficients.

At the end of the system design, we conducted a full day workshop with a historian specializing in

4EVIVA-ML Valuation of Interactive VisuAl Machine Learning systems https://eviva-ml.github.io/
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SNA. The participant used GraphDice to explore a historical migration dataset and was able to use the
tool effectively with less than 15 min of training. Our historian commented on how easy it is to manipulate
GraphDice compared to her other tools (like UCINET [BEF09] or Pajek [dNMB05] available at that time).
She pointed out it is very well suited for discovering patterns and learning new datasets, as it provides
visual representations of a network from many points of view. She added that even if she doesn’t want to
learn statistics (a requirement in most current tools) but can still see results. GraphDice [BCD+10] is the
tool that we extended into EvoGraphDice.

3.4 Start with the data and task - GeoTemporal tasks [PPB20, PBP20]

In this last section I describe briefly work that started from discussions between V. Peña Araya and E. Pietrga,
when we were considering geotermporal data and what are the best visualizations for them. Before being
able to answer, we had to decide what tasks we were interesting in.

Geotemporal Correlation [PPB20]. We were inspired to look at this question by the Hans Rosling’s 2006

TED [Ros06] talk on country demographics. To understand the story and the insights that the speaker re-
veals, the viewer has to look in an animated scatterplot, at the life expectancy and the fertility rate together.
The spatial dimension also plays an important role in this story. Rosling refers to individual countries, but
also different groups of countries multiple times. This example highlights the importance of multivariate
geotemporal data visualization, where insights involve two variables that are related thematically, that are
situated both spatially and temporally [ATC+

15].
The problem of designing an appropriate visual representation in this context is challenging, as multi-

ple data of different nature must be combined, each having specific characteristics: the thematic variables
(life expectancy, fertility rate), the spatial properties of those entities (countries, continents), and the evo-
lution of the thematic variables over time (years). Prior studies have compared geotemporal visualization
techniques for a single variable that evolves over space and time [GMH+

06, SdWvW14, LD11, LD12]. Oth-
ers have looked at two variables on a map (bivariate maps), but at a specific point in time [Elm13, GLQ18,
NASK18]; or at how to visualize the correlation between two variables [RB10, Ren17, KH16b, YHR+

19],
including visualizations that can be used to depict temporal evolution [HYFC14b], but not in a geospatial
context. Thus choosing which visualization technique is effective at communicating correlation between
two thematic variables, that evolve over both space and time, remain unclear.

Figure 3.14: The three visualizations compared in our first study. (a) Dorling cartograms as small mul-
tiples, (b) proportional symbols (circles) on maps as small multiples, and (c) proportional symbols (bar
charts) on a single map. In this example, each map shows the values of two artificially-created variables
over four years. In each case, both variables have an overall positive correlation (Pearson correlation
coefficient ≥ 0.75) and no monotonic evolution.



Anastasia Bezerianos 54

In our work we identify different possible strategies to combine thematic, spatial and temporal data
into a visualization. We can decide to combination thematic variables in a way that juxtaposes all time
steps for a given location (with symbols on a single map), or juxtaposes all locations for a given time step
(small multiples). We also need to decide how to encode the thematic variables themselves, using symbols
on the map or using features of the map itself. This categorization gave rise to three promising techniques
that can be seen in Figure 3.14.

We designed a study to determine which visualization better communicates whether two variables are
correlated over time (or not), and if they are, what is the pattern to their evolution. Given the nature of
the techniques that either juxtapose time or space, we expect them to fare differently depending on the
number of time steps and the number of geographical entities. We consider 9 time steps and 48 locations.
And our tasks varied in granularity for both dimensions: time (all time steps, a subrange of steps, one
step only) and space (all locations, locations in a subregion, one location only).

We ran a study with 18 participants. Our results confirm the intuition that the techniques perform
differently depending on the spatial and temporal granularity. Small multiple variations perform better
for a single point in time, whereas a symbol map performs better when considering all time steps. The
situation is less clear when considering a time range: if there are only a few locations, a single map with
bar charts is better, if there are many locations, small multiples are better. We did not find any evidence
that proportional symbol maps are better than Dorling diagrams. Extending this study to more thematic
variables is a clear next step.

Our IEEE VIS/InfoVis 2020 paper provides details about the dataset generation and tasks [PPB20].

Geotemporal Propagation [PBP20]. A phenomenon that has been largely unexplored in geotemporal
visualization is propagation. Propagations are the topic of investigation of several domains, such as disease
spread in epidemiology, viruses in cybersecurity, keyword tags becoming viral on social media. In some
of these examples it is the network topology that matters, but in others it is the geography that is key in
understanding the nature of propagation. An example is the Ebola virus epidemic in West Africa from
2013 to 2016, that caused more than 11,300 deaths and had major socio-economical disruptions [Org19].
By analyzing the propagation patterns, it was found that the virus tended to disperse more frequently
among geographically-close regions, and mainly within countries [DCR17]. This is an important insight
for health officials looking at strategies to attenuate the spread.

Figure 3.15: Propagation visualization strategies
evaluated. The illustration shows a simplified dataset
with only a small region and 9 time-steps: (a) small-
multiple maps; (b) a single animated map; (c) a single
map with glyphs overlaid over each region - each cell
in a glyph encodes the value of one time-step for the
corresponding region.

Propagation has similarities to other spatio-
temporal movement patterns [DWL08], for exam-
ple, spatial autocorrelation has been found be-
tween influenza and commuting paths [CPB14].
However, the origin of propagation makes it also
unique. It is not induced by the motion of enti-
ties in space, but by the replication of entities (virus
infection, meme or hashtag reuse). This replica-
tion and the context in which it develops makes
propagation different from other movement pat-
terns in two respects. First, if we consider hu-
man epidemics, diseases propagate continuously,
but todays’ transport connectivity also allows for
geographical hops [MMD+

13]. This differs from
movement trajectories of individual entities (e.g.,
migrating birds) or vector fields (e.g., water flow)
that are continuous. Second, the replication of en-
tities allows propagation to have multiple synchronous strong peaks in different and distant geographical
places [VBS+06]. This is not the case when looking at individual entity movement, as their discrete nature
constrains the number and strength of synchronous peaks.
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We set out to understand what geovisualization techniques best reveal propagation patterns. Again
we divided the techniques in ones that juxtapose space or time, and identified three main visualization
strategies: small-multiple maps, animated maps, and maps with glyphs (Figure 3.15). We compared them
using five tasks derived from both a general taxonomy of movement patterns [DWL08] and from the
literature on propagation analysis. In these tasks, 18 participants had to characterize one of the following
dimensions of propagation phenomena: their speed and virus arrival at specific locations, their direction,
their geographical scope, as well as the temporal location of peaks, and the presence or absence of spatial
jumps in the pattern. The data was generated using a widespread propagation model [New02], that we
tweaked to ensure the task had the desired characteristics (such as hops). We started out with several
hypothesis. For example we expected that animation would be best at tasks that require comparing the
map across multiple time frames, such as detecting direction and sudden changes (such as hops). Whereas
a single map with glyphs would be better for tasks focused on a single area (such as detecting the arrival
of the virus). Overall, our results show that small-multiple maps perform the best overall, but that both
animation and maps with glyphs outperform them in specific tasks (identification of direction and arrival
time respectively). As a next step we plan to consider visualizations that abstract parts of the propagation
patterns (e.g., aggregate major directions of movement) to see if these communicate better the different
aspects of propagation.

Our ACM CHI 2020 paper provides details about the dataset generation and tasks [PBP20].

3.5 Conclusions and Reflections

This chapter provides a panorama of my past work investigating how to build appropriate visual repre-
sentations, from different starting points.

The first part of the chapter (section 3.1) focuses on work that started from the needs of specific domain
users, such as business intelligence analysts [EB11, EB12, EAB13], genealogists [BDF+10] and neurosci-
entists [GTPB19]. Here we followed a user-centered design methodology: starting with understanding
the context and the challenges that the domain experts face, continued with design sessions for possible
solutions, and ended with their feedback on the final designs. Their needs motivated my colleagues and
I to come up with innovative solutions, such as context aware annotations for dashboards, that attach
annotations to data points or queries irrespective of chart and aggregation [EB12].

The frequency and intensity of end-user involvement varied across these projects, for several reasons.
For example, when starting work on storytelling for business intelligence in 2012, we had no precon-
ceptions of what the users needed, and the topic of storytelling in the visualization community was just
starting. As such, the inspiration of the final tool came mainly from our interviews and participatory de-
sign workshop with them, necessitating several iterations. In our other work with these analysts, we were
greatly inspired by the technology available to them, and previous research from the field. For example,
the fact that their tool had mechanisms to suggest charts drove our research questions for our work on
dashboard creation, as did the data-layer available in the dashboard that we could use to create anno-
tations that were attached to data points and queries. In these later cases, expert feedback evolved and
refined our designs, but was not the initial inspiration of our work. Similarly, for our work with historians,
our initial inspiration was past work (Quilts [WBS+08]) that we extended based on the genealogists’ needs
(e.g., making sure to stress temporal aspects, genealogy cycles and overlaps).

Technology being the inspiration behind user-driven research, is not a bad thing. On the contrary,
it can prove beneficial. After understanding user practices, in user-centered design we often conduct
participatory design sessions to get experts’ input on potential design ideas. But it can be challenging for
end-users to come-up with innovative solutions, as they cannot always envision designs that are far from
what they are comfortable with. And techniques such as paper prototyping to test ideas can aid with
testing interactions, but do not necessarily communicate the visual complexity of entire datasets. I have



Anastasia Bezerianos 56

found it very useful in such situations to have toy prototypes (of the technologies that inspired the work)
as a way to give end-users inspiration, to ground our dialogue with them, and to show them things that
are possible, so that they can reflect on and build-upon with their own ideas. In all projects with expert
users, access to them can be challenging. My experience has been that as researcher we need a "champion"
from the user side, someone (analyst, historian, neuroscientist) that is part of the experts’ organization, is
intrigued by visualization, and becomes the crucial contact point that ensured continuous access to other
experts. We were very fortunate to have such champions in all projects. This is a role that previous work
on design study papers [SMM12] does not seem to distinguish from other end-user roles (gatekeeper,
front-line-analysts, etc.).

In the case of business analysts, it was also extremely helpful to have M. Elias conducting her PhD in
the mist of their organization. This allowed her to establish a level of trust with the experts. And although
the development of prototypes on top of their existing working platform was technically challenging, this
helped experts see the immediate value of our work and be open to long-term collaboration, participate
in studies, workshops, etc. The domain of HCI has long accepted the value of ethnographic approaches
in design (e.g., rapid ethnography [Mil00] in field studies, observations and designers embedded in end-
user teams), but these are less adopted in visualization research. The seminal design-study paper by
Sedlmair et al. [SMM12] argues in-fact against traditional ethnographic approaches (such as fly-on-the-
wall observations) as they are very time consuming and often not revealing of analysis goals. I feel
that there is potential in having visualization researchers embedded in the end-users communities, even
periodically, to improve rapport, trust and common understanding. This position is now shared by other
researchers, as seen in the recent publication on design by immersion [HBH+

20].

The second part of the chapter (section 3.2) describes my past research that starts from fundamental and
theoretical questions, including our investigation of whether cognitive biases exist when making decisions
using visualizations [DBD17a, DBBF19, DFP+20, DBD17b, DBD18]. A traditional methodology applied
when facing such questions is to start with concrete questions that can help isolate a phenomenon to
study. For example in our work on biases it was to chose and focus on one bias (the attraction effect) and
progressively built our study (replication first to see if it exists in visualization, extension to more realistic
visualization contexts, mitigation of the effect).

The possible inspiration behind this type of work is also very broad. In my case some comes from
attempting to prove (or disprove) commonly held beliefs. Our work on dual-scale charts [IBDF11] was
motivated by recommendations starting from Cleveland [Cle85] that dual-scale charts need to have clear
visual breaks across scales, and the popular belief they are not appropriate representations (e.g., [Few08]).
Or in our work comparing different temporal profiles for animation transitions [DBJ+11], we set out to
investigate if "slow in" or "slow out" animation effects help viewers track movement better (as it has been
advocated in the design community [CU93b, TJ95]). In our work we found indeed evidence to support
these beliefs. But it has not been the case for other research work. For example a series of studies on pie
charts [SK16, KS16] have suggested they are not read based on slice angle (as was commonly held), but
rather based on arc length and less often on arc area. Or work that has shown that some types of chartjunk
(that is generally held as being undesirable [Tuf86]) can help make charts more memorable [BMG+

10] and
engaging [HKF15]. All this work and findings are the result of directly questioning assumptions we hold
as researchers and visualization practitioners. I feel this is a sign of a very healthy community that does
not feel threatened to self-reflect and put under the microscope long-held beliefs.

The work on cognitive biases and decision making in particular, started when E. Dimara set out to
investigate how groups make decisions. Starting reading the relevant literature brought us face to face
with the more fundamental question, how do we make decisions when using visualizations (even alone,
before considering complex group decision making). It is tempting to assume that data understanding
leads to good decision making, but digging into literature from economics, sociology and marketing
showed us the way we make decisions is not always rational (cognitive biases). We thus embarked on a
journey to understand how cognitive biases may affect our decision making when using visualizations,
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and what we could do about it. This was challenging. E. Dimara had to dig into obscure and hard to
digest research in several domains (economics, psychology, sociology, marketing), analyze it, and came up
with a perspective that is actionable for the vis community (that ended in our taxonomy paper). But we
feel it is worth it, as it made previously unknown and scattered findings from other domains accessible
to the visualize community [DFP+20]. It was a proud moment when a senior researcher said that some
of their recent papers were directly inspired by that taxonomy. As a discipline visualization is extremely
broad, touching topics that are central to other domains (design, creativity, humanities, machine learning,
etc.) and we need people that wear two hats, that understand visualization but are also embedded in these
domains, and can translate the findings and challenges to us. Many efforts in our community are done
to help us open to these fields (often in the form of workshops like ones bringing Vision research, Data
Science, Humanities, ML) but surely more opportunities exist.

The third part of the chapter (section 3.3) summarizes how we started out to adapt an existing visual-
ization tool, Scatterdice [EDF08], to use in different contexts. With GraphDice [BCD+10] we wanted to
investigate if the tool’s success with multi-dimensional data, could be transferred to multi-variate graphs.
While that was our initial inspiration, our work went further into examining the potential of the tool for
more specific data and tasks (social network analysis).

Similarly, EvoGraphDice started our with the idea that we could combine the tool with machine learn-
ing (in our case interactive evolutionary algorithms) to aid the exploration of very high-dimensional data,
providing interesting dimensional views. This work also started by an inspiration for a tool, but led a
large sequence of work on applying the use of a tool that combines human and algorithmic computation
to different context and domains (and finding the limits of the approach) [CBL12a, BTBL13, TBBL13,
BBTL15, BBT+19], including work on collaboration mentioned in the previous chapter [BBT+19].

While we were trying to find appropriate ways to validate our tool, we were confronted with a more
high-level question of what are appropriate methods to evaluate mixed-initiative systems (or Interactive
Visual Machine Learning systems). The evaluation here is particularly challenging, as the machine is
learning from user exploration, but the user’s goals may also be evolving [Mac00], and there is generally
no ground truth to be reached. Apart from combining algorithmic (convergence) and user-centered eval-
uations (such as insight evaluations with experts [SND05]), there may be other possibilities. In our recent
work on the evaluation of such systems [BBL18], we put forward the idea of also looking at metrics related
to creativity of the solutions reached by the experts - same as art, there is creativity in scientific thinking
characterized by lateral thinking and surprising findings. Finding what are the appropriate methods and
measures to use to evaluate interactive visual machine learning systems is a topic that requires further
investigation and is of interest to the visualization community, as the attendance in our recent workshop
on the topic5 indicated.

Finally, during the design, development and the evaluation of of EvoGraphDice we were fortunate to
closely collaborate with an expert in the ML side (Evolutionary Algorithms), that was also an end-user
of our tool: she used it to visualize the evolution of generations of her optimization algorithms under
different input parameters. In this instance it was the machine learning expert that was immersed in
the designers’ environment, wearing two hats and enabling the communication across our two domains.
This resembles the concept of participatory design, where end-users are incorporated in the design team,
but there are also differences. Our expert was not only an end-user providing design feedback, but
also responsible for part of the system (ML). Given the immense interest in explainable AI and plethora
of work that brings together visualization and ML experts, this types of very fruitful relationships will
continue to grow. It is worth considering ways to more systematically structure them, and to consider
their appropriateness as both design but also as system validation approaches.

5EVIVA-ML workshop on the EValuation of Interactive VisuAl Machine Learning systems https://eviva-ml.github.io/
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The last part of the chapter (section 3.4) considers examples of my work that start from specific types
of data and tasks. In particular, with my colleagues we looked at geotemporal data and tasks that have
not been considered before. In the first study, we looked at how to visualize correlation between two
thematic variables (e.g., life expectancy and fertility rate) across space and time [PPB20]. In the second,
we examined the unique characteristics of propagation movements (e.g., a virus) and compared different
visualizations in how well they convey them.

The inspiration behind this work was an animation by G. Dudas6 that accompanied their Nature article
on the topic [DCR17]. Their visualization illustrates aggregated patterns of movement, showing the results
of their analysis in a data-storytelling manner. But made us realize that we do not in-fact know what are
the best visualizations to analyze propagation phenomena and their unique movement characteristics.
This led us to consider generally spatio-temporal tasks and it was at this point we were surprised by the
lack of general guidelines for spatio-temporal correlation with two (or more) thematic variables. We thus
took a step back to deal with the more studied topic (correlation) before moving into propagation.

The goal of both studies is to find the visualization that best supports the tasks, as such we decided on
a comparative study for our validation methodology. To ensure that conditions were comparable across
visualizations we controlled several factors (such as the correlation coefficient and monotonic evolution
in the first, or the propagation duration and number of peaks and hops in the second). We thus needed
to control aspects of the data, while at the same time ensuring the data was close to real-life datasets
used in the analysis of geotemporal phenomena. This can be a difficult balance to strike. In our case,
for the correlation study we imitated characteristics of real datasets (values for thematic variables and
correlations). For the propagation study we relied on common simulation models, that we then tweaked
to control the presence of desired characteristics. I feel this approach gives a good balance: it ensures that
the data share characteristics with the real-world phenomena, while at the same time provides researchers
with some degree of control. Nevertheless, the process of can be time consuming. In our case it required a
lot of piloting and tweaking of simulation parameters to reach the final outcome. My co-authors and I feel
it is very important to share this information, both to save future researchers time and to aid replication
of our results and make future studies comparable. We have thus made all our material (code, dataset,
analysis) available, a practice that I am happy to see our community adopting at large.

6Animation of Ebola virus spread https://youtu.be/j4Ut4krp8GQ
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4 | Perspectives, Future Directions
and Closing Remarks

The previous chapters provided a collection of my past work that is centered on wall-display platforms
and opportunities and challenges surrounding them (chapter 2); and on work I conducted attempting
to create appropriate visual representations or gain deeper understanding about how they influence our
perception and decision making (chapter 3). I next describe my plans for future work.

4.1 Visualization using Collaborative Technologies

The different sections in chapter 2 showed challenges and opportunities when designing interactive visu-
alizations in wall-display environments, when it comes to interaction, representation and collaboration.
Nevertheless, many opportunities remain.

When it comes to viewing data, our work identified a potential challenge in collaboration since people
see information differently from different positions [BI12]. The perception of visual information can be
affected by other factors unique to collaborative settings, such as the occlusion (or partial occlusion) of
areas of the display due to the positioning of one’s colleagues around the space. While existing work has
discussed using the space that users occlude to show personalized information [KRMD15], it is not clear if
this occlusion affects viewers’ understanding of information and collaborative analysis more generally. The
question on data understanding becomes more complex since wall-displays are rarely used in isolation.
Often they are part of a more complex multi-surface environment [BLHN+

12] (that may include tables,
mobile devices, etc.). Previous work on tabletops [WSFB07] investigated how varying screen orientation
from a horizontal to up-right position influenced the accurate perception of elementary graphical elements.
Our findings on wall-displays are different (we found an increase in error with horizontal placement that
was not observed before). These perceptual differences across displays show that we cannot generalize
findings from one display to another, nor can we predict how information will perceived when spread
out across displays in complex environments. I plan to continue my work seeking to understand how we
view information in such environments.

Beyond traditional collaborative environments (walls, tables), we see an increasing number of aug-
mented reality headsets, that could further the capabilities of these more traditional collaborative devices,
by displaying information in any part of the environment (including on the shared devices. This is the
topic of the recent bool on immersive analytics [MSD+

18], where I co-authored a chapter using such de-
vices in collaborative settings [BCBM18]. We discuss situations where new immersive technologies can
be used to support analytical reasoning and decision making in general, and in collaborative contexts in
particular. While there is a recent research trend to aid and study use of Virtual or Augmented Reality
when analyzing information visualization (e.g.,[CCD+

17, WWS20], when it comes to collaboration most
work focuses on analytics systems (for a recent survey see [FP19]) and rarely studies the impact of the
technology on the collaboration itself (e.g., [CDK+

17]). With PhD student R. James I am currently in-
vestigating how to best combine these personal immersive displays, with more traditional collaborative
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displays (such as walls and tables). As these technologies vary widely in cost, size, resolution, and ways
of interacting with them, we will explore which technology is more appropriate for given tasks and user
needs. More particularly, we plan to study when physically collocated setups, such as wall-displays, are
required for collaborative analysis, and when less expensive Augmented Reality headsets can be consid-
ered as low-resolution alternatives. And where a mix of these technologies can come in play, and be used
concurrently in collaborative situations.

4.2 Study Interaction in Visualization systems

Still considering perception, there is little work that explores the interplay between interaction and visual
perception. Among them Jota et al. [JNJ+10] studied the impact of viewing angles on pointing perfor-
mance on a wall and found that the visual size of an object affected performance more than its actual
size. When users actively manipulate information, this affects their understanding of it. And Saket et al.
[SSRE18] found that a magnitude production study (where participants compare visual variables, but
give interactively their response) produces similar ranking results to classic magnitude estimation studies
[CM84]. In the context of wall-displays interaction could be a means to mitigate perception limitations.
If we can reliably identify visual distortion (as we did in our work [BI12]) we can suggest interaction
techniques that can help to alleviating specific perception limitations. For example we can envision cases
where we bring close to them remote content that we know is perceived incorrectly, or that is currently
occluded by colleagues (along the lines of work where content hidden by physical objects [KSMS12] or
users hands [VB10] is displaced to different locations). Understanding the impact of interaction in visual
analysis more generally, is a broader topic that I want to pursue. With my colleagues we have already seen
for example that the choice of interaction techniques can affect coordination and quality of simple graph
topology tasks on wall-displays [PBC17a]. This is a topic that merits further investigation in complex
collaborative situations. Recent work that attempts to pinpoint the notion of interaction in visualization
[DP20], also highlights that while the benefits of interaction are generally acknowledged, it is rarely the
focus of our research efforts.

More generally, the space of interface design for visual analysis tools remains fairly unexplored. It
is only in recent years that novel interaction paradigms are studied in visualization literature. Examples
include the work by Jansen et al. [JDF12b] that compares tangible slider controllers with traditional virtual
ones in situations when controlling a wall-display. And the work by Saket et al. [SHPE20] that studies the
strategies adopted by participants when using direct manipulation [Shn83] to alter the graphical encodings
in a visualization (an approach that is adopted in a non-systematic way by several systems, e.g., [RLP10,
KC14, KJEY11]). Our own work on SketchSliders [TBJ15] is complementary, instead of customizing visual
encodings, we consider the customization of the tools that analysts will need in their exploration. I feel
this approach merits further consideration, beyond the case of wall-displays. Already the comments open
up possible directions of future research, studying the possibility that one interface does not fit all analysis
needs. Our participants often felt that the decisions they made about their tools helped them structure
their analysis, adjusting and copying these tools allowed them to keep track of alternative explorations,
and stated that their tool choices and hand-written annotations captured subtle aspects of exploration that
were important to capture and store with their analysis steps. Studying the implications of creating tools
on-the-fly for visual analysis is a direction I would like to continue working on.

4.3 Appropriate Visual Representations

My work on creating appropriate visual representations is very broad, and each individual piece of work
has opened up avenues for me to pursue in the future. Our work with domain experts continues. For
example, with our neuroscientist colleagues we have established the need for them to get access to sim-
ilarity results quickly, even though they are dealing with a large amount of data, and thus can suffer
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from computation delays. There are back-end solutions for providing approximate and progressive query
results in timeseries data [ZIP16] as it becomes available. Such systems are generally appreciated by users
due to their quick feedback [BEF17, ZGC+

17]. Nevertheless, how to present these to users is an open
question. For example, users can be mislead into believing false patterns in early progressive results
[MFDW17, TKBH17] with early progressive results. It is thus important to communicate the progress of
ongoing computations [ASSS18, SASS16], including the uncertainty and convergence of results [ASSS18]
and guarantees on time and error bounds [FP16]. This is not a trivial topic, as in many cases the under-
lying data is evolving (e.g., dynamic data) or too large to determine their distribution. How to visually
explain such guarantees is also a challenge, as it largely depends on the type of data and the guarantees
presented. Moreover, it is not clear if users can interpret them correctly (especially if they are probabilistic
in nature and based on partial data), if users trust the guarantees, can reason and analyze data under this
uncertainty, and make decisions using them. The last part of A. Gogolou’s PhD explores how to (i) provide
these guarantees in the context of timeseries (work under review), and (ii) visualize their uncertainty and
convergence. As previous researchers, I am interested to see how our experts interpret and make use of
these indications in practice during their visual analysis process.

To deal with the large amount of data most experts deal with today, we often combine human and
computer analytical capabilities [Hee19, JLC18, BL09b]. We followed this approach in our work that com-
bines visualization and evolutionary computation [CBL12a, BTBL13], to help steered the system towards
the exploration of areas that the human finds interesting. These system are often called interactive visual
machine learning (IVML) systems. Here the role of the human is not only to interpret and understand the
underlying models or decisions (as is the case in Explainable AI). But to also actively act on, and react to,
these models. This raises questions related to trust and usability, but also questions with respect to the
evaluation of the various facets of the IVML system, both as separate components, and as an entity that
includes both human and machine intelligence [SSZ+

16]. This is a challenging topic to tackle. First, both
the the machine learning component, but also the human, learns and evolves [Mac00] as they progress
in their exploration. Thus the desired outcome of the process may be continuously evolving and thus
hard to capture and evaluate. Moreover, these complex systems face uncertainty both from the automatic
inference [AWV+

19] and from the analysts trying to reason under uncertainty [HQC+
19]. These char-

acteristics make the evaluation of IVML systems a challenging, but very exciting topic of research. With
colleagues from INRA we have started to tackle some aspects of it [BBTL15], considering evaluations both
from the algorithmic and human side. Nevertheless, we still don’t have a good grasp of what are good
measures and methodologies for evaluating such systems, considering possible metrics and taxonomies to
categorize the types of systems and how to best evaluate them. This is more generally an open discussion
in our community, and in we recently organized a workshop in IEEE VIS on the topic1 with the goal to
elaborate on a concrete research agenda.

And when it comes to more fundamental questions, there are still many questions that remain about
how we make decisions using visualization systems. Our taxonomy paper [DFP+20] identified many open
problems to study, like how our memory of visualizations may be biased, how does the use of automation
in conjunction with visualization (such as the use of recommendations based on machine learning) can
affect our decision making process, can we use visualizations to mitigate these biases (as we did with
the attraction effect [DBBF19]), etc. Recent work in the visualization community has started considering
possible biases during data understanding and analysis.

More importantly, it raises fundamental questions about how we conduct our own research. For
example, confirmation bias is known to exist in research. But is it possible others affect our results and
conclusions? For example, when we present users with three systems or techniques to rank, do we
introduce attraction effects or compromise biases, leading participants to favor particular systems and
techniques? I would like to continue work on this topic, and beyond specific biases attempt to conduct a
meta-analysis of work in our domain that may have been affected by such biases.

I plan to start with a smaller set of biases that relate to choice tasks (such as the attraction effect and

1EVIVA-ML Valuation of Interactive VisuAl Machine Learning systems https://eviva-ml.github.io/

https://eviva-ml.github.io/
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the compromise bias), as in our domain the validation of newly introduced techniques often considers
comparisons and subjective rankings. But in the long run I plan to systematically expand to other biases
and other research domains that may also be affected.

4.4 Inspiration and Design Process in Visualization
In the following years I plan to explore two high-level questions about how we conduct research in in-
teractive visualization. The first is, as mentioned above, the study of possible biases that affect us as
human-computer interaction and visualization researchers. The second is to try to analyze the inspiration
behind our work as a community, and explore if there are ways to capture it and share it with others.

Thinking past my own work it has come apparent that sources of inspiration vary. Much of it can come
from domain experts that reach out to us with their problems (as was the case of my work on storytelling for
Business Analysts [EAB13]). Other comes from research colleagues in other fields that reach out to us with
new problems or advances in their own fields. This was the case behind the work I did with colleagues
from evolutionary computation (the development of EvoGraphDice [CBL12a]) and from data mining (the
work we are currently conducting with neuroscientists on progressive similarity search guarantees). In
the visualization field we have a long relationship with colleagues from Machine Learning, Vision science
and the Humanities that have inspired and driven much work over the years (as evidenced by the many
workshops and other events cross-pollinating these domains with visualization, like Vis×Vision, Vis×AI,
VIS4DH - Visualization for the Digital Humanities, VizSec -Visualization for Cyber Security).

I have also been inspired by previews work and applied it to new use contexts, like our work on multi-
variate graph visualization [BCD+10], and on GeneaQuilts with genealogists [BDF+10]. This was some-
times done in unexpected ways, for example when my work on mobile shortcuts inspired SketchSliders
[TBJ15]. Other researchers have very likely been inspired by previous works and their trade-offs in order
to create hybrid approaches, like the work on NodeTrix (node link + matrix) graph visualization [HFM07].

Another inspiration may be our own needs as researchers, like our work developing the Smarties toolkit
[CBF14], and trying to deal with limits of technology at our disposal (likely this is the reason behind work
investigating missing data visualization, visualization under latency or uncertainty, etc.). Or of thinking
of the larger societal impact of visualization (like the recent work on visualization ethics [Cor19]).

Other inspiration can be more serendipitous. Art is one. Several years back an XKCD comic2 sparked
a series of work on timeline visualizations [TM12, LWW+

13]. Or it can be the artistic approach itself.
Recently, the Dear Data book [LP16] by information designers Lupi and Posavec inspired several work
on custom-created and personalized visualizations, like work on sketched and personalized visualiza-
tions [XHRC+

18, KIHR+
19], as well as our own recent work on using pictures as elements for creating

visualizations [ZSBC20]). Another inspiration is popular media, for example our work on hybrid-image
visualizations [IDW+13] was originally motivated by an article in a science magazine.

This is by no means a complete list. And while several papers clearly acknowledge the inspiration
behind them, this is not always systematically done when writing a research article, as space may be at a
premium, or because as researchers we need to present a coherent story of our work. Moreover, our papers
rarely capture the iteration of our ideas and techniques. Domains interested in designing solutions for
wicked problems [KR70] have developed methodologies for capturing their process of design rationales
[Lee97], i.e., their reasons, justifications, alternatives considered, and trade-offs evaluated. To a lesser
degree, HCI has a tradition of following iterative design process and HCI papers often refer to previous
iterations of tools and of pilot results. I feel that in much of the visualization literature this information is
lost, but could be important for other researchers in the field (to teach or reuse). The research replication
crisis has prompted efforts in our research community (among other domains) to adopt open science
practices that can aid replication and reproduction (pre-registration of studies, sharing of code, data and
analysis scripts and results). It may be time that as HCI and visualization researchers we need to consider

2XKCD Movie Narrative Charts https://xkcd.com/657/

https://xkcd.com/657/
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if we should more systematically also share our inspirations and design steps and outcomes. In the
following years I plan to investigate how different members of our research community view and keep
track of information related to inspiration and iteration of of the work, if they can see value in sharing and
communicating it to others, as well as what are methodologies we could adapt from other domains (like
design rationale) that would work with the practices and constraints of our field.

4.5 Closing Remarks

The list of my past and future work consists of a diverse body of work. Some have common characteristics
and an underline theme (use of collaborative technology, understanding of decision making), and others
vary in topic and methodology and may seem disconnected. While there are indeed topics that are
constantly motivating my research (e.g., use of new technology in visualization), my work inspiration and
focus is often serendipitous: I work on problems that I find interesting and I can find interest in many
topics. This is in part due to the freedom provided by an academic career, but it is also in large part due
to my training. I’ve found the fact that I was trained in HCI to be an extremely valuable attribute when
conducting visualization research, as I can approach different research questions applying very different
methodologies. I am extremely grateful to the University of Toronto for its exceptional HCI curriculum.

My HCI training has provided me with a big suite of methodological tools that I can rely on when
looking at a new problem, ranging from techniques to break down problems (design of controlled ex-
periments and isolating factors), to understanding user needs (user observations, interviews, contextual
inquiries), to design (participatory design, iterative prototyping), to evaluate and validate (informal feed-
back, observational studies, controlled lab experiments), and to analyze the results (both with qualitative
and quantitative methods). This is in part the reason that I have been able to look at very different research
topics and approach them using very different methodologies that I adapt to the questions at hand. I was
of course not an expert in all methodologies when finishing my PhD degree, but the HCI training and
methodological diversity of the HCI community, helped me be open to many different ways of conducting
research, and the drawbacks and benefits of each. This type of training is something I believe we need to
encourage as a field.

This view of research from both a visualization and HCI perspective has also served as inspiration
for solutions proposed in my work. By keeping informed as best I can of the literature across the two
communities, I have been influenced in the types of solutions I propose, that often combine inspiration
from the two domains (e.g., use sketching for UI design in a visualization). Finally, it has blessed me with
my many amazing colleagues, with their different points of view and expertise. The work presented here
has only been possible because of my students, and colleagues from industry and academia, who have
worked with me across years and countries. I cannot thank them enough.

And while a very broad set of interests makes writing a manuscripts such as this one challenging, I
feel it is the reason why visualization and HCI researchers (myself included) love our job. I was recently
asked what I like about being a researcher, and my response was that what I like is being an HCI and
Visualization researcher in particular. Our research community is extremely fortunate to have access to
a staggering variety of topics to work on. Data exists in every aspect of life and we can choose within
our profession to learn more, become immersed in, and have an impact on an infinite number of other
domains, from neuroscience, genealogy and economics, to vision science and cognition. Sometimes it
takes a retrospective career document to remind us of the beauty of our domain.
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Supervisor: Ravin Balakrishnan
Committee: Ken Hinckley (external reporter), Ron Baecker, Mark Chignell, Karan Singh, Khai Truong.

1999-2001 MSc Computer Science Department, University of Toronto, Canada
Thesis: "Using Projection to Accelerate Ray-Tracing"
Supervisor: Alejo Hausner, Reporter: James Stewart

1994-1999 BS Department of Informatics, University of Piraeus, Greece
Thesis: "Defining and solving timetable scheduling problems using graphical constraint representations"
Supervisor: Themis Panayiotopoulos

Fellowships & Distinctions

2018-now Prime d’Encadrement Doctoral et de Recherche (PEDR) - top 20% of Associate Professors nationally
2017 IEEE VIS/InfoVis - Honorable mention (top 4 papers of conference)
2015 ACM CHI 2015 - Honorable mention (top 5% of papers)
2013 INTERACT 2013 - Brian Shackel Award (Best Paper)
2007 SIGGRAPH 2007 - Invited to Highlights from UIST session
2006 UIST 2006 - Best Student Paper Award

1999-2005 University of Toronto Open Fellowship
1999 Graduated top of class in Department of Informatics, University of Piraeus

Research Interests & Objectives

Research focused on the design and evaluation of novel interaction and visualization techniques, in the
context of large displays and large visual datasets. Interested in such designs for single and multi-user
interaction settings, collocated and distributed, and in the evaluation methods to validate them.
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Research Supervision

PhD Supervision3

2018-now Co-Supervisor of PhD student Raphael James (60%, supervisor E. Pietriga, O. Chapuis & T. Dwyer)
Title: "Immersive Analytics in Wall-display Environments"

2018-now Co-Supervisor of PhD student Tong Xue (80%, supervisor E. Pietriga)
Title: "Knowledge Discovery in Data Journalism"

2016-2019 Supervisor of PhD student Anna Gogolou (60%, co-supervisor T. Palpanas)
Title: "Iterative and Expressive Querying for Big Data Series
Publications: IEEE VIS/InfoVis [J19], BigVis Workshop 2019 [O13] and 1 under submission

2014-2017 Co-Supervisor of PhD student Arnaud Prouzeau (60%, supervisor O. Chapuis)
Title: "Collaboration around Wall-Displays in Command and Control Contexts
Publications: TVCG [J14], ACM ISS [C14] and [C17],

GraphicsInterface [C15], ISS workshop [O10], IHM [O8]
Current Position: Post-Doc at University of Monash, Australia.

2014-now Co-Supervisor of PhD student Evanthia Dimara (50%, supervisor P. Dragicevic)
Title: "Information Visualization for Decision Making"
Publications: TVCG/InfoVis [J15]-Honorable Mention, [J16] and [J17],

TVCG [J20], ACM CHI [C16], IEEE VIS workshop [O6]
Current Position: Research Scientist at University of Konstanz, Germany

2009-2012 Co-Supervisor of PhD student Micheline Elias (80%, supervisor M.-A. Aufaure)
Title: "Enhancing Human Interaction with Business Intelligence Dashboards"
Publications: INTERACT [C10]-Best Paper Award and [C8],

ACM CHI [C9], and 2 patent submissions
Current Position: Analytical Application Manager at Collective[i] New York.

2019 Internship supervisor of visiting PhD student Nicole Sultanum (3 months in U. Paris-Saclay)
Title: "Data Visualization for Narrative Understanding in Journalism with Storifier"
Publication: under submission

2007 Internship supervisor of visiting PhD student Nathalie Henry (3 months in NICTA)
Title: "Exploring Large Social Networks with Matrix-Based Representations"
Publication: IEEE VIS/InfoVis [J2]
Current Position: Researcher at Microsoft Research Redmond USA.

Master Supervision
2014 Co-supervisor of MSc student Thanasis Taousakos

Title: "Detecting and Simplifying User’s routines on Mobile devices"

2013 Co-supervisor of MSc student Thibaut Jacob
Title: "Sketching Interactions for Data Exploration"
Publication: ACM CHI [C13]

2012 Co-supervisor of MSc student Stelios Frantzeskakis
Title: "Navigating large information spaces on wall displays using mobile devices"
Publication: ACM CHI [C12]

2012 Co-supervisor of MSc student Jeronimo Barbosa
Title: "Combining interactive pen and tangibles for technical drawing"

2009 Supervisor of MSc student Micheline Elias
Title: "Visual Exploration of Time-Varying Data Cubes"
Publication: 1 patent submission

3In France professors without an HDR generally cannot supervise PhD thesis alone, in my list I give my percentage of supervision.
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Scientific Community Involvement and Juries

Chairing ACM CHI Conference: Subcommittee Chair4(2019-2020) for Visualization

Program Committee ACM CHI Conference (2015-2018)
IEEE InfoVis Conference (2015-2017, 2018-now)
ACM UIST Conference (2018-2019)
GraphDrawing Conference (2014)
IEEE PacificVis Conference (2010-2013)

Organization Committee IEEE VIS Workshops co-chair (2019-now)
BELIV Workshop co-organizer (2020)
IEEE VIS Community co-chair (2017-2018)
ACM CHI Interactivity co-chair (2009)
IEEE VIS Workshop organizer (EValuation of Interactive VisuAl ML systems)
IHM Demos Co-Chair, 2015

Other Committees: IEEE VIS Best Short Paper committee - Chair (2019)
IEEE VIS Best Poster committee (2018)

Other Community Involvement IEEE VIS Ombuds representative (2019-now)

PhD Thesis Juries Reporter for PhD of F. Rajabiyazdi, University of Calgary, Canada (2019)
Jury member for PhD of A. Chalbi, Université Lille 1, France (2019)
Reporter for PhD of S. Rufiange, École de technologie supérieure -ÉTS, Canada (2013)

Reviewing NSERC, Canadian Discovery Grands (2018-2020)
ACM Transactions on Computer-Human Interaction - ToCHI (since 2009)
IEEE Transactions on Computer Graphics - TVCG (since 2009)
IEEE Conferences: InfoVis & VAST, EuroGraphics (since 2007), PacificVis (since 2009)
ACM Conferences: CHI, UIST, CSCW (since 2005), AVI, ISS and ITS (since 2007)

Local Community President of the ACM SIGCHI Parisian chapter (2014-2016)
Vice-President of the ACM SICCHI Parisian chapter (2012-2014)
Treasurer of the ACM SICCHI Parisian chapter (2010-2012)
Co-founder Parisian ACM SIGCHI Chapter (2010)

Student Volunteer ACM UIST 2005

Funded Projects

iCoda funded by Inria (Inria Project Labs’ initiative). Head of the HCI/Vis work package.
2018-now Funding for 3 PhDs (e.g., PhD student T. Xue), 2 engineers, and 80K EU for expenses.

Digiscope funded by ANR (French National Agency) Equipement d’Excellence (advanced infrastructure)
2011-2016 Budget 6 million EU. Head for École Centrale Paris, continued involvement in Univ. Paris-Sud.

DaEv funded by Paris-Sud, Projet Attractivité (AAP). Primary and sole Investigator.
2012 35K EU for my research (equipment and travel).

CUBIST EU FP7 project. Wrote the HCI/VIS package and was member of the package.
2010-2011 Budget 3 million EU (project ended in 2013).

4ACM CHI is organized in thematic subcommittees/areas, a Subcommittee Chair acts as a paper chair for the subcommittee.
Decisions are taken in a live program committee meeting.
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List of Publications

In the field of Human Computer Interaction, conferences are considered the primary method of publica-
tion. The ACM CHI and UIST conferences are particularly selective and are considered journal level work
by the ACM/SIGCHI. See http://dx.doi.org/10.1145/1743546.1743569

In the field of Visualization, the major publication venue is the IEEE Transactions on Visualization
and Computer Graphics journal. The proceedings of the top conferences in the domain (IEEE Info-
Vis/Vis/VAST) go through a journal reviewing process and are published as part of this journal.

International Peer-reviewed Journal Articles

[J.21] V. Peña-Araya, E. Pietriga and A. Bezerianos (2019). A comparison of visualizations for identifying
correlation over space. In IEEE InfoVis 2019 - the IEEE Transactions on Visualization and Computer
Graphics, 26(1), 2019, 10 pages.

[J.20] E. Dimara, S. Franconeri, C. Plaisant, A. Bezerianos, and P. Dragicevic (2018). A Task-based Taxon-
omy of Cognitive Biases for Information Visualization. In TVCG - the IEEE Transactions on Visualiza-
tion and Computer Graphics, 20 pages.

[J.19] A. Gogolou, T. Tsandilas, T. Palpanas, A. Bezerianos (2018). Comparing Similarity Perception in
Time Series Visualizations. In IEEE InfoVis 2018 - the IEEE Transactions on Visualization and Computer
Graphics, 25(1), 2018, 10 pages. [25.7% acc. rate]

[J.18] T. Blascheck, L. Besan con, A. Bezerianos, B. Lee, P. Isenberg (2018). Glanceable Visualization: A
Study of Perception Time for Data Comparison Tasks on Smartwatches. In IEEE InfoVis 2018 - the
IEEE Transactions on Visualization and Computer Graphics, 25(1), 2018, 10 pages. [25.7% acc. rate]

[J.17] E. Dimara, G. Bailly, A. Bezerianos, S. Franconeri (2018). Mitigating the Attraction Effect with
Visualizations. In IEEE InfoVis 2018 - the IEEE Transactions on Visualization and Computer Graphics,
25(1), 2018, 10 pages. [25.7% acc. rate]

[J.16] E. Dimara, A. Bezerianos, P. Dragicevic (2017). Conceptual and Methodological Issues in Evaluating
Multidimensional Visualizations for Decision Support. In IEEE InfoVis 2017 - the IEEE Transactions on
Visualization and Computer Graphics, 24(1), 2018, 10 pages. [23% acc. rate]

[J.15] E. Dimara, A. Bezerianos, P. Dragicevic (2016). The Attraction Effect in Information Visualization.
In IEEE InfoVis 2016 - the IEEE Transactions on Visualization and Computer Graphics, 23(1), 10 pages.
Best paper Honorable Mention (4 best papers of conference) [23% acc. rate]

[J.14] A. Prouzeau, A. Bezerianos, O. Chapuis (2016). Evaluating multi-user selection for exploring graph
topology on wall-displays. In TVCG - the IEEE Transactions on Visualization and Computer Graphics, 14

pages.

[J.13] J. Fuchs, P. Isenberg, A. Bezerianos, F. Fischer, and D. Keim (2016). A Systematic Review of Ex-
perimental Studies on Data Glyphs. In TVCG - the IEEE Transactions on Visualization and Computer
Graphics, 14 pages.

[J.12] N. Boukhelifa, A. Bezerianos, W. Cancino, E. Lutton (2015). Evolutionary Visual Exploration: Evalu-
ation of an IEC Framework for Guided Visual Search. In Evolutionary Computation, Massachusetts
Institute of Technology Press (MIT Press), 30 pages, 2015.

[J.11] J. Fuchs, P. Isenberg, A. Bezerianos, F. Fischer, and E. Bertini (2014). The Influence of Contour on
Similarity Perception of Star Glyphs. In IEEE InfoVis 2014 - the IEEE Transactions on Visualization and
Computer Graphics, 20(12), pp.2251-2260.[23% acc. rate]
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[J.10] P. Isenberg, P. Dragicevic, W. Willett, A. Bezerianos, and J.-D. Fekete (2013). Hybrid- Image Visual-
ization for Large Viewing Environments. In IEEE InfoVis 2013 - the IEEE Transactions on Visualization
and Computer Graphics, 19(12): 2346-2355, (10 pages). [25% acc. rate]

[J.9] N. Boukhelifa, W. Cancino, A. Bezerianos, and E. Lutton (2013). Evolutionary Visual Exploration:
Evaluation With Expert Users. In Eurovis 2013 - Eurographics/IEEE- VGTC Symposium on Visualization,
32(3): 31-40, (10 pages) [28% acc. rate]

[J.8] A. Bezerianos and P. Isenberg (2012). Perception of Visual Variables on Tiled Wall- Sized Displays for
Information Visualization Applications. In IEEE InfoVis 2012 - the IEEE Transactions on Visualization
and Computer Graphics (Proceedings Scientific Visualization / Information Visualization 2012), 18(12): 2516-
2525, (10 pages). [25% acc. rate]

[J.7] N. Boukhelifa, A. Bezerianos, T. Isenberg and J.-D. Fekete (2012). Evaluating Sketchiness as a Visual
Variable for the Depiction of Qualitative Uncertainty. In IEEE InfoVis 2012 - the IEEE Transactions on
Visualization and Computer Graphics (Proceedings Scientific Visualization / Information Visualization 2012),
18(12): 2769-2778, (10 pages). [25% acc. rate]

[J.6] P. Isenberg, A. Bezerianos, P. Dragicevic and J.-D. Fekete (2011). A Study on Dual- Scale Data Charts.
In In IEEE InfoVis 2011- the IEEE Transactions on Visualization and Computer Graphics, 17(12): 2469-2487,
(10 pages) [26% acc. rate]

[J.5] A. Bezerianos, P. Dragicevic, J.-D. Fekete, J. Bae, B. Watson (2010). GeneaQuilts: A System for
Exploring Large Genealogies. In IEEE InfoVis 2010 - the IEEE Transactions on Visualization and Computer
Graphics, 16(6): 1073-1081, (10 pages) [26% acc. rate]

[J.4] A. Bezerianos, F. Chevalier, P. Dragicevic, N. Elmqvist and J.-D. Fekete (2010). GraphDice: A System
for Exploring Multivariate Social Networks. In Eurovis 2010 - Eurographics/IEEE-VGTC Symposium on
Visualization, 29(3): 863-872, (10 pages) [29% acc. rate]

[J.3] P. Isenberg, A. Bezerianos, N. Henry, S. Carpendale, and J.-D. Fekete (2009). CoCoNutTrix: Collab-
orative Retrofitting for Information Visualization. In IEEE Computer Graphics & Applications: Special
Issue on Collaborative Visualization, 29(5):44-57, (14 pages).

[J.2] N. Henry, A. Bezerianos, J.-D. Fekete (2008). Improving the Readability of Clustered Social Networks
by Node Duplication. In IEEE InfoVis 2008 - the IEEE Transactions on Visualization and Computer
Graphics, 14(6): 1317-1324, (8 pages).

[J.1] A. Bezerianos, R. Balakrishnan (2005). Canvas Portals: View and Space Management on Large
Displays. In IEEE Computer Graphics & Applications, Special Issue on Applications of Large Displays,
25(4): 34-43, (10 pages).

International Peer-reviewed Conference Articles

[C.21] E. Zhang, N. Sultanum, A. Bezerianos, and F. Chevalier (2020). A comparison of geographical
propagation visualizations. In ACM CHI 2020 - the ACM SIGCHI conference on Human Factors in
Computing Systems, 14 pages, to appear.

[C.20] V. Peña-Araya, A. Bezerianos, and E. Pietriga (2020). A comparison of geographical propagation
visualizations. In ACM CHI 2020 - the ACM SIGCHI conference on Human Factors in Computing Systems,
14 pages, to appear.

[C.19] N. Boukhelifa, A. Bezerianos, I.C. Trelea, N. Mejean-Perrot, E. Lutton (2019). An Exploratory Study
on Visual Exploration of Model Simulations by Multiple Types of Experts. In ACM CHI 2019 - the
ACM SIGCHI conference on Human Factors in Computing Systems, 14 pages [23.8% acc. rate].
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[C.18] J. Fuchs, P Isenberg, A. Bezerianos, M Miller, D Keim. EduClust -A Visualization Application for
Teaching Clustering Algorithms. In Eurographics - Education Papers, May 2019, 8 pages.

[C.17] A. Prouzeau, A. Bezerianos, O. Chapuis (2018). Designs for Transitioning from Loose to Close
Collaboration in Multi-Display Environments. In ACM ISS 2018 - the ACM International Conference on
Interactive Surfaces and Spaces, 14 pages [26.7% acc. rate]

[C.16] E. Dimara, A. Bezerianos, P. Dragicevic (2017). Narratives in Crowdsourced Evaluation of Visual-
izations: A Double-Edged Sword? In ACM CHI 2017 - the ACM SIGCHI conference on Human Factors
in Computing Systems, pages 5475-5484. [25% acc. rate]

[C.15] A. Prouzeau, A. Bezerianos, O. Chapuis (2017). Trade-offs Between a Vertical Shared Display and
Two Desktops in a Collaborative Path-Finding Task. In GI-2017 - Proceedings of Graphics Interface,
pages 214-219.

[C.14] A. Prouzeau, A. Bezerianos, O. Chapuis (2016). Towards road traffic management with forecasting
on wall displays. In ISS 2016 - Proceedings of the 2016 ACM on Interactive Surfaces and Spaces, pages
119-128 (10 pages).

[C.13] T. Tsandilas, A. Bezerianos, T. Jacobs (2015). SketchSliders: Sketching Widgets for Visual Exploration
on Wall Displays. To appear in ACM CHI 2015 - the ACM SICGHI Conference on Human Factors in
Computing Systems, (10 pages), Honorable mention (top 5% of papers).

[C.12] O. Chapuis, A. Bezerianos, S. Frantzeskakis (2014). Smarties: An Input System for Wall Display
Development. In ACM CHI 2014 - the ACM SICGHI Conference on Human Factors in Computing Systems,
(10 pages). [23% acc. rate]

[C.11] T. Tsantilas, C. Appert, A. Bezerianos, and D. Bonnet (2014). Coordination of Tilt and Touch in
One- and Two-Handed Use. In ACM CHI 2014 - the ACM SICGHI Conference on Human Factors in
Computing Systems, (4 pages). [23% acc. rate].

[C.10] M. Elias, M.-A. Aufaure, and A. Bezerianos (2013). Storytelling in Visual Analytics tools for Busi-
ness Intelligence. In INTERACT 2013 - the 14th IFIP TC13 Conference on Human-Computer Interaction,
ParLNCS 8119, pages 280-297, (18 pages). Brian Shackel Award (best paper ).

[C.9] M. Elias and A. Bezerianos (2012). Annotating BI visualization dashboards: needs & challenges. In
ACM CHI 2012 - the ACM SICGHI Conference on Human Factors in Computing Systems, pages 1641-1650,
(10 pages). [23% acc. rate]

[C.8] M. Elias and A. Bezerianos (2011) Exploration Views: understanding dashboard creation & cus-
tomization for visualization novices. In INTERACT 2011 - the 13th IFIP TC13 Conference on Human-
Computer Interaction, pages 274-291, (18 pages).

[C.7] P. Dragicevic, A. Bezerianos, W. Javed, N. Elmqvist, and J.-D. Fekete (2011). Temporal Distortion for
Animated Transitions. In ACM CHI 2011 - the ACM SICGHI Conference on Human Factors in Computing
Systems, pages 2009-2018, (10 pages). [23% acc. rate]

[C.6] C. Melo, B. Le Grand, M.-A. Aufaure, and A. Bezerianos (2011). Extracting and Visualizing Tree-
like Structures from Concept Lattices. In IV 2011 - the 15th International Conference on Information
Visualization, pages 261-266, (6 pages).

[C.5] F. Chevalier, P. Dragicevic, A. Bezerianos, and J.-D. Fekete (2010). Using Text Animated Transitions
to Support Navigation in Document Histories. In ACM CHI 2010 - the ACM SICGHI Conference on
Human Factors in Computing Systems, pages 683-692, (10 pages). [22% acc. rate].



Anastasia Bezerianos 102

[C.4] A. Collins, A. Bezerianos, G. McEwan, M. Rittenbruch, R. Wasinger, and J. Kay (2009). Understand-
ing File Access Mechanisms for Embedded Ubicomp Collaboration Interfaces. In Ubicomp 2009- the
11th international Conference on Ubiquitous Computing, pages 135-144, (10 pages). [12% acc. rate].

[C.3] A. Bezerianos (2007). Using alternative views for layout, comparison and context switching tasks in
wall displays. In OzCHI 2007 - the Australasian Computer-Human Interaction Conference, pages 303-310,
(8 pages).

[C.2] A. Bezerianos, P. Dragicevic, and R. Balakrishnan (2006). Mnemonic Rendering: An Image-Based
Approach for Exposing Hidden Changes in Dynamic Displays. In ACM UIST 2006 - the 19th ACM
Symposium on User Interface Software and Technology, pages 159-168, (10 pages). Best Student Paper
Award. [23% acc. rate].

[C.1] A. Bezerianos and R. Balakrishnan (2005). The Vacuum: Facilitating the manipulation of distant
objects. In ACM CHI 2005 - the ACM SICGHI Conference on Human Factors in Computing Systems,
pages 361-270, (10 pages) [25% acc. rate].

Book Chapters

[B.2] M. Billinghurst, M. Cordeil, A. Bezerianos, and T. Margolis. Collaborative Immersive Analytics. In
Immersive Analytics. pp.221-257, ISBN:9783030013882, Kim Marriott, Falk Schreiber, Tim Dwyer,
Karsten Klein, Nathalie Henry Riche, Takayuki Itoh, Wolfgang Stuerzlinger, Bruce H. Thomas (Eds.),
Springer, 2018.

[B.1] N. Boukhelifa, A. Bezerianos, E. Lutton. Evaluation of Interactive Machine Learning Systems.
In Human and Machine Learning Visible, Explainable, Trustworthy and Transparent. pp.341-360,
ISBN:978-3-319-90403-0, Zhou, Jianlong, Chen, Fang (Eds.), Springer, 2018.

Theses

[3] A. Bezerianos Designs for single user, up-close interaction with Wall-sized displays. Ph.D. Thesis,
Dep. of Computer Science, University of Toronto, 2007.

[2] A. Bezerianos Using Projection to Accelerate Ray Tracing. M.Sc. Thesis, Dep. of Computer Science,
University of Toronto, 2001.

[1] A. Bezerianos Defining and solving timetable scheduling problems using graphical constraint rep-
resentations. Hon. Thesis. Department of Informatics, University of Piraeus, 1999.

Other Peer-reviewed Articles

[O.13] A Gogolou, T Tsandilas, T Palpanas, A Bezerianos (2019). Progressive Similarity Search on Time
Series Data. BigVis Workshop 2019 in EDBT/ ICDT.

[O.12] T. Blascheck, L. Besan con, A. Bezerianos, B. Lee, P. Isenberg (2018). Preparing for Perceptual Stud-
ies: Position and Orientation of Wrist-worn Smartwatches for Reading Tasks. Workshop on Data
Visualization on Mobile Devices, ACM CHI, 2018, Montréal, Canada

[O.11] T. Blascheck, L. Besan con, A. Bezerianos, B. Lee, P. Isenberg (2018) Perception des visualisations sur
smartwatch. Journées Visu 2018, May 2018, EDF-Saclay

[O.10] A. Prouzeau, A. Bezerianos, O. Chapuis (2016). Visual Immersion in the Context of Wall Displays.
Interactive Surfaces and Spaces Surfaces Companion Proceedings.



[O.9] P. Goffin, W. Willett, A. Bezerianos, P. Isenberg (2015). Exploring the Effect of Word-Scale Visualiza-
tions on Reading Behavior. In ACM CHI 2015 - Ext. Abstracts

[O.8] A. Prouzeau, A. Bezerianos, and O. Chapuis (2015). Surveillance du trafic routier avec un mur
d’écrans. In IHM TeC ’15: Proceedings of the 27th international conference of the Association Fran-
cophone d’Interaction Homme-Machine, Travaux en Cours, 6 pages, ACM, 2015.

[O.7] T. Onorati, P. Isenberg, A. Bezerianos, E. Pietriga, P. Diaz (2015). WallTweet: A Knowledge Ecosys-
tem for Supporting Situation Awareness. ITS Workshop on Data Exploration for Interactive Surfaces
(DEXIS). 2015

[O.6] E. Dimara, P. Dragicevic, A. Bezerianos (2014). Accounting for Availability Biases in Information
Visualization. In IEEE VIS workshop on Dealing with Cognitive Biases in Visualisations (DECISIVe), (4
pages).

[O.5] W. Cancino, N. Boukhelifa, A. Bezerianos, and E. Lutton (2013). Evolutionary Visual Exploration:
Experimental Analysis of Algorithm Behavior. In GECCO workshop on Genetic and Evolutionary Com-
putation (VizGEC 2013), (8 pages).

[O.4] A. Bezerianos, P. Isenberg, O. Chapuis, and W. Willett (2013). Perceptual Affordances of Wall-Sized
Displays for Visualization Applications: Color. In ACM CHI 2013- Extended Abstracts, Workshop on
Interactive, Ultra-High-Resolution Displays (PowerWall), (6 pages).

[O.3] C. Melo, B. Le Grand, A. Bezerianos, M.-A. Aufaure (2011). Parent Selection Criterion for Extracting
Trees from Concept Lattices. In CUBIST Workshop 2011, (10 pages).

[O.2] Y. Riche, N. Henry Riche, P. Isenberg, and A. Bezerianos (2010). Hard-To-Used Interfaces Considered
Beneficial (Some of the Time). In ACM CHI 2010 -Extended Abstracts (alt.chi), pages 2705-2714, (10

pages).

[O.1] A. Bezerianos and G. McEwan (2008). Presence disparity in mixed presence collaboration. In ACM
CHI 2008 - Extended Abstracts, pages 3285-3290, (6 pages).
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SketchSliders: Sketching Widgets for
Visual Exploration on Wall Displays

Theophanis Tsandilas1,2 Anastasia Bezerianos2,1 Thibaut Jacob1,2,3
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Figure 1. SketchSliders (left) allow users to directly sketch visualization controllers to explore multi-dimensional datasets. We explore a range of slider
shapes, including branched and circular, as well as shapes that express transformations. SketchSliders control visualizations on a wall display (right).

ABSTRACT
We introduce a mobile sketching interface for exploring
multi-dimensional datasets on wall displays. We demonstrate
the idea of SketchSliders, range sliders that users can freely
sketch on a mobile surface to customize their exploration. A
small combination of sketches and gestures allows the cre-
ation of complex interactive sliders, such as circular sliders
for periodic data, slider branches for detailed interaction, and
fisheye transformation sliders. We augment sliders with a
suite of tools, such as markers, slider cursors, and approxi-
mate views of data distributions. Our designs are inspired by
a design study with three visualization experts and validated
through a user study with six experts using our system. Our
findings indicate that our sketching interface accommodates a
wide range of exploration strategies, helping users customize
as well as focus their visual explorations.

Author Keywords
Data visualization; sketching interfaces; wall displays

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous

INTRODUCTION
High-resolution wall-sized displays [3, 6, 24] allow users to
view a large amount of visual information, and thus have ap-
plications in a wide range of domains related to visual data

Theophanis Tsandilas, Anastasia Bezerianos, and Thibaut Jacob. SketchSliders:
Sketching Widgets for Visual Exploration on Wall Displays. In CHI’15: Proceedings
of the 33rd Annual ACM Conference on Human Factors in Computing Systems,
3255-3264, ACM, April 2015.
c©ACM 2015. This is the author’s version of the work. It is posted here by permission

of ACM for your personal use. Not for redistribution. The definitive version will be
published in CHI ’15, April 18-23 2015, Seoul, South Korea.
http://dx.doi.org/10.1145/2702123.2702129.

analysis and exploration. Nevertheless, choosing appropriate
techniques to explore data in such environments is not a sim-
ple matter. Viewers are often mobile, moving away to get an
overview of complex visuals, and coming up-close to see de-
tails [3]. Exploring complex datasets also requires access to
a large number of interactive controls in order to manipulate
multiple dimensions and adjust their visual parameters.

We introduce a mobile sketching interface (Figure 1) that
decouples control and visualization in a wall environment.
Instead of having users interact with a large set of prede-
fined exploration widgets, we let them customize their explo-
ration by sketching the controllers that best suit their needs.
To demonstrate the approach, we focus on range slider con-
trollers, SketchSliders. We show how with a small gesture vo-
cabulary users can: creatively use sketching to adjust explo-
ration properties, such as precision, by drawing controllers
of various sizes and shapes; focus on parts of the data by
changing the control resolution in dense areas of data; ex-
plore variations of controllers by grafting alternative paths;
and bookmark important results and points. Due to the nature
of sketching, users can naturally customize the controller’s
appearance and its effect on the exploration. For example,
they can draw larger sliders and branches for a finer control,
circular sliders for periodic data, or shapes that describe trans-
formation functions to focus on a smaller range of the data.

Our designs were inspired by design sessions with three vi-
sualization experts, whose feedback reinforced our choice
of sketch-based range sliders as a versatile controller. Our
sketching interface was then evaluated by six visualization
experts. Our findings verify the flexibility of sketching con-
trollers. They also demonstrate how the approach can accom-
modate different visual exploration strategies, and effectively
support data exploration in interaction with wall displays.
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Our main contributions are:

• We allow users to sketch directly the interactive controllers
they require to conduct data exploration. We illustrate the
potential of the approach with range sliders.

• We design mechanisms for sketching interactive sliders of
arbitrary forms, including circular, branched and transfor-
mation sliders, that support complex queries over multiple
data dimensions and multiple levels of control granularity.

• We introduce an environment that combines visualization
plots on a wall display with mobile devices for sketching
controllers. We study how experts use such a setup.

RELATED WORK
The search for appropriate interactions for wall displays
has been largely investigated in HCI, focusing on questions
mostly related to specific tasks, such as pointing [24] and
maintaining awareness [6]. Recent work has looked at the
use of mobile devices as an interaction medium that supports
mobility. For example Smarties [10] customizes programmat-
ically mobile interfaces to control a wall, while Jansen et al.
[18] combine mobile devices with tangible controllers to ex-
plore visualizations. Our approach differs, as we allow users
to customize their exploration interface using sketching.

Sketch-based input has been used among others for 3D mod-
eling [17], note taking [14], and for domain specific applica-
tions such as MathPad2 [21] and Musink [28]. We focus here
on two relevant research directions: using sketching to create
interfaces, and sketching specifically for visual exploration.

Sketching to Create Interfaces
Wong [33] explains that sketching by hand to prototype inter-
faces allows users to ignore graphic details, focusing instead
on the main goal and nature of the interaction. This is of
special interest in data exploration, as often there is no clear
goal (and thus an ideal interface), and hypotheses are formed
progressively as users generate insight into their data [26].

SILK [20] was the first to allow users to sketch several in-
terface controllers (buttons, sliders), and make them active
by automatically detecting them and generating code. It re-
lates to our work, as interface components are sketched, but
are then ”beautified” by the system, losing their informal and
custom look. Given Wong’s suggestions [33] and comments
from our participants, this custom drawing and appearance is
important in visual exploration.

Monet [23], allows users to sketch items and their states to
create continuous widgets, keeping their informal look. They
explore how to define new widgets and their states by ex-
ample, while we examine how to customize existing widgets
through sketching to aid visual exploration.

Sketching in Information Visualization
Sketching has been used in visualization as a visual render-
ing style (e.g. [34]), but less work has been done on using
sketching as input for data exploration.

QuerySketch [30] and QueryLines [25] allow users to search
and query data by sketching the desired result of their queries

in the form of a graph. Relaxed selection techniques [16]
go further by providing ways to implicitly define the level of
similarity between sketches and real data. These approaches
target mainly time-series data, focusing on searching for pre-
defined patterns, rather than open exploration as we do.

In Transmogrification [7] selected regions from a 2D visual-
ization can be transformed into a destination shape defined
by sketching. This technique does not focus on interactive
controllers. It rather acts directly on the visualization. Nev-
ertheless, it relates to our work, as we also explore how an
arbitrary slider shape can deform a visualization.

SketchStory [22] uses a small set of sketched gestures and
touch interactions to construct a story for presentation and
communication purposes. This tool does not support data ex-
ploration per se, it is rather a tool for helping play back the
results of data exploration to others.

NapkinVis [9] uses sketching gestures to rapidly generate dif-
ferent types of charts, focusing mainly on data visualization
authoring, not exploration. More relevant to our approach is
SketchVis [8] that allows users both to load and to create vi-
sualizations using sketching, but it also provides simple ways
of conducting data exploration. Users can switch between
different data views, select specific data categories, or apply
simple functions such as averages or maximum. SketchVis
was later used in a Wizard of Oz study [29] to better under-
stand the interplay between touch and pen interactions. Our
work delves into using sketching for more complex query
types during exploration, focusing in detail on one type of
interactive controller, range sliders.

GOALS, CONCEPT AND DESIGN SESSIONS
Visual exploration and analysis tasks [2], such as filtering and
range-selection, consist of selections and dynamic queries
[1]. These are predominantly performed using slider widgets,
each representing one data dimension. Our goal was to com-
bine the simplicity of such widgets with the expressive power
of sketch-based data exploration. We were particularly inter-
ested in identifying meaningful roles that shaped controllers
can take, and explore how users could make use of sketching
to augment controllers with new functions.

To explore this direction, we recruited three information visu-
alization experts outside the research team, and ran an hour-
long semi-structured design session with each of them. Their
experience in visualization design and exploration ranged
from 5 to 10 years. We first explained the main goal of the
session, and then gave them three examples of sketch inter-
action, namely how to draw a straight slider and define new
ranges to filter a data set, and how to sketch a data trans-
formation function to acquire overview or details. These are
fundamental tasks in visual exploration [27].

The experts then explored a multi-dimensional dataset. Their
task was left intentionally open to encourage exploration, and
was run in a Wizard of Oz setting. Participants had to think
aloud, explaining what they were sketching on paper and
what the expected behavior on the visualization was. One
experimenter simulated this behavior on a real visualization
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   (Kelley, 1980)
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Figure 2. Designs from our three experts: (a) customized sliders, (b) bended slider with a mark, (c) circular slider, (d) grafting a slider, and (e) a slider
combining different granularity ranges.

using controllers on her machine. A small brainstorming ses-
sion followed, to discuss sketch interactions that could benefit
data exploration in the context of our experts’ own work.

Participants gravitated naturally to variations of sliders as
their main interaction tool to narrow down their exploration,
further validating our choice to focus on this controller. They
all felt that sketching sliders for filtering data provided several
benefits for visual exploration:

Customization (B1). Each stroke is unique. This aspect of
sketching can be used to visually differentiate one slider from
another (Figure 2a). Moreover, as the shape of a stroke can be
arbitrary, one can encode information inside it, for example
bending the slider in a given point of interest (Figure 2b).

Granularity (B2). The length of sketched slider affects the
level of its control on the data. Long sliders allow fine-
grained control and more precise filtering of data, while
smaller ones are only appropriate for coarse-grained control.
Two experts commented on how they often need both fine and
coarse-grained control, e.g., for timelines that contain periods
with both heavy and low activity. Each expert sketched a dif-
ferent solution to this problem. One created a coarse-grained
slider and then grafted on top of it a second fine-grained slider
(Figure 2d). The other expert drew a bulge at the location he
required finer control (Figure 2e).

Parametrization (B3). Sketched sliders can support multiple
ranges, giving users the possibility to filter the visualization in
a discontinuous manner. This is occasionally a constraint in
existing predefined range sliders. Another way of parametriz-
ing a slider is to write by hand possible slider extremums or
link specific data values to specific locations of the slider,
which controls completely the mapping between the slider
and the data. All our experts suggested a variation of this.

Special Shapes (B4). Our experts took advantage of the fact
that they can sketch sliders in any shape they wanted. One
expert sketched a circular slider to be used in the exploration
of periodic dimensions such as hours of the day or angle val-
ues (Figure 2c). In this way, the slider represents a complete
period with no start or end.

Reusability (B5). All participants requested the ability to de-
activate controllers while still have them accessible for later
use, either ”faded-out” on the canvas or in a separate side
panel. These solutions ensure that users keep copies of their
sketched components, allowing them to explore alternative
aspects of their data without losing their past work.

Annotation (B6). All our experts appreciated how a sketching
environment naturally supports annotating and bookmarking

of important information that is crucial for long term visual
analysis tasks. Such an environment can combine notes on
the analysis process taken by users, as well as traces of the
interaction exploration, e.g., sketched controllers and values,
that led to specific insights and findings.

One motivation behind our work is the need for an interface
that is mobile, to accommodate users working in front of
high-resolution wall displays. Nevertheless, all experts com-
mented that a tool for sketching controllers would be valuable
even in desktop environments, where visualization systems
are often overloaded with numerous controllers.

SYSTEM OVERVIEW
We designed a sketch-based interface for data exploration that
implements many ideas from our design sessions. The inter-
face runs on mobile devices and communicates with a visual-
ization dashboard on a high-resolution wall display (see Fig-
ure 1). The dashboard displays plots such as scatterplots and
bar charts that present different views of a dataset. Plots are
completely synchronized (coordinated views). If data points
are selected or filtered, these effects are applied to all plots.

Users can sketch sliders on the mobile interface to explore
different data dimensions, and create queries to filter data.
Queries are communicated through the network to a server,
which propagates the appropriate data filters to a wall cluster
for rendering. Figure 3 shows the effect of filters on the two
dimensions of a scatterplot. Blue points are data points inside
all active filter ranges, while pale orange ones are outside.

Our setup supports personal exploration (tablet) over a shared
viewing space (wall). This decoupling serves two main goals.
First, users can move freely around the wall display and in-
teract with sliders at the desired viewing distance and level
of data overview. Second, large datasets can be comfortably
visualized on a visualization cluster without overloading the
limited capacities of personal devices. To a lesser extent, the
setup accommodates wall displays that lack touch support.

Interacting with Gestures
Our sketch-based interface runs on Android devices, tablets
and smartphones. Its design combines free writing, sketching
of interactive controllers, and interaction with gestures. Since
our interaction model only requires the use of a passive stylus
or a finger, we combine stroke delimiters [13], crossing-based
selection [4], and simple gesture recognition [32] to correctly
infer the type and function of pen strokes.

Delimiters. We use dwells as delimiters to identify special
command-strokes. As seen in Figure 4, a dwell invokes a
contextual menu with a list of possible actions, e.g., create a
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Figure 3. A scatterplot displays filtered points that represent camera
models. Blue points are inside the active filter ranges, pale orange points
are outside. A red area cursor can point to, and select, blue data points.
Circled points correspond to previous selections. The dots in the ring
around the cursor communicate the relative position of selected points.

new slider. We found that short dwells of 250 to 350 ms do
not disrupt the flow of regular writing. Hinckley et al. [13]
report that dwells result in fewer errors but are slower than
pigtails. But since pigtails interfere with symbols of regular
handwriting, we only use them in conjunction with crossing.

Crossing-Based Selection. Users can cross existing interac-
tive components and then dwell to choose a function from a
context menu, e.g., deactivate or activate a slider, remove a
filter or a marker, and change a filtering dimension.

Gesture Recognition. We facilitate interaction by recogniz-
ing three special forms of gestures: zig-zag scribbles, circu-
lar strokes, and pigtails. Zig-zag gestures serve as erasers of
individual or groups of strokes as well as erasers of interac-
tive slider components, e.g., whole sliders and filters. Circu-
lar strokes are generally considered as candidates for periodic
sliders unless their trace crosses a slider, in which case they
create slider cursors. Finally, pigtails create filters. We give
more details about these features in the next section.

Pointing on the Wall Display and Data Selection
Users can activate additional functionality through bezel and
contextual menus to reconfigure the plots on the wall display.
They can also interact directly with their filtered content by
turning the mobile device into a touch pad. As shown in Fig-
ure 3, we support pointing and selection through a circular
area cursor with excentric labeling [12], for previewing and
selecting data points directly on the plots. Users can pinch
with two fingers to resize the area cursor and reduce or in-
crease the active area of selection. We use the GlideCursor [5]
and the acceleration function of Nancel et al. [24] to control
the cursor position on the wall display.

Implementation
Our application has been built on Java for Android 4.3. The
visualization software on the wall runs on Processing 1.5 - 2.0
and uses the Most Pixels Ever library1 for spanning the charts
on multiple machines and screens on the wall display, and a
modified giCenter Utilites library for the charts2. Our wall
1http://github.com/shiffman/Most-Pixels-Ever-Processing
2http://www.gicentre.net/software/#/utils/

(a) (b) (c)
Figure 4. Combining crossing, dwelling, and gesture recognition. (a)
Dwelling after drawing a curve activates a contextual menu that lets the
user create a new slider. In this example, the system has recognized a
circular form and therefore suggests a ”Circular Slider” in addition to
other types. (b) Dwelling after crossing a SketchSlider shows a contex-
tual menu with a set of possible actions. (c) Scribbling out a filter.

consists of 32 30-inch LCDs arranged in a 8× 4 matrix (size
5.5 x 1.8m and effective resolution 20480 x 6400 pixels) and
is driven by a cluster of 16 computers. A Java server takes
care of the communication between the Android and the wall
application through the Open Sound Control protocol3.

SKETCHSLIDERS
As regular sliders, SketchSliders control specific dimensions
of a dataset, but can take arbitrary shapes. We have explored
a number of designs that take advantage of their free form,
including periodic sliders, grafted sliders, and transformation
sliders whose path describes a fisheye function. SketchSliders
can serve as classic controllers, but also as alternative mech-
anisms for direct data exploration. As we support embedded
data distributions, slider cursors, and markers, users can focus
on the tablet to complete part of their tasks without having to
frequently move their attention to the wall display.

Basic SketchSliders and Filters
After drawing the path of a SketchSlider, a popup dialog asks
the user to assign a data dimension. We support both ratio
and ordinal dimension variables (numerical, or textual sorted
in alphabetical order). For ratio variables, we differentiate
between decimals and integers. We also differentiate between
periodic, e.g., months, and non-periodic variables (Figure 5).

When first created, a slider extends between the two extrema
values of the dimension’s active range. Users can interac-
tively change the active range (B3) by long-pressing the label
of the starting or ending extremum value, and then dragging it
leftwards or rightwards. This decreases or increases the asso-
ciated value, but also updates the range of the data dimension
on the plots of the wall display. This way, users can control
the charts by zooming in within a subrange of a dimension.

Figure 5 shows examples of SketchSliders and explains how
users interact with their widgets. Sliders can host one or more
interactive filters (B3), that define the union of ranges or in-
dividual values. Filter ranges are shown in blue. We support
delta filters and range filters, created with pigtailed strokes
that cross either once or twice the path of a slider. A delta
3http://opensoundcontrol.org
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add cursor add range filter 

resize filter add delta filter 

change extremum

Figure 5. Left: Four SketchSliders on the screen of a 5-inch Samsung Galaxy S4: (1) a slider over an ordinal variable (Country), (2) a circular slider
over a periodic variable (Month), (3) a slider that is currently inactive, and (4) a slider over a ratio variable (Temperature). The query of the three active
sliders selects winter mean temperatures for Finland and Germany. Slider 4 shows how the distribution of active temperatures (blue) leans towards
lower values. Right: Gestures and interactions to create and manipulate basic slider widgets: add a cursor (crossing circle), add a range or a delta filter
(crossing pigtail), change a slider extremum, and resize a filter. Observe how active (blue) density distributions change in response to these actions.

filter has a single control point and represents either a unique
value (ordinal variables), or a small delta range around a value
(ratio variables), whose precision depends on the slider size
and range of values. Range filters have two control points,
and determine an active range between two values. Users can
manipulate the control points to change the start and end val-
ues, or pick and move the entire range along the slider.

For complex queries involving multiple data dimensions,
users can create multiple SketchSliders. Their result is the
intersection of the results of the individual sliders’ queries.
During data exploration, users may draw several sliders and
switch between them by deactivating ones or activating others
(B5). Our implementation allows for a single active slider for
each dimension. Sliders become automatically inactive when
a new slider for the same dimension is drawn.

Guided by the results of our design study (B4), we support cir-
cular sliders dedicated to periodic variables (Figure 5: Left).
Circular sliders have no ends, and thus do not constrain the
translation of their filters. For example, a single range filter
can specify the winter months, from December to February.

Embedded Density Distributions
We augment SketchSliders with density distributions that ap-
pear as shadows along the path of each slider, and commu-
nicate data overviews. We get inspiration from scented wid-
gets [31], but opt for a different visualization approach that
derives from violin plots [15]. Violin plots show a density
trace that extends symmetrically along the length of a box
plot. The density trace provides rich information about the
underlying distribution, and when compared to histogram-
based visualizations [31] it results in less visual clutter. It
can also better generalize to curved paths of arbitrary shapes.

As with histograms, this approach requires the selection of an
interval (bin) width h. We try to optimize h by considering
the type of the slider’s variable (ordinal, integer, decimal) and
its range. For a given range, longer SketchSliders contain a
larger number of intervals, and thus show more detailed den-
sity distributions. Density distributions are normalized be-

change marker value 

corner marker 

cursor 

Figure 6. Corners can serve as markers of values of interest. As with
extrema, the user can adjust the value of a corner by long-pressing and
dragging its label along the horizontal axis. A slider cursor reveals both
the value of its center and the number of active data points it covers.

tween zero and the highest available density. We visualize
two distributions: (1) a static distribution of the entire dataset
within the slider’s range (in light orange), and (2) a dynamic
one of the active data subset, defined by the filters of the cur-
rently active sliders (in blue). A dynamic distribution is up-
dated every time the user adds, removes or changes a filter on
an active SketchSlider. This allows users to directly observe
the effects of their filters on multiple dimensions.

Density distributions are approximate but can support data
exploration directly on the mobile surface. For instance, users
can draw multiple sliders to get quick information about how
data points are distributed along different dimensions, and
identify areas of interest within the sliders’ ranges, common
tasks in data analysis [2]. Thus, users can focus on their actual
filters without having to continuously shift their attention to
the wall display. Or, the distributions can help users identify
functional dependencies between dimensions as they manip-
ulate filters of different sliders. For example, the Temperature
slider in Figure 5 (Left) shows that registered winter temper-
atures for Finland and Germany lean towards the low range
of values and include a high proportion of negative values.
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Figure 7. (a) Branched SketchSliders. Branches (1, 2, 3, 4) serve as proxies, providing a more detailed view of a range. A branch can start from (1,
3) or end at (2, 4) the main slider or another branch. (b) A Transformation SketchSlider applies a fisheye deformation to a scatterplot. The slider
contains grid lines that correspond to the transformed grid of the scatterplot. In this example, the transformation allows for zooming into the range of
temperatures between 20 and 25◦C. For this range, the user can make more precise selections on the scatterplot and the slider itself.

Slider Cursors and Markers
A SketchSlider can host one or more slider cursors that serve
as one-dimensional navigation widgets. Slider cursors can
move along the length of a slider and display the data value
that corresponds to its centre, aiding value retrieval tasks [2].
Similarly to the 2D area cursor on the wall charts, they also
serve as data-point selectors. As seen in Figure 6, a slider
cursor covers a delta area over the slider’s range, and counts
the active data points queried by the filters. Users can tap
on the + symbol to display the list of the covered data points,
and optionally, add a subset of these points to their selections.
The granularity of the cursor depends on the length of the
SketchSlider and its range of values.

Since SketchSliders can take any shape, distinctive features
can act as markers of values of interest, as suggested in our
design study (B1). We enhance this property by running a
corner detection algorithm that automatically identifies cor-
ners on the slider’s path and displays their value. As with ex-
trema values, users can long press on a marker label to further
adjust its value. Figure 6 shows that changing the value of a
marker shifts the extreme values (one or both) of the slider
and adjusts its scale, ensuring that the slider remains linear.

Grafting: Branched Sliders
We apply the concept of grafting from our study (B2), in a
new slider type, branched sliders. Branched sliders support
infinite nesting of branches to allow multiple levels of granu-
larity within a slider’s range. Grafting a branch is similar to
creating a new SketchSlider, but the stroke for the new branch
has to cross an existing slider or branch. The joint point can
be either the starting or the ending extreme of the branch, de-
pending on the direction of the stroke that creates it. Thus,
branches can form arbitrary tree and polytree structures. We
also allow for closed branches between any two points of the
root slider or a branch. Note that the extrema values of a
branch cannot exceed the extrema values of its parent.

As seen in Figure 7a, branches act as slider proxies, and filters
have copies in all the branches of a slider. The user can ma-
nipulate any of these copies according to the level of intended
precision. By grafting branches and adjusting their extrema,

users can zoom in partial ranges of the slider. The density dis-
tribution of a branch reflects its individual range rather than
the range of the root slider, offering a different view of the
data. As users zoom in a subrange, distributions get more fine
grained, while filters and cursors become more precise. This
can reveal distribution anomalies or clusters, that are impor-
tant components of data analysis [2]. For example, branches
1, 3, and 4 in Figure 7a reveal small clusters of data points not
visible on the root slider. Notice how the filter on branch 4
has increased in length and granularity compared to its orig-
inal copy on the root slider. Branched sliders let users dig
incrementally into ranges of a dimension, without removing
the trace of previous explorations.

Transformation Sliders
Sketching is commonly used for drawing curves to communi-
cate trends or mathematical functions. Inspired by our study
(B2), the path of transformation sliders similarly describes
an 1D transformation function. To define transformations
over slider paths, we use a curvilinear l-y coordinate system,
where l is the arc length of the partial curve at point p(x, y).
This approach overcomes the problem of curves that do not
describe valid functions in Cartesian coordinates.

We examine focus+context transformation functions that af-
fect the dimensions of plots on the wall display. More specif-
ically, peaks of a slider curve represent areas of focus while
valleys represent areas of context. To model this behavior,
we define a fisheye function F (y, g) = (1− g)f(1) + gf(y),
where y ∈ [0, 1] is the vertical curve position normalized
between the higher and lower extreme of the curve, while
g ∈ [0, 1] is a gain function. In our implementation, the gain
is g = h/hmax, where h is the height of the curve and hmax

is a maximum height value. Finally, f is a monotonically
increasing function. We produce a more aggressive fisheye
deformation by taking an exponential function f(y) = ay .

Figure 7b shows a SketchSlider that applies a fisheye trans-
formation to the x−axis of a scatterplot. We can see that the
transformation applies to the scatterplot but also to the slider
itself. This means that values are not uniformly distributed
along the path of the slider, i.e., they are sparser around peaks
and denser around valleys. Similarly, the granularity of slider
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Figure 8. A document can consist of multiple sections, where each sec-
tion (1, 2) forms a unique query. A movable bar (separator) denotes the
bottom of a section and includes functionality for managing the section.

widgets varies along the slider. As a result, delta filters and
cursors become more precise closer to higher peaks.

To apply a fisheye transformation over the slider’s path, we
divide it into small arcs and estimate the transformed value
v(l) ∈ [0, 1] at position l as the sum of its partial delta values:

v(l) =
i−1∑

k=1

∆v(lk, lk+1) + ∆v(li, l) (1)

We then approximate the fisheye transformation value for a
position s within each arc i as a linear function F (s) = Fi +
λis, where Fi is its value at the start point of the arc and
λi = (Fi+1 − Fi)/(li+1 − li). Based on this approximation,
we can calculate the delta values in Equation 1 as follows:

∆v(lk, l) = β

l∫

lk

F (s)ds = β(Fkδl +
λkδl

2

2
) (2)

where δl = l − lk. The parameter β is a normalization factor
derived from Equations 1 and 2 by setting v(L) = 1, where
L is the total slider length.

Exploration Sections
A user can divide an exploration session into sections, where
each section can contain any number of sliders that form a
query. Sections let users start a new exploration without los-
ing the history of their previous queries (B5). New sections
are created by drawing a long horizontal line with a pigtail.
This creates a separator (Figure 8) that serves as the lower
boundary of a section. The widget can be dragged up or down
to adjust the size of two adjacent sections.

CURVE MODELING AND DRAGGING
We model the path of SketchSliders and range filters as cu-
bic Bézier curves. We uniformly decrease the number of path
points, which results in smoother curves and better perfor-
mance. We also use cubic Bézier curves to model the trace
of distributions, by connecting density points between bins at
the normals of the SketchSliders. If the lines of two neigh-
boring density points intersect, we consider a single density
point at their intersection, avoiding the creation of path loops.

Figure 9 explains how we derive the position of a handler,
e.g., a slider cursor, on the Bézier curve from the position

stylus pointer

segment 
between points

handler position: B(t) where t = d/D  

d D

bisector lines
Figure 9. Deriving the position of a handle (blue circle) on the cubic
Bézier curve of a slider from the position of the pen (red circle).

of the finger or stylus pointer when dragging the handler. We
find the line that crosses the pointer and is parallel to the clos-
est segment between two consecutive path points. We then
take the vector ~D defined by its intersection with the previ-
ous and the next bisector of the between-segment angles. We
also take the position ~d of the pointer on this vector. From
this, we derive the t parameter of the corresponding Bézier
curve B(t) as the normalized pointer position t = d/D. To
deal with slider curves that contain closed loops, we can set a
threshold distance that avoids accidental jumps between non-
neighboring segments.

In contrast to our approach, DimpVis [19] simply takes the
minimum-distance point to project the position of the finger
to a path. Dragicevic et al. [11] have proposed a more generic
solution by modeling curvilinear dragging as an optimization
problem that minimizes a 3D instead of a 2D distance. Our
solution is less generic, yet fast and simpler, while it still re-
sults in very smooth behavior for meaningful slider shapes.

USER STUDY
To validate our prototype we conducted a user study with six
visualization researchers (2 female), who used regularly vi-
sual analytics tools, recruited through chain-sampling. Their
experience in visualization research and analysis ranged from
2 to 15 years (median 10), and their age from 24 to 41 (median
34.5). All reported being highly familiar with the visualiza-
tion plots used in our study and the notion of range sliders.
Three had taken part in our early design study.

Goals: The goal of the study was threefold: (G1) verify the
findings from the design study regarding the value of sketch-
ing controllers for visual exploration; (G2) observe how ex-
perts can appropriate SketchSliders; and (G3) examine the
benefits and shortcomings of divided attention. We wanted
to observe how the sketching interface supports visual explo-
ration in combination, but also in separation, from the wall.

Setup: Participants were seated in front of the wall display,
which displayed three scatterplots and one bar chart. Partic-
ipants interacted with the plots using a Nexus 10-inch tablet
running our prototype (Figure 10). We also provided a capac-
itive pen. We chose a seated setup, as opposed to free walk-
ing, to ensure user comfort for the duration of the study, and
to avoid any confounds due to uncomfortable hold positions
of the tablet without proper hand support.
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Figure 10. Study setup with wall display and SketchSliders on a tablet.
T1 Tell us your observations about the distribution of Prices (e.g. extremes,

clusters, similarities or gaps inside clusters at low detail).
T2 Which camera Models are in the Price range 3000-6000? Approximate

as much as you can the most frequent Max resolution values for them.

Table 1. The two open tasks. T1 was conducted by using both the wall
and the tablet. For T2, participants were asked to not look at the wall.

Procedure and Tasks: Each session lasted approximately
one hour and was videotaped. Participants were given a de-
tailed training session of 20-30 minutes, using a dataset on
the history of temperatures in different countries. They then
performed alone, using a think-aloud protocol, two open ex-
ploration tasks on another dataset. The two open tasks (Ta-
ble 1) were related to a multidimensional camera dataset with
a total of 1038 digital cameras and 13 dimensions. For the
second task, participants were asked to not look at the wall.
We expected that this would encourage them to explore the
capabilities of SketchSliders in more depth, and assess their
strengths and limitations both with and without the wall. The
session was followed by a semi-structured interview.

Results
We report here on observations gathered during the study and
participants’ responses during the interview.

G1: Value of Sketching in Visual Exploration
All participants were very enthusiastic about sketching their
own controllers as needed. They each commented on differ-
ent aspects, which we briefly summarize here:

Customization. Participants reinforced findings from our de-
sign study, stating that sketched sliders can be ”customized
to what I need”, ”easy to tell apart”, and ”feel personal”.
As one participant mentioned ”there is something very com-
pelling about sketching your own tools”.

Personal space. All participants could envision sharing the
wall plot result but would be reluctant to share the sliders
themselves. As one participant mentioned, ”it is similar to
sharing my notes, I would be reluctant, it is too personal”.

Flexibility. All participants appreciated the flexibility of
sketching different shapes and sizes to: (i) better fit their view
of the data, ”this is vertical [indicating a dimension on a plot]
so I drew a vertical slider”; (ii) focus on parts of the data as
needed, ”I can focus either with branches or transformation,
you don’t have that in other interfaces”; and (iii) generally
allow users to feel that the interface can accommodate their
needs. As one participant stated ”existing interfaces are not
flexible enough, they only show you predefined controllers”.

Annotation. All participants mentioned they liked the ability
to be able to sketch controllers and also take personal notes
related to their analysis and findings (see Figure 11a,b). How-
ever, three participants stated that they would have preferred a
different mode for analysis and a different one for annotation,
as in some cases they wanted to use gestural marks, such as
circling a slider, as a free-form note to indicate emphasis.

G2: Use of SketchSliders functionality by Experts
Participants were able to effectively use the interface without
aid, adopting different strategies to perform their tasks and us-
ing different combinations of SketchSliders’ functionalities.

Branches. Five participants used extension branches to in-
crease the granularity of their exploration. As P1 mentioned
”I draw a branch when I couldn’t interact precisely [with the
slider], and adjusted its end to be more precise”. Branches
were also used to compare different parts of the data. P2 ex-
plained that ”I made a second branch to see if I have the
same detailed pattern as in the other [branch]”. P4 com-
bined branches with other strategies to explore different as-
pects of the data. She drew multiple sliders for the same di-
mension and adjusted their ranges. She then compared their
effect on the wall plots by switching between them. As the
activation and deactivation of sliders happens through a con-
textual menu, she asked for a faster way to do so.

Transformation sliders. Four participants used transforma-
tion sliders to focus on part of their data. As P6 mentioned,
this gave ”a better view of the densely packed data points in
this range”. Figure 11a shows how P6 used a transformation
slider to focus on the lowest range of camera prices, while
he filtered release dates with a regular slider. This partici-
pant did not use any branches, as he could complete the tasks
with transformation sliders by adjusting their extremes. Oth-
ers used transformation sliders early on to get a quick view of
clusters in their data, or to focus on some interesting areas of
certain dimensions, while using branched sliders for others.

Slider cursors. Participants made a frequent use of the slider
cursor and found it very useful. Some created a large number
of these cursors (Figure 11) to locate items within an area of
the slider and then display them as selected on the wall. Two
participants commented that they would have liked to change
the cursor’s size, as they could do with the wall cursor.

Density distributions. All participants mentioned that slider
distributions were helpful to ”identify possible high level pat-
ters”, ”get a quick overview of data”, or to ”quickly see how
much data are filtered”. P1 stated that the distribution was
enough on its own for a high level and approximate data ex-
ploration. On the other hand, P4 and P5 suggested show-
ing individual points rather than distributions at fine gran-
ularity, as they ”expected clusters not points, and was not
sure if I should focus more”. P4 observed that the render-
ing can be misleading, expecting that data are normally dis-
tributed within the range covered by bins. A possible solution
to this problem is to use beeswarm-like visualizations4 when
the number of data points around a bin becomes very low.

4http://www.cbs.dtu.dk/˜eklund/beeswarm/
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Figure 11. Complex queries sketched by different participants of our study. P6 applies a filter to lower prices by using a transformation slider (a). Use
of a mix of simple and branched SketchSliders by P2 (b, d), P3 (c), and P4 (e). We indicate the task (T1, T2) for which the query was created.

G3: Exploration using SketchSliders and Wall Display
All participants mentioned that the combination of sketch-
ing controllers and decoupled wall plots worked really well
for visual exploration and were ”very well integrated”. Ac-
cording to P5, ”the setup really works well for me, they are
complementary, as you cannot show all the information on
the tablet, and I don’t really want to directly interact with the
wall all the time”. Observing how participants worked on
task T1, we were able to identify the following strategies.

Participants found that sketching one controller at a time
helped their analysis process. P1 used almost exclusively the
tablet, as plots on the wall ”are at first overwhelming, too
much data”. She explained that sketching sliders as needed
let her ”focus on one dimension, and see the result on other
dimensions [using the slider distributions], which reduced my
cognitive load”. She explained that the interface ”helped me
filter not just my data, but also my controllers”.

A similar sentiment was expressed by P3, who explained that
”existing interfaces are too cluttered and it is hard to decide
where to focus on, here I can focus on one thing, and draw-
ing a slider is a way for myself to decide what will be most
likely of interest next”. It is interesting to note that P3 and P6
completed the task by focusing mainly on the wall, manip-
ulating their sliders eyes-free. According to P6, this helped
him ”avoid splitting attention” between the two displays.

P2, P4, and P5 divided their analysis between tablet and wall.
They used slider distributions for approximate answers, and
the wall for detailed ones. P4 mentioned she always ”checked
to see the result [of a slider] on the plots”, while P2 explained
that ”when I wanted detail I would go here [plots]”.

Overall, participants were very enthusiastic, and were able to
retain and use the interface successfully. Their choices on
what controllers to create, and how to explore data using the
tablet and wall varied greatly. Clearly experts have their own
analysis approaches, and one interface does not fit all. Given
the varied ways our setup was used, we feel SketchSliders are
flexible enough to support different working styles.

CONCLUSION AND PERSPECTIVES
We presented SketchSliders, range sliders that users can freely
sketch directly on a mobile, in order to parametrize and cus-
tomize their exploration of data on a wall display. With a
small combination of sketches and gestures users can cre-
ate complex interactive components, such as slider branches
and data transformation sliders, to investigate detailed aspects
and subsets of their datasets. Apart from their natural custom
shape, our sketched sliders are enhanced by interaction aids
such as slider cursors, markers and distribution visualizations.

Results from a user study with visualization experts indicate
that SketchSliders are flexible, support different exploration
strategies, while the fact that they are sketched as needed
can focus and aid the visual analysis. Our system currently
does not support collaboration. Nevertheless, participants in-
dicated that the sketched sliders are very personal, and al-
though they would be willing to share their results on the
wall visualization, they are less open to sharing the controllers
themselves. This opens interesting questions regarding shar-
ing mechanisms and privacy that need further study.

We were motivated by a scenario where users view large
datasets on wall displays, and require mobile interaction sup-
port. Nevertheless, our experts commented that sketching
customized controllers can be useful even in desktop settings,
where visualizations are usually laden with numerous inflex-
ible controls. We plan to investigate further how users can
sketch and use sliders directly on their visualizations.

One benefit of SketchSliders is the combination of regular
note taking that is crucial in data exploration, and the trace of
the interactive controllers and their values that were used to
reach insights. This coupling of analysis process and record-
ing could be further enhanced. We could envision users tak-
ing snapshots of their data to add to their sketched environ-
ment, and detailed history mechanisms for reverting to previ-
ous steps in their exploration. These ”traces” of the interac-
tion exploration could then be used as a logging mechanism
for analysts, or shared with others without sharing the data
themselves that could be too large or sensitive.
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Perception of Visual Variables on Tiled Wall-Sized Displays for
Information Visualization Applications

Anastasia Bezerianos and Petra Isenberg

Fig. 1. Two viewers analyzing data visualizations from different viewpoints in front of a large high-resolution wall display (a). A
participant conducting a trial during our first experiment (b).

Abstract—We present the results of two user studies on the perception of visual variables on tiled high-resolution wall-sized displays.
We contribute an understanding of, and indicators predicting how, large variations in viewing distances and viewing angles affect the
accurate perception of angles, areas, and lengths. Our work, thus, helps visualization researchers with design considerations on how
to create effective visualizations for these spaces. The first study showed that perception accuracy was impacted most when viewers
were close to the wall but differently for each variable (Angle, Area, Length). Our second study examined the effect of perception when
participants could move freely compared to when they had a static viewpoint. We found that a far but static viewpoint was as accurate
but less time consuming than one that included free motion. Based on our findings, we recommend encouraging viewers to stand
further back from the display when conducting perception estimation tasks. If tasks need to be conducted close to the wall display,
important information should be placed directly in front of the viewer or above, and viewers should be provided with an estimation of
the distortion effects predicted by our work—or encouraged to physically navigate the wall in specific ways to reduce judgement error.

Index Terms—Information Visualization, Perception, Wall Displays

F

1 INTRODUCTION

Mega- and Giga-pixel wall-sized displays (henceforth referred to as
wall-sized displays) offer the opportunity to engulf viewers in very
large high-resolution information spaces. They form intriguing new
environments for data analysis and information visualization due to
several inherent benefits: physical rather than virtual navigation af-
fords a natural pan-and-zoom in the information space, an enlarged
physical space in front of the display enables collaborative viewing
and data analysis, and millions of pixels support viewing tremendous
amounts of data in one shared environment [6, 16]. To fully lever-
age wall-sized displays for data analysis, however, we need to design
wall-sized visualizations and workspaces based on a sound understand-
ing of how human’s perceptual and cognitive capabilities are affected
by this new work environment. At the most basic level, visualiza-
tion workspaces for wall displays have to incorporate what we already
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know about the design of information visualizations for desktop-sized
displays. Beyond this knowledge, wall-specific design recommenda-
tions have to be developed. One important criterion for the develop-
ment of information visualization techniques for wall-sized displays is
their immense physical size. It is not uncommon to see wall displays
of over 5m (16’) × 2m (6.5’) in width and height [7, 16]. Even com-
plete rooms covered on all sides by high-resolution displays are being
constructed for visualization research and applications [35].

With physically large display-walls, physical navigation becomes
an important means of accessing an information visualization [6, 16,
41]. Viewers choose close or far viewpoints to zoom in and out, and
pan physically by moving left and right to see different parts of the dis-
play. This type of movement may involve a physical relocation as well
as a change of head orientation, as depicted in Fig. 1. Thus, viewers
fluidly and frequently switch viewing distances and angles which may
lead to systematic discrepancies between the actual appearance of dis-
played information in physical space (as can be measured by rulers)
and its psychophysical appearance in a person’s visual space.

Understanding discrepancies and where and when they occur is im-
portant for information visualization design, as fundamental data anal-
ysis tasks involve the correct assessment and comparison of elemen-
tary visual variables such as areas, angles, positions, slopes, or lengths
[12]. To read a bubble chart, for example, one has to compare the sizes
of circles to one another and to a legend, as well as relate positions in a
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(a) The viewpoints of two observers. (b) Wall as seen by the left observer. (c) Wall as seen by the right observer.

Fig. 2. Two observers looking at the same angles, lengths, and circles displayed across a large wall display.

2D coordinate space. Fig. 2 gives an example of how the appearance of
three visual variables is affected when seen from different viewpoints
and viewing angles. The question arises whether comparisons such
as these are affected by the oblique viewing angles which occur when
viewing data from different positions in front of a wall-sized display.

To-date many high-resolution wall-sized displays, including ours,
are assembled from multiple LCD monitors [7, 16, 35]. These setups
include clear visible bezels which form part of our study context. The
research we report on in this paper, thus, takes a first step towards
assessing the implications of changes in viewpoint on the assessment
of data representations on tiled wall-sized displays with visible bezels.

Our research is motivated by three main questions:
• Are all areas of a wall equally effective for close scrutiny and

comparison of data items?
• What is the effect of viewing distance and angle on the perception

of visual variables in large viewing spaces?
• What are the benefits of walking in comparison tasks?

We began addressing these questions by studying how perception
of elementary visual variables (Angle, Area, Length) was affected by
varying viewing distances and angles. We contribute two studies: the
first assessed static viewing conditions and identified different param-
eters that can help predict the perceived magnitude of the tested visual
variables. The second contributes an understanding of the influence of
allowing participants to move in front of the display. Our final contri-
bution is a set of design implications about placement of data items on
wall displays and the characteristics of effective physical navigation.

2 RELATED WORK

We can draw from a variety of past research for the design of our ex-
periments. A large chunk of the literature comes from the field of
psychophysics. We report on the related background in this field sepa-
rately in the following section as we lead into the study design. In this
section, we concentrate on the related literature on large displays and
perception of graphical elements in HCI and information visualization.

2.1 Viewpoints and Interaction with Large Displays
The problems of viewing and interacting with information on physi-
cally large displays has been investigated in HCI, focusing on several
different questions: how to acquire targets across large distances [33],
how to view far areas up-close [8], how to maintain awareness [10, 25],
how large displays influence performance in spatial orientation tasks
[36], or how a larger field of view influences user performance [15]. In
contrast to these questions we want to learn how varying viewing dis-
tances and angles affect the accurate perception of a virtual object’s
properties such as its area, length, or angles. We know of no large-
display literature that asks this question but the problem has already
been recognized [3]. Several researchers have instead considered the
influence of varying viewpoints on other large-display tasks:

Jota et al. [24] studied the impact of viewing angles on pointing per-
formance on a 3m × 1m wall. Several studies in the tabletop literature
assessed the relationship of view position and 2D object rotation on
coordination, comprehension, and collaboration [27, 28]. Viewpoints
have also been studied for viewing 3D objects on tabletops [21]. In

multi-display environments, Nacenta et al. [30] showed that dynami-
cally correcting perspective based on a viewer’s viewpoint improved
performance for tasks such as targeting, steering, aligning, pattern-
matching, and reading. These studies relate to ours in that they corrob-
orate the importance of view positions and angles to task performance.

2.2 Information Visualization and Large Displays
Several researchers have considered the influence of a viewer’s posi-
tion in front of a large display on information visualization tasks. For
tabletops, Wigdor et al. [39] studied how varying screen orientation
from a horizontal to up-right position influenced the accurate percep-
tion of elementary graphical elements. They found perception to be
least accurate in the horizontal position. This study resembles ours
in that elementary elements were tested using study techniques from
psychophysics [20]. We relate some of their findings more closely
to ours in our Discussion Section. Alallah et al. [2] tested how the
perception of simple charts was impacted by varying viewing angles
around a horizontal screen. They found that reading charts right-side
up was fastest and least error-prone, and proposed a new chart design
to alleviate orientation problems.

For wall-sized displays several studies explore how changes in a
viewer’s position affect how visualizations are read. Endert et al. [16]
discuss how a viewer’s distance from a large display influences the
visual aggregation of displayed information. They found encodings
based on a color ramp to visually aggregate particularly well across
viewing distances for a visual search task. Yost and North [41] tested
several data visualizations for their ability to effectively display large
amounts of data on large displays. They found their visualizations to
scale well for the tasks of finding detailed and overview information
and note that spatial encoding of information was particularly impor-
tant on large displays. In a follow-up experiment Yost et al. [40] stud-
ied how scaling visualizations beyond visual acuity affected user per-
formance. For almost all tested tasks they found performance improve-
ments and argue for design guidelines that take visual aggregation and
physical navigation into account. Ball and North [5] compared the
benefits of added peripheral vision vs. physical navigation for large dis-
plays, and found that physical navigation influenced task performance
while added peripheral vision did not. The authors further stress the
importance of physical navigation for visualization tasks. The stream
of research on physical navigation relates to ours as a strong motiva-
tion for studying the influence of changing viewpoints and angles on
accurate perception of data representations.

3 BACKGROUND IN PSYCHOPHYSICS

Psychophysics is a sub-discipline of psychology that is concerned with
measuring the relationships between perceived and actual properties of
a visual object [20, 37]. Much research in psychophysics is concerned
with the study of spatial perception and the comparison of physical
and visual space. Unfortunately no one model exists which clearly
describes visual space and would allow us to predict how elementary
graphical elements will be perceived in a variety of viewing conditions
[37]. While it has been proposed to model visual space using hyper-
bolic, euclidean, or other geometries, no single geometry has been
shown to work under all viewing conditions. Instead, researchers have
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attempted to mathematically describe the differences between physi-
cal and perceived magnitude of objects as collected from user studies.
One popular function describing this difference is Stevens’ [34] power
law: J = λDα , with J = judged magnitude, D = actual magnitude,
α = exponent, λ = scaling constant. It has been tested under varying
conditions, and several values for α have been proposed for judging
elementary graphical elements (visual variables) such as length, area,
or position. Wagner [37] gives a recent meta-analysis of 104 articles
reporting 530 values for α collected under different conditions. No
combination of conditions matched those of viewing elements on wall-
sized displays. The reported exponents can, thus, help us hypothesize
but not predict how reading elementary graphical variables may be af-
fected in our work environment. As no previous study matches our
viewing conditions, we conducted our own experiments under condi-
tions close to how one would work in front of a wall-sized display. Our
conditions involved: binocular vision, eye movement, changing head
positions and viewing distances, and a back-lit viewing surface.

Psychophysics has developed several methods to help assess a
viewer’s visual perception of an object and to, thus, compare its mag-
nitude (e. g., size) in the physical space to its subjectively experi-
enced magnitude in a person’s perceived visual space. Methods in-
clude numeric estimation, magnitude production, and sensitivity mea-
sures [37]. There is a debate as to which method is the best to mea-
sure the perceived magnitude of a given object. The methods of nu-
meric estimation have been used in many experiments in the past (e. g.,
[14, 20, 23, 37, 39]). In our experiment we chose to use a magnitude
production methodology. Here observers are asked to match two types
of perceptions. Participants are shown a “standard” modulus object
and are asked to change the intensity of a second object (the stimu-
lus) until it is perceived to be equivalent to the modulus. We chose
a magnitude production methodology for our experiment as the com-
parison judgements it requires are extremely frequent in information
visualization [19]. We give additional justification in Section 4.

It is known that no exponent for Steven’s law holds under all view-
ing conditions [38]. Given the large number of varying factors, none
that matched our study setup in its entirety, we have to use average
exponents for forming study hypotheses. Wagner [37] reports the fol-
lowing average exponents for studies on perception tasks: 1.02 for
position and length, 0.84 for area, and 0.76 for angle. These state
that generally people’s judgement for position and length is consistent
with actual positions and lengths, while angles and areas are underesti-
mated compared to their real sizes. It has further been investigated how
the visual angle—the angle a viewed object creates on the retina—and
viewing distance influences the perception of visual variables [18, 29].
In order to derive hypotheses from articles suggesting an influence,
we calculated viewer-object distances and visual angles for distinct re-
gions on our wall size display as can be seen in Fig. 3.

4 STUDY MOTIVATION

Given previous work we expect that locations with smallest visual an-
gles (resulting from object size, position, and viewing distance) will
result in larger visual distortion of the perceived visual variables. To
understand the effect of different display locations and viewing dis-
tances in detail we conducted two magnitude production experiments.

In Experiment 1, our goal was to determine how different object
positions and sizes affect perception, by asking participants to interac-
tively decrease the magnitude of an object’s visual variable to match
the magnitude of another object’s visual variable at another area in the
display. This is motivated by the following scenario: People position
themselves in front of information of interest to facilitate their tasks
[6, 16]. When assessing information of interest, the data elements of-
ten have to be placed within their larger context, to determine how
they compare to others (e. g., compared to a legend). Although view-
ers could walk to get a closer look at data and walk back, this type of
interaction comes at a cost of efficiency, especially when data needs
to be quickly compared. Furthermore, collaborative settings may re-
quire viewers to quickly achieve common ground by comparing what
someone else is viewing. For these data analysis scenarios, it is un-
clear how the perception of informations is affected by different static
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Fig. 3. Calculations of visual angles θ and viewer-object distance v (in
cm) on our wall display. We tested screens with red borders in our study.

viewer placements around the wall. In Experiment 1 we, thus, com-
pare distortion across three visual variables (Angle, Area, Length) and
try to determine if it is predictable. We attempt to characterize this
effect and determine when quick comparisons from a stationary view-
point, by turning one’s head, are acceptable, and when the potential
distortion errors are such that they require physical navigation or addi-
tional interface widgets to bring remote information closer. The goal
of Experiment 2 was to investigate free movement as an alternative
to static viewer placement. In contrast to Experiment 1, participants
were allowed to move freely in front of the wall display. We were in-
terested in the movement choices and strategies participants followed
when allowed to walk, as well as time vs. accuracy trade-offs.

5 HYPOTHESES

From an assessment of the psychophysics and information visualiza-
tion literature we derived a number of hypotheses for our experiments:
H1: Accuracy results for visual variables follow those of previous

work with lowest absolute error for Length, followed by Area,
and Angle (upright) [39].

H2: The nature of judgement errors will differ between different vi-
sual variables. Based on our visual angle calculations (Fig. 3)
distant objects look smaller and the only depth cues available to
viewers are bezels. We thus expect areas to be underestimated on
average. Angles oriented towards the biggest axis of distortion
(Fig. 2) will be overestimated: their line segments look smaller
and they will seem more obtuse. As in previous studies [37]
lengths will correspond approximately to their actual sizes.

H3: Accuracy decreases with growing distance between viewer and
remote object. H3 contrasts H6 in Wigdor et al.’s study [39] that
found no such effect, as we test much larger left-right distances.

H4: Performance (accuracy and task time) decreases for close view-
points as differences in visual angles are more extreme following
H2 and the visual angle calculations in Fig. 3 that show smaller
visual angles for remote objects.

H5: The accuracy and nature of judgments of different visual vari-
ables is impacted differently for increasing object distances and
viewing distances from the wall, but in a predictable way.

H6: Accuracy increases when free movement is allowed, at a cost of
temporal efficiency.
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Fig. 4. The physical experiment setup showing the dimensions of our
wall and modulus locations using chess notation (stimulus always in A3).

6 EXPERIMENT 1: STATIC COMPARISONS

Participants were placed at two fixed positions left-most in front of
the wall. We chose left-most positions instead of centered ones as we
expect results to be symmetric left and right and because we could
test the most extreme distances. At each position participants were re-
quested to engage in magnitude production tasks and interactively ad-
just the magnitude of an object’s visual variable close to their location,
to match the magnitude of the same variable on a remote modulus ob-
ject. As a control condition, the two objects were occasionally drawn
on the same screen. The works of Cleveland and McGill [12] and
Wigdor et al. [39] differ slightly to ours as they used a magnitude es-
timation methodology. We followed this approach in an original pilot
of 16 participants, but found that they tended to round their results to
the closest 10%. This produced very noisy data and as a consequence
results that were not accurate enough when attempting to predict per-
spective distortion. Thus, we decided on a magnitude production ex-
periment that bypasses the mental conversion of a size to a number.

6.1 Apparatus
We used a 5.5m(18′)×1.8m(5.9′), tiled wall-sized display consisting
of 32 LCD screens of 2560×1600 resolution each. Screens are ar-
ranged as seen in Fig. 4 resulting in an effective resolution of 20480 x
6400 pixels, and are driven by a 18 workstation cluster. Software was
written using the ZVTM toolkit with cluster extension [31]. Lights
inside the experiment room were dimmed to reduce glare effects.

6.2 Factors
Our study included three main factors: visual variable, viewing dis-
tance from the wall, and modulus location and size.

6.2.1 Visual Variable
We used a subset of Cleveland’s [12] elementary graphical perception
tasks, namely assessing Length, Angle and Area as they are among
the most highly ranked by Cleveland [12] and because we hypothe-
sized them to be impacted by perspective changes. We did not test
position, slope, and color for the following reasons. In our pilot study
we tested position and found it to be largely unaffected by distortion.
Furthermore, testing position is highly impacted by the presence of
bezels, as positions can be easily compared within one single screen
from a bezel onward. We thus decided not to include it in our final
study to reduce time constraints on participants. Slope was not consid-
ered as previous work suggests a close relationship to angle judgments
[14]. Finally, similar to Wigdor et al. [39], color was not investigated,
as color consistency across the wall is hard to achieve under differing
viewing angles, creating a likely confound. This is especially true in
our setup, as color perception is heavily influenced by the viewing an-
gles of particular LCD models [22, 26], and some viewing angles can
even invert color perception.

The interactive object and the remote modulus were drawn with a
distinct color of ∼ 81% intensity (#7FFFD4, #FFB6C1). The arms of
the angles were of different length for modulus and stimulus in order

Fig. 5. Example screens showing the large interactive stimulus (green)
the viewers adjusted to match the remote modulus (red) for Length, Area
and Angle. The stimulus was always close to the participant’s location.

to avoid participants making vertical length judgements on the angle’s
open side. Participants were informed about this choice. To minimize
possible influences due to the presence of bezels [4, 11], objects were
drawn fully within a wall tile on a black background. For Length, ob-
jects were oriented horizontally. Angle judgements are known to be
affected by angle orientation [37] so we chose to keep a consistent
Angle orientation that follows the axis of biggest distortion (the angle
bisector was horizontal). In results reported by Wigdor et al. [39] this
“upright” angle orientation lead to larger errors than an orientation ro-
tated by 90º. Fig. 5 shows examples of how the interactive object and
modulus were drawn if sharing the same screen.

6.2.2 Viewing Distance
Participants performed tasks at two distances from the wall: Distance-
Close = 60cm(∼ 24′′) and DistanceFar= 320cm(∼ 126′′). Distance-
Close is within the recommended range for desktop monitor viewing
[17]. We chose it because it affords viewing objects in great detail at
regular monitor distance, as well as direct-touch interaction. Given a
conservative number of 60º for the human visual field outward from
the nose for each eye, DistanceFar was chosen so that viewers had the
entire wall in view when looking straight at it. Fig. 4 gives an overview
of the two viewing distances.

6.2.3 Modulus locations and sizes
We used 9 modulus locations, described in chess notation (Fig. 4).
From the left we used columns A, E, and H and rows 1, 3, and 4 from
the bottom. Given the height of our wall and the average height of our
participants, location A3 was always parallel to the viewer’s frontal
plane and had the shortest viewing distance in both DistanceClose and
DistanceFar (Fig. 3). We refer to A3 as the frontal screen.

For each visual variable, participants were presented with 6 modu-
lus sizes (intensities/magnitudes) to produce. These were 10%, 20%,
30%, 40%, 60% and 70% of the initial size of the interactive stimulus
for each visual variable. These initial stimulus sizes were always 180o

for Angle, 2560 pixels for Length (a single screen width), and 1280 pix-
els for the diameter of Area (half the screen width) respectively. We
ensured that these initial sizes allowed the modulus to be visible in the
smallest increments, while still be able to fit on the same screen as the
interactive stimulus for the A3 frontal screen location condition. Dur-
ing each trial, the interactive stimulus had to be interactively reduced
in size until it perceptually matched the remote modulus.

6.3 Participants and Procedure
Fifteen participants (5 female) took part in the study, recruited from
our research institute. They were not paid for their involvement. Par-
ticipants ranged from 24–33 years in age (mean & median age 29), 7
were students and 8 non-students with technical occupations. All par-
ticipants reported normal or corrected-to-normal vision. Twelve par-
ticipants reported experience with wall-sized displays in work tasks or
games; the remaining 3 participants reported no previous experience.

Visual variable presentation order was randomized using a latin
square. Presentation of modulus locations and sizes was also random-
ized, and their exact position within their screen location was varied
between trials. Participants adjusted the size of the interactive object
using the UP and DOWN arrow keys of a wireless keyboard on a stand
in front of them. When the desired size was achieved they hit ENTER
to terminate the trial. Before each trial started, the screens containing
the stimulus and modulus were highlighted to ensure participants did
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Fig. 6. Time and Absolute error across all visual variables for Close and
Far viewing distances.

not spend time on visual searches. Timing started once the stimulus
and modulus appeared on the screen and stopped when ENTER was
hit. After the study, participants filled out a questionnaire eliciting de-
mographic information and subjective data on their performance and
preference. Overall Experiment 1 consisted of:

3 tasks (Angle, Area, Length) ×
9 modulus locations ×
2 viewing distances (DistanceClose, DistanceFar) ×
6 modulus magnitude sizes =

324 trials per participant ×
15 participants =

4860 trials in total

7 EXPERIMENT 1 RESULTS

Metrics used in our analysis were Time, AbsErr and EstErr. We define
AbsErr similarly to magnitude estimation studies [13, 39]. AbsErr is
the absolute percentage of estimation error over the real magnitude of
the modulus object. Thus if participants report stimulus magnitude
mu for a modulus of true magnitude mt , then AbsErr =| mu−mt

mt
∗100 |.

This metric expresses the overall error in judgement (irrespective of
over- or under-estimation tendencies). It is a skewed distribution, and
as suggested by Cleveland [13], we conducted our analysis on its log
variation log2(

1
8 +AbsErr). Means reported are before normalization.

EstErr represents the direction of estimation error, i. e. the tendency
to over- or under-estimate the magnitude of the modulus and by how
much. It is defined as EstErr = mu−mt

mt
∗ 100, with EstErr > 0 when

magnitude is overestimated, and EstErr < 0 when underestimated.
Trials were marked as outliers when metrics were beyond two stan-

dard deviations from the mean for a given visual variable, viewing
distance, size and location. 186 trials (3% of all trials) were identified
as outliers and removed from further analysis. Similar to Cleveland
and McGill [13] the remaining trials were aggregated per participant
and factors for all sizes. All metrics followed the normal distribution.
All analyses were performed using an ANOVA, and post-hoc pair-wise
mean comparison p-values are adjusted using the Bonferroni criterion.

7.1 Results Across Visual Variables

We first analyzed effects across visual variables Area, Angle and
Length and compared their performance.

Time (Fig. 6.a)

There was no significant effect of visual variable or location on time.
Mean Time was longer for Angle (7.12 sec), followed by Length (6.6
sec) and Area (6.39 sec). There was a significant effect of viewing
distance (F1,14 = 17.3, p < .001). Tasks performed at DistanceClose
took significantly longer than those at DistanceFar (all p < .05).
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Fig. 7. Results for magnitude estimations (100+EstErr ) for each visual
variable and viewing distance in Experiment 1. Values per screen indi-
cate the percentage difference in average judgments for this modulus
location. Values > 100% are overestimations and values < 100% under-
estimations. The frontal screen is highlighted with a red border.

AbsErr (Fig. 6.b) and EstErr (Fig. 7)

There was a significant effect of visual variable on AbsErr (F2,28 =
95.2, p < .0001). Pair-wise comparisons showed that errors in judge-
ment were significantly larger for Angle than all others (p< .001) with
no other differences. Mean values for Angle (22%) were larger, fol-
lowed by Area (13%) and Length (11%).

Our ordering of visual variables according to accuracy is different
than that reported by Cleveland [13] (where angles have smaller errors
than areas), but similar to Wigdor [39] for upright angles. We exam-
ined this order separately when both objects were placed in frontal
screen A3, to investigate if the effect was only present in remote loca-
tion, but found this ordering to be present even on the frontal screen.

EstErr gives us the tendencies (direction) of estimation error. There
was a significant effect for visual variable (F2,28 = 25, p < .0001). Es-
tErr was different for all visual variables (all p < .05), with the modu-
lus being consistently overestimated, but by different amounts. Mean
overestimation was significantly larger for Angle (19%), followed by
Area (9%) and Length (4%).

The somewhat stronger differences of EstErr than AbsErr indicate
that although the different visual variables were affected somewhat
differently in terms of absolute magnitude, it is the tendencies to over-
and under-estimate that are different, with clear tendencies to overesti-
mate in Angle but less consistent tendencies for Length and Area.

VIEWING DISTANCE: There was a significant effect of viewing dis-
tance on AbsErr (F1,14 = 199.5, p < .0001), with less AbsErr in the
DistanceFar condition (p < .001). There was no significant visual
variable × viewing distance interaction, indicating accuracy did not
vary differently for the different visual variables at different distances.

There was a significant effect of viewing distance on EstErr
(F1,14 = 73.5, p < .0001). Participants overestimated overall, with
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larger overestimations in DistanceClose than DistanceFar (p < .001).
A significant viewing distance × visual variable interaction (F2,28 =
34.5, p < .0001) indicates that the direction of error was affected dif-
ferently by viewing distance for each of the visual variables. Pair-wise
comparisons showed all visual variables to be different for Distance-
Close (all p< .05) following the global trends described before. In Dis-
tanceFar there was no difference between Length and Area, indicating
Angle was overestimated significantly more even in the DistanceFar.

LOCATION: There was a significant effect of screen location on
AbsErr (F8,112 = 54.8, p < .0001). AbsErr increased with column dis-
tance (all reported effects p < .01): A1,A3,A4 had significant less Ab-
sErr than all others, with no difference between screens in that column.
Similarly AbsErr in the medium column E1,E3,E4 was significantly
higher than the screens in A, and lower than remote screens in H. Fi-
nally the remote screens H1,H3,H4 had the largest AbsErr. There is,
thus, a clear screen grouping across columns in terms of AbsErr.

The effects of direction of estimation are similar, with significant
effect of screen location on EstErr (F8,112 = 26.3, p < .0001). Overall
participants overestimated, and overestimation increased with column
distance A< E <H (Fig. 7). Overestimation on the column A1,A3,A4
was significantly less than all others, screens in the middle E1,E3,E4
had significantly larger EstErr than the first column, and significantly
smaller EstErr than the two upper screens in the last column (all p <
.05). We also observed a tendency (p< .1) for row 1 (lower screens) to
have a lower average EstErr than the other screens in the same column.

Visual variabless were affected differently by location. There was a
significant location× visual variable interaction on AbsErr (F16,224 =
1.9, p < .01). Pair-wise comparisons (all p < .05) showed no differ-
ence between techniques in column A. Nevertheless the overall error
of Angle increased compared to the others in the middle E and far col-
umn H. In E Angle has significantly larger AbsErr than Length, and in
H larger than Area as well. No significant difference between Area and
Length was found, nor significant effects depending on screen height.

The direction of error had clearer effects. There was a signifi-
cant location × visual variable interaction on EstErr (F16,224 = 30.2,
p < .0001). Pair-wise comparisons (all p < .05) showed that Angle
was overestimated more compared to other visual variables in most
locations, but that this is not the case in screen A1 (lower screen close
to the participant). In this location the estimation of Angle was sig-
nificantly less than in all other screens for all visual variables (the
inverse trend from all other locations). Moreover, Length which tends
to have a small overestimation, had one of the largest overestimations
in screen A1. In the middle column E, we found no difference be-
tween visual variable at the lower screen E1, although for the 2 higher
screens Angle was significantly overestimated. In the far column H,
all techniques were different at H3,H4. But again for the lower screen
H1 effects were less pronounced, with only Angle being different from
the others. The effects stem mainly from the DistanceClose condition
(all p < .05), but similar trends appear in DistanceFar (p < .1).

In summary, the effects of the screen height seen in EstErr were not
as strong in AbsErr, indicating that it was the tendencies to over- and
under-estimate that changed with screen height, not the absolute error.

SIZE: As in previous work [13, 39] we aggregated the results of
different modulus sizes for the main analysis above. In a separate anal-
ysis, we also tested for effects of size (a separate factor of 6 possible
values). We found a significant effect of size on AbsErr (F5,70 = 12.1,
p < .0001). Overall AbsErr decreased with the increase of object size,
although only the two larger targets had significantly less AbsErr than
other target sizes (p < .05).

A significant size × visual variable interaction (F10,140 = 39.2,
p < .0001) was also present. When looking at the effect of size on
the different visual variables we found that for the four smaller sizes
Angle had significantly larger AbsErr than all others, with no differ-
ence between visual variables for the 2 large sizes. Fig. 8 shows that
(especially in DistanceClose) the AbsErr drops for larger sizes, with
a difference in the amount of decrease between visual variables until
there is little difference on larger object sizes.
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Fig. 8. Absolute error across all visual variables for the 6 modulus (tar-
get) sizes tested, for Close and Far viewing distances.

7.1.1 Summary

Our analysis showed no significant difference between visual vari-
ables for task Time, but a difference for the two error metrics.

The absolute error follows the ordering reported by Wigdor et al.
[39], with Angle being the most error-prone and Length the least. Ab-
sErr tends to increase when viewers are close to the screen, and when
the distance to the remote object increases, with Angle being most
affected. This last finding merits further discussion. An effect of
stimulus-modulus distance was also reported by Cleveland [13], but
Wigdor et al. [39] suggested that it may have been due to a possible
confound in the original study. We discuss these findings in Section 9.
We also found that the absolute estimation error decreased with the
increase of object size. The rate of decrease was more steep for Angle
(and somewhat less for Area), until errors were similar across visual
variables for the largest object sizes.

The nature of over- or under- estimation was different per visual
variable: Angle was consistently overestimated, except on screen A1,
whereas Length and Area were less consistent in their tendencies (es-
pecially Length). The generally observed nature of overestimation was
less pronounced in lower screens. Nevertheless, as we move upwards
on the wall the overestimation becomes more pronounced for Angle
followed by Area. Looking at the estimation averages for Angle and
to a lesser degree Area (Fig. 7) the amount of overestimation is lowest
in the lowest screens of the same column, whereas Length tended to
be overestimated by a larger degree at lower screens, thus balancing
EstErr across visual variables in these locations. This indicates that
lower screens are perceived differently. Looking at horizontal screen
location, Angle was affected the most, and Length the least, with esti-
mates going up faster with horizontal distance.

7.2 Predicting Visual Variables
In the previous section we compared the visual variables. We now
examine each visual variable in an attempt to predict their observed
behavior for our study setup. More specifically we examine the effect
of the different factors related to perceived magnitude PerMag (that is
the participant’s answer mu) given the true magnitude mt . In our previ-
ous findings, effects were similar across rows or columns of the wall,
thus we express screen location as a combination of column A,E,H
(horizontal displacement), and row 1,3,4 (vertical displacement).

7.2.1 Results for Visual Variable: Angle

We found a significant effect of viewing distance (F1,14 = 89.7, p <
.0001), column (F2,28 = 96.8, p < .0001) and row (F2,28 = 65.5, p <
.0001) on PerMag, as well as a significant viewing distance × column
(F2,28 = 81.5, p < .0001) and viewing distance × row (F2,28 = 19.8,
p < .0001) interaction. Pair-wise comparisons (all p < .05) showed
that overestimation of Angle was significantly different between the
three different columns, increasing with column distance. This effect
was present both in DistanceClose and DistanceFar, although less pro-
nounced in DistanceFar (all p < .05). For rows, the lower screens
(row 1) always had significantly less overestimation, with no other
differences. This effect was only present in DistanceClose, with no
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difference due to screen row in DistanceFar. There was also an effect
of size on PerMag (F5,70 = 1895.3, p < .0001), with all sizes being
perceived differently (all p < .0001).

ANGLE PREDICTION Based on the above, we expect that the per-
ceived Angle increases with the increase of the factors size, column
and row, and decreases with the factor viewing distance. Indeed, we
found a positive Pearson correlation between the dependent variable
PerMag, the true object size (r = 0.943, n = 1620, p < .0001) and
screen column (r = 0.161, n = 1620, p < .0001), and a negative cor-
relation with viewing distance (r =−0.12, n = 1620, p < .0001). We
found no significant correlation with row, but there was a clear trend
(p = .07). No correlations were found between the predictor variables,
indicating they are mutually independent. Thus we feel these factors
are enough to predict the perceived angles. To verify this hypothesis
for our setup, we ran a multiple linear regression analysis using the
above factors. We obtained a very good fit for predicting the reported
angles (R2 = .93, Adjusted R2 = .93). In our regression analysis we
expressed viewing distance, column and row in cm, and the predicted
and actual angles in angle degrees. Table 1 summarizes the coefficients
that predict Angle in our setup.

7.2.2 Results for Visual Variable: Area
A significant effect of viewing distance (F1,14 = 60.3, p < .0001), col-
umn (F2,28 = 9.2, p < .01) and row (F2,28 = 5.4, p < .01) on PerMag
was present, and a significant viewing distance× column (F2,28 = 28.4,
p < .0001) interaction. Overestimation of Area was significantly dif-
ferent between the three different columns, increasing with column dis-
tance. The effect was due to the DistanceClose condition (all p < .05).
For screen row, the lower screens (row 1) had significantly less overes-
timation than the higher ones, with no other differences (all p < .05).
There was also an effect of size on PerMag (F5,70 = 3847.4, p< .0001),
with all sizes being perceived differently (all p < .0001).

AREA PREDICTION We expected that perceived Area will increase
with increasing factors size, column and row and decrease when
increasing viewing distance. Indeed, we found a positive Pearson
correlation between the dependent variable PerMag, the actual size
(r = 0.969, n = 1620, p < .0001) and column (r = 0.05, n = 1620,
p< .05), and a negative correlation with viewing distance (r =−0.096,
n = 1620, p < .0001). We found no significant correlation with row
and no correlations between the predictor variables. Thus, these fac-
tors (excluding row) are enough to predict the perception of areas. To
verify this hypothesis, we ran a multiple linear regression analysis us-
ing the above factors. We obtained a very good fit (R2 = .925, Ad-
justed R2 = .925), although column had a very small influence. In our
analysis we expressed viewing distance and column in cm, and the pre-
dicted and actual areas in cm2. Table 1 summarizes the coefficients
that predict Area in our setup.

7.2.3 Results for Visual Variable: Length
We found a significant effect of viewing distance (F1,14 = 8.3, p < .05)
and of row (F2,28 = 6.7, p < .01) on PerMag. Results show that par-
ticipants overestimated to a larger extend in DistanceClose. Moreover,
objects in the lower screens (Row 1) were significantly overestimated
compared to the other two rows (all p < .05). There was also a sig-
nificant effect of size on PerMag (F5,70 = 3953.6, p < .0001) with all
sizes being significantly different.

LENGTH PREDICTION Given these results, we expect that the per-
ceived Length increases with increasing size, and decreases with the in-
crease of factors row and viewing distance. Nevertheless, a correlation
analysis (over all factors), only shows a significant positive Pearson
correlation between the dependent variable PerMag and the actual size
(r = 0.971, n= 1620, p< .0001). Thus factor size should be enough to
predict perceived lengths. To verify this hypothesis for our setup, we
ran a linear regression analysis using size only as a factor. We obtained
a very good fit (R2 = .939, Adjusted R2 = .939) for predicting the re-
ported lengths. For our analysis we expressed the predicted and actual
size in cm. We summarize the coefficients of the linear relationship
that predicts lengths in our setup in Table 1.

Perceived Size Magnitude Coefficients

Angle (degrees) Area (cm2) Length (cm)

Constant 4.286* (0.931) 0.022* (0.003) -3.124* (0.167)

True Magnitude mt 0.977* (0.007) 1.027* (0.007) 0.944* (0.006)

Viewing Distance (cm) -0.35* (0.002) -0.11* (0.001)

Screen X (cm) 0.32* (0.001) 3.768·10−5∗ (0.000)

Screen Y (cm) 0.3* (0.004)

R-square 0.932 0.925 0.939
Adjuster R-square 0.932 0.925 0.939
Number of observations 1620 1620 1620
Standard errors are reported in parentheses.
* indicates significance at the 99% level.

Table 1. Regression analysis coefficients C. For our setup the perceived
size can be predicted using the following equation PerMag =Constant +
Cmt ∗mt +CDistance ∗Distance+CscreenX ∗ScreenX +CscreenY ∗ScreenY .

7.2.4 Discussion on Prediction
We note that in our setup a linear relationship between size and the
other factors is enough to provide a very accurate model of the per-
ceived magnitudes. Even though perception of magnitude of visual
variables follows a power low relationship with their true magnitude
[37], an initial curve fitting (per visual variables, and viewing distance)
showed an almost linear relationship (α very close to 1). We believe
this is due to the fairly small amount of sizes tested (6) compared
to other perception studies. We expect that with an increase of sizes
tested we will be able to observe such a power law behavior and further
improve our model.

Although not reported, we tested visual angle and viewer-object dis-
tance (Fig. 3) as predictors of perceived magnitude. An inverse corre-
lation was present (smaller visual angles lead to larger overestimation,
larger viewer-object distances to smaller overestimation), but their in-
fluence is different at the two user distances. For example, Column E
and H have similar visual angles at DistanceClose and DistanceFar,
and Column H and E similar viewer-object distances (Fig. 3) but mag-
nitude estimations were quite different (Fig. 7). Thus we feel the re-
ported models are better predictors.

7.3 Questionnaire
We were further interested in the influence of the bezels. As we could
not measure their influence directly, we asked participants for their
strategies in solving the tasks and if they involved bezels. Thirteen
participants reported to have used bezels, most of them for the Length
task, but some noticed that bezels were only useful as landmarks for
the larger sizes. It would be interesting to study the influence of bezels
further in a dedicated experiment with the use of an eye-tracker.

8 EXPERIMENT 2: STATIC VS. MOVING

In Experiment 1 our goal was to understand and predict the effect of
visual distortion while viewers stand at close and far locations in front
of the wall display. We motivated this choice by scenarios in which
viewers stand in specific locations conducting detailed tasks, and want
to occasionally make quick visual comparisons with objects at distant
locations (such as a comparison to a legend placed elsewhere). Nev-
ertheless, we acknowledge that if the main task of the viewer is the
comparison itself, they may decide to move in front of the wall to
gain a better perspective of the information to compare. We, thus, con-
ducted a follow-up study where participants were able to move freely,
tracked using a Vicon motion capturing system (www.vicon.com).

Nine participants of the original study (3 female) took part in the
second study a week later. Given that the stronger effects observed
in our first study were in the farthest column, we only tested these
locations (and the frontal screen A3) - 4 locations overall. Participants
started each trial close to the screen (as in DistanceClose) and were
then able to move freely to perform their task. We analyzed these
results with the results for DistanceClose and DistanceFar of our first
study for the specific modulus locations.
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Overview Strategy Step-Back StrategyTarget Strategy

WallStimulus Modulus

Fig. 9. Three participants’ actual motion paths showing the three differ-
ent types of moving strategies. We also illustrate possible modulus and
stimulus locations and participants’ viewing angles.

Overall Experiment 2 had:

3 tasks (Angle, Area, Length) ×
4 modulus locations (including A3) ×
3 viewing distances (DistanceClose, DistanceFar, ViewerMove) ×
6 modulus magnitude sizes =

216 trials per participant ×
9 participants =

1944 trials in total

8.1 Results
8.1.1 Moving Strategy
Three moving strategies emerged during our experiment. Four partici-
pants adopted an overview strategy, walking to the center of the display
at a far distance (∼ 3m), to observe both stimulus and modulus under a
comparable visual angle in each direction. Three participants adopted
a move to target strategy, walking until they arrived almost in front of
the remote modulus. Finally, two participants performed a step-back
strategy, moving slightly backwards from their original position (∼
1m) to look at the remote modulus. Sample strategy profiles can be
seen in Fig. 9. Participants tended to be consistent in their strategies
throughout the experiment. We observed changes only in the target
strategy, where towards the end of the experiment participants tended
to stop partway (∼ 1m) before completely reaching the target. All par-
ticipants performed tasks by first making an approximate judgement
and then used walking to verify or adjust their initial judgement. All
participants moved only once per trial.

AbsErr means were larger with the step-back strategy (20.4%), fol-
lowed by the target strategy (11.1%), and with overview being the
most accurate (9.5%). A Kruscal Wallis non-parametric test showed
a significant effect of strategy on AbsErr (Chi− square(2) = 13.1,
p < .01). Pair-wise comparisons showed that step-back was signifi-
cantly more error phone than the others (all p < .001).

We also looked for learning effects between trials for each strat-
egy, to see if participants’ accuracy increased over time. Although we
found no significant learning effect, when asked, five out of nine partic-
ipants mentioned that after the end of the walking experiment they felt
they could more accurately make estimations (even without walking).
This leads us to believe that viewers can learn to self correct for visual
distortion, a topic we plan to explore further in the future.

8.1.2 Static vs. Moving (Fig. 10)

ABSERR: There was a significant effect of viewing distance (F2,16 =
18.2, p < .0001) and visual variable (F2,16 = 9.2, p < .0001) on
AbsErr, as well as a visual variable × viewing distance interaction
(F4,32 = 3.3, p < .05). Pair-wise comparisons (all p < .05) showed
that AbsErr was significantly higher in DistanceClose (25%), with
no difference between DistanceFar (12.6%) and ViewerMove(12.4%).
Again, AbsErr was significantly higher for Angle (23%), followed by
Area (14.5%), and Length (12.5%). This difference between visual
variables was due to DistanceClose mainly, with no difference be-
tween visual variables in DistanceFar and ViewerMove (all p < .05).

TIME: There was a significant effect of viewing distance (F2,16 =
10.3, p < .0001) on Time. Pair-wise comparisons (all p < .05) showed
mean times to be significantly different between all viewing distances
for the tested locations. DistanceFar was faster (6 sec), followed by
DistanceClose (6.7 sec), and was almost double for ViewerMove (13.1
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Fig. 10. Absolute Errors and Times for visual variables in Experiment 2.

sec). Thus, the accuracy benefits for ViewerMove come with a time
cost, while DistanceFar is both faster and has similar accuracy.

9 DISCUSSION

Our studies showed several interesting results in regards to our ini-
tial hypotheses. In H1 we had hypothesized that results would follow
previous work [39] and rank visual variables with increasing absolute
error for length, area and angle (upright). Since we chose an angle
orientation that is proven to be very error prone [39], our findings also
follow this order, with angle being the most error prone visual variable
(in all screens, including the frontal screen A3).

Based on previous work of Wagner who had conjectured that vi-
sual space was compressed in the in-depth dimension leading to angle
overestimation [37], we had hypothesized (H2) that angles would be
overestimated. This was indeed the case. We had also hypothesized
that areas would be underestimated. This was contrary to our findings,
with areas being overestimated. A possible explanation comes from
related work. Aks and Enns [1] found that the addition of a grid to a
scene of objects placed in 3D lead viewers to make object size correc-
tions, hinting at a possibility that bezels may be used similarly. One
of our participants accordingly stated “I compensated for my perspec-
tive.” It is possible that our participants in an attempt to self-correct
for perspective distortion did in fact self-correct too much. This effect
was not as pronounced in length estimations and perhaps participants
used bezels more successfully to estimate lengths than areas. Given
participants’ comments it is likely that results on length estimation
may differ for a similar study on a seamless wall without bezels. Nev-
ertheless results on angles and areas will most likely hold.

In H3 we hypothesized that the effects of H2 would increase with
distance between stimulus and modulus. This was the case when par-
ticipants were close to the wall, while the effect was less visible when
they were far. The effect was present for both Angle and Area, and to
a lesser extend for Length, confirming H3. In the work of Cleveland
et al. [13] such an effect was observed as well, but not by Wigdor et
al. [39], where it was shown that left-right distances did not lead to in-
creasing error. We showed that the effect exists, and it was most likely
not observed in [39] because they tested much smaller left-right dis-
tances and, thus, differences in visual angles, than our Experiment 1.

We partially confirmed H4. Participants were slower when standing
close to the wall, but not significantly so. For accuracy, we confirmed
an increase in absolute error when standing close to the wall for all
visual variables. In the questionnaire, all participants also reported
that the tasks were easier to accomplish when standing far away.

In H5 we hypothesized that visual variables would be independently
impacted by changes in viewing angle and distance but were less sure
about the nature of the impact. Indeed we found very different behav-
ior across visual variables. In general Angle was most impacted with
highest inaccuracy. Although Angle judgments had a consistent overes-
timation tendency, estimations were smaller in the lower screens com-
pared to other screens in the same column. Area had similar effects of
increasing overestimation with left-right distance and a tendency for
smaller estimations at lower screens, although the effects were mainly
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pronounced in DistanceClose. The judgements for Length were also
affected by screen height, but in the inverse way. Length estimations
that were on average closer to the real object values were overesti-
mated in lower screens (an effect most visible in DistanceClose). Pre-
vious work in the physiology literature found a difference for visual
activities in the upper- and lower visual fields [32], pointing to an in-
teresting venue for further investigation for wall-sized displays.

Finally, in Experiment 2 we tested H6 related to walking, focus-
ing on extreme distance and distortion conditions (last column on the
wall). As expected, accuracy for estimations from a static position
close to the wall was worse than when participants were allowed to
move. However, we found no difference in perception accuracy be-
tween moving and standing on a static position far from the wall.
Moreover, the task completion time was more than twice as long in
the moving condition and participants complained about fatigue.

10 IMPLICATIONS FOR DESIGN

The results of our experiments apply to explicit comparison tasks that
involve a quantitative comparison component [19] such as finding sim-
ilarities, differences and trends, spotting outliers, or acquiring a quick
overview. One of the goals of our experiments was to derive design
considerations for visualizations for wall-sized displays that require
these tasks. Our main questions in regards to workspace design were:

Are all areas of a wall equally effective for close scrutiny and com-
parison of data items?
Our analysis showed that indeed it is not recommended to compare
data in certain screen locations as the error introduced reached as far
as 157%/128%/110% overestimation for the three visual variables. We
also found that lower screens tend to be somewhat unpredictable in
their perception trends. We suggest that task-relevant data representa-
tions should not be placed at the lower positions on the wall. This is of
importance to visualization designers, given that traditionally visual
legends are placed at the bottom of visualizations and these legends
often require visual comparisons (e. g., in a bubble chart the quantities
represented by bubble sizes). Lower screens should be dedicated to
widgets or contextual data that does not need to be reliably compared,
such as visualization titles or numeric information about the data.

Should we redesign visualizations for walls for better comparison?
When viewers were close to the wall, we found that judgement accu-
racy for Angle, and to a lesser degree Area, started to drop for targets
placed as far way as half the wall width (∼ 3m). Length was least
affected by screen position and distances. When magnitude compari-
son tasks are expected to be performed regularly close the wall (e. g.,
comparing pie or sector charts) we recommend not to design visualiza-
tions such that they require comparison across large distances (more
than 3m), especially for Angle. Given the fairly predictable behavior
of visual variables we were able to identify factors affecting them and
to provide approximation models for their perceived sizes that fit our
observed data very accurately. These models can be used by visual-
ization designers to predict visual variable distortion and decide on
acceptable distortion effects in their visualizations.

In our experiments we did not test every possible visual variable (for
time reasons). The use of color intensity was previously recommended
as being particularly stable across viewing distances for a visual search
task [16]. Its effect for comparison tasks, however, will have to be
further investigated. Yet, given the high influence of LCD screens’
viewing angles on color perception [22, 26] results may be difficult to
generalize for other large wall setups.

How can we support data comparison at close viewing distances
without visualization redesign?
We generally found comparisons across long distances when standing
close to the wall most error-prone. If physical movement in front of
the wall is not possible (e. g., while interacting using direct-touch or
multiple viewers are occupying the area in front of the wall) specific
widgets could be designed to bring far information up-close [9], en-
abling accurate comparisons with remote locations. Moreover, design-
ers should provide additional aids to help viewers make judgements
(e. g. use of tick marks, or value labels inside the visualization), that

can act as guides much as the bezels did in our study. Alternatively, de-
signers can use our prediction models to infer perceptual differences,
and add additional meta-data on their visualizations about these calcu-
lations. At the very least viewers should be warned about distortion
effects if designers deem comparison tasks important in their visual-
izations. For example a simple small text field could be added with a
warning that “remote angles may appear twice as large” (similar to car
mirror warnings for remote objects). Due to visual acuity these text
fields could be made small to be only visible when needed, i. e. when
viewers are close to the wall.

Should we encourage walking for comparison tasks?
Using interactive widgets in comparison tasks comes with an interac-
tion cost. An alternative is physical navigation, which is flexible and
natural to viewers, but in turn comes with a time cost, as our findings
indicate. More surprising was that the mean accuracy was not better
when participants could walk compared to a static viewpoint far from
the wall. Participants’ walking strategies may offer an explanation: as
walking is tiring, some participants walked minimally and were thus
still affected by visual distortion, resulting in higher error rates. Thus,
recommendations for walking need to be more specific. Viewers need
to either move far from the wall (∼ 3m back), place themselves in
the middle of the two objects to compare, or approach both objects
to compare. Our models can be used to give viewers an approximate
understanding of the distortion magnitude across the wall to help them
decide when to make quick judgements turning their head, when to use
interaction mediators to bring remote content closer to their focus of
attention, or physically navigate. However, our discussion of walking
guidelines is specific to quantitative comparison tasks. Physical navi-
gation has been shown to be beneficial to other tasks such as zooming-
in and -out to visually aggregate information [40]). The tradeoffs with
these benefits need to be further investigated.

11 CONCLUSIONS

We conducted two studies to understand distortion effects for informa-
tion visualizations placed on large high-resolution wall-sized displays.
In the first, we tested two static locations in front of the display and
found that viewing distance from the wall, as well as horizontal and
vertical placement, affected errors. Participants performed tasks better
when the information was in full view, despite the fact that they stood
further away from the display and the objects to compare were visually
smaller. We tested three visual variables and found that length was rela-
tively unaffected by changes in viewing distance and placement on the
wall—but area and angle judgments were significantly affected. More-
over, performance on the lower locations of the display was found
not to be consistent with other locations. Finally we proposed predic-
tion indicators of how large variations in viewing distances and object
placement affect the accurate perception of these visual variables.

In the second study, we examined the trade-offs involved when al-
lowing viewers to walk. We found that—although moving was as
accurate as static comparisons from afar—it took twice as long and
viewers occasionally chose non-optimal moving strategies. Based on
these findings we derived design considerations which recommend to
encourage viewers to stand further back from the display when con-
ducting quantitative comparison tasks. As such, we support previous
recommendations for different data analysis tasks for wall-sized dis-
plays [3] that promoted physical navigation.

If tasks need to be conducted close to the wall display, however,
viewers should either be encouraged to physically navigate the wall
in specific ways to reduce judgement error, or important information
should be placed directly in front of the viewer or above, and viewers
should be provided with an estimation of the distortion effects pre-
dicted by our work.
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Evaluating Multi-User Selection for Exploring
Graph Topology on Wall-Displays

Arnaud Prouzeau, Anastasia Bezerianos, Olivier Chapuis

Figure 1. A pair using the propagation technique to explore a graph. They discuss two communities, in orange and purple, selected using the
propagation technique. The communities are linked by a specific node shown by the right user. The remaining 3 orange-purple nodes show how by
propagating the purple community, it flows into the orange one through this node.

Abstract—Wall-displays allow multiple users to simultaneously view and analyze large amounts of information, such as the
increasingly complex graphs present in domains like biology or social network analysis. We focus on how pairs explore graphs on a
touch enabled wall-display using two techniques, both adapted for collaboration: a basic localized selection, and a propagation
selection technique that uses the idea of diffusion/transmission from an origin node. We assess in a controlled experiment the impact of
selection technique on a shortest path identification task. Pairs consistently divided space even if the task is not spatially divisible, and
for the basic selection technique that has a localized visual effect, it led to parallel work that negatively impacted accuracy. The large
visual footprint of the propagation technique led to close coordination, improving speed and accuracy for complex graphs only. We then
observed the use of propagation on additional graph topology tasks, confirming pair strategies on spatial division and coordination.

Index Terms—Wall-Displays; Multi-user interaction; Graph visualization; Selection techniques; Co-located Collaboration

F

1 INTRODUCTION

Graph structures, consisting of vertices and edges, exist in vari-
ous application areas: in social networks they are used to represent
people and their relationships, in molecular biology proteins and
their interactions, in transport networks they can represent air-
flight routes, etc. Graph data structures are frequently represented
as node-link diagrams, but like many visual representations of
large datasets today, they can be too wide to view comfortably on
regular screen monitors [64].

High-resolution wall-sized displays [8, 54] are promising
data analysis environments, as their size and high pixel density
allow simultaneous viewing, comparison, and exploration of large
amounts of data. Their size can also comfortably accommodate
multiple viewers, supporting collaborative analysis [60]. Despite
their promise as collaboration platforms, they have received little
attention for graph exploration. We take a step in this direction.
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Université Paris-Saclay. E-mail: arnaud.prouzeau@lri.fr

• Anastasia Bezerianos is with Univ Paris-Sud & CNRS (LRI), Inria, and
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We present a systematic study of how pairs use a wall-display
to solve topology based tasks, that are common components of
more complex graph analysis tasks [37]. We study how the choice
of interaction technique supports or hinders pairs collaborating on
these tasks. We focus on techniques for selection, a fundamental
visualization task, as it is a pre-requisite to many interactions such
as filtering, comparisons, details on demand, etc.

We adapt two general purpose graph selection techniques
for use by multiple users on a touch-enabled wall-display. Our
baseline is an extension of basic node/edge selection for multiple
users. It is easy to master, and has a limited, and thus fairly
localized, visual footprint on the wall display, that does not inter-
fere with colleagues’ work. The propagated selection extends for
multiple users the idea of transmitting a selection to neighboring
nodes/edges [21, 42]. It highlights the connectivity structure of
the graph (Figure 1), but may have a large visual footprint that
disturbs colleagues.

We first assess the impact of selection technique on pairs
conducting a specific topology analysis task, namely identifying
a shortest path. As there is no work on pairs working on such
tasks on wall-displays, we tease out effects due to the technique or
due to collaboration, by also studying single user selections. We
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then examine how propagation, the most promising technique, is
used by pairs on other graph analysis tasks [37]. Our studies are
conducted on a touch enabled wall-display, instead of interacting
using mice and keyboards, as mobility allows viewers to perform
implicit zooming [7] and correct for visual distortions [10].

We contribute: (i) The adaptation of two graph selection
techniques for collaboration on wall-displays. (ii) The controlled
study of how pairs use these techniques on a graph topology
task (shortest path identification) on wall-displays. (iii) A discus-
sion and observational study on how one technique, propagation,
supports different topology tasks. And (iii) a set of design impli-
cations: as pairs divide the work spatially, even when tasks are
not spatially divisible, the use of a localized selection technique
may be detrimental to performance in complex graphs; while a
technique with global reach leads to tighter collaboration and
coordination, that is more effective and accurate for such graphs.

2 RELATED WORK

A wide range of topics surrounding large displays have been
studied in HCI and Visualization. We focus on the most relevant,
namely visual exploration and collaboration on wall-displays, in
particular exploration of graphs, and the idea of transmission.

2.1 Walls in Visual Exploration
Wall-sized displays have been studied in the context of infor-
mation visualization and analysis, as they can naturally display
a large amount of visual information. Previous work comparing
large displays to traditional desktops [40, 58] or to smaller displays
[52] has shown performance improvements when moving to larger
displays. Considering visual analysis in particular, Yost and North
[68] tested several data visualizations for their scalability when
moving from small to large displays. They found their visualiza-
tions to scale well for the tasks of finding detailed and overview
information, and note that spatial encoding of information was
particularly important on large displays. Jakobsen and Hornbæk
[31] examined the interplay between display size, information
space size and scaling, and found that all these factors need to be
taken into account, and that increased display size did not improve
navigation performance in tasks where targets are visible at all
scales. Reda et al. [52] found that larger displays encourage longer
visual analysis sessions, and result in deeper and more complex
insights. Finally, Rajabiyazdi et al. [51] observed that they can
lead to previously missed insights in multiple disciplines.

Beyond their benefits, researchers have studied specific issues
related to visual perception of wall-displays due to their scale. En-
dert et al. [17] discuss how a viewer’s distance from the wall influ-
ences the visual aggregation of displayed information. Bezerianos
et al. [10] showed large discrepancies in the perception of basic
visual encodings depending on viewing distances and angles, that
nevertheless decrease if appropriate physical navigation is used.
Ball et al. [6] compared the benefits of added peripheral vision vs.
physical navigation, and found that physical navigation influenced
task performance while peripheral vision did not. Isenberg et al.
[28] blended two visualizations so that each is perceived at a
different viewing distance from the wall. Collectively this work
stresses the importance of physical navigation for visualization
and visual perception tasks, even if it is not necessarily better than
virtual navigation in classification tasks [33].

Despite the importance of physical navigation, a large body
of this past work either assumes the use of mouse and keyboard,

or simply does not study interaction. Nevertheless, recent work
supports both interaction and physical navigation using handheld
devices or direct touch. Handhelds are used as touch-pads to
conduct classification tasks [40], or as a support for physical con-
trollers [34] or for explicitly sketching interactive slider controllers
[61] to conduct multi-dimensional data exploration. In a sense-
making task, Jakobsen and Hornbæk [32] allow users to move
freely and use direct touch to interact with the wall. We similarly
use touch to support pairs working on graph topology tasks.

2.2 Walls in Collaborative Analysis
When it comes to co-located collaborative work and visual anal-
ysis (see [22, 29] for reviews), work has focused mostly on
tabletops, and “small” vertical displays (SDG and whiteboards).
For example, researchers have explored how collaborators shift
from tight to loose work coupling [59], how users divide space
(territoriality) [62], how they analyze text documents [30], com-
pare tree visualizations [26], etc.

There are few works on co-located collaborative work on large
(ultra-high resolution) walls. Notable exceptions are recent work
by Jakobsen and Hornbæk [32] that studies the behavior of a
pair of users in a sense-making task, and Liu C. et al. [39] that
studies the effect of different collaboration styles and interaction
in a classification task. Both these works stress the importance of
users’ coordination (possibly at distance) in these environments.
Our work is along the same lines, but focuses on graph analysis in
particular, and the effect of different interaction techniques on it,
a topic that so far has not been studied.

2.3 Graph Exploration on Large Surfaces
Collaborative analysis is one of the next challenges of the analysis
of graphs [64]. Existing systems support mainly remote collab-
oration (e.g. [69]). Less work has targeted co-located analysis,
like that by Isenberg et al. [27] that retrofitted an existing graph
visualization application for use by multiple analysts with mice
and keyboards. We are not aware of any work that studies analysis
of graphs by multiple users moving freely in front of wall-displays.

Although work on graph exploration using wall-displays is
limited, researchers have identified their potential early on. For
example, Abello et al. [1] used a wall display to visualize
communication network data. Later, Mueller et al. [47] designed
an algorithm to interactively layout graphs optimized for tiled
displays and distributed environments, while Marner et al. [41]
let users interactively adapt the layout on the wall using a mouse
and keyboard. Finally, Lehmann et al. [38] leverage physical
navigation as an implicit interaction, using the viewer’s distance
from the wall to adjusted the level of detail of a graph, and Kister
et al. [36] use it to move a lens with contextual information. This
past work on wall displays does not study the use of explicit
interactions (e.g., selections) during collaboration, as we do.

Finally, although not explicitly testing collaboration, re-
searchers have introduced multi-touch techniques for manipulating
graphs on interactive tabletops. For example, Henry Riche et al.
[23] use multi-touch interactions to fan out links leaving a node, to
bundle them, or use link magnets to attract certain types of links.
Schmidt et al. [55] alter link trajectories, pin, or make them vibrate
by plucking them. This work introduces multi-touch techniques on
tabletops for different purposes. While we also use touch, we focus
specifically on selection and study how pairs use it to perform
graph topology tasks on wall-displays.
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2.4 Graph Exploration using Transmission
Visual analysis of graphs is a long standing field, with numerous
research questions (see [24, 64] for reviews). We focus on tech-
niques related to our propagation selection (section 3.2), that use
the idea of propagating/transmitting information to neighboring
nodes or links that is central to graph analysis (e.g., [53]).

As graph structures can be very large, exploration is often
localized on interesting nodes and their neighbors. For example,
van Ham and Perer [63] designed a Degree-of-Interest function for
graph exploration that first proposes interesting nodes, and lets the
user indicate interesting nodes to expand to. Archambault et al. [4]
use specifically the notion of distance to progressively reveal and
render nodes proximal to a node of interest from within a larger
graph hierarchy. Moscovich et al. [46] propose interaction tech-
niques for panning within a graph, or bringing neighbors closer,
based on the graph’s connectivity. Finally, egocentric techniques
(e.g., [67]) re-layout graphs by focusing around one node and
laying out the rest based on their distance from it; or focus on two
nodes [13] and highlight their common neighbors. This work can
lead to a user-driven re-layout of the graph, that may disrupt the
work of other viewers in a multi-user setting.

Other techniques related to propagation preserve the layout.
Heer et al. [21, 20], allow users to highlight the contour of the
1st or 2nd degree neighbors, or the connected component of a
node, by hovering over it or by using repeated mouse clicks.
McGuffin and Jurisica [42] propose techniques to locally select
and manipulate nodes, including a menu option that selects a
node’s neighbors of increasing distance progressively. Ware and
Bobrow [65] evaluate different means of highlighting connections
to neighbors of arbitrary degree specified by a text field, and found
that motion representations are not better than static highlighting.
We extend this notion of propagated selection to multiple origin
nodes, providing appropriate input and visual design, to support
such selections by multiple users.

3 INTERACTION TECHNIQUES

Our goal is to investigate how interaction techniques affect mul-
tiple users working on graphs. We focus on selection, as it is
a required first step for many other visualization tasks, such as
filtering, comparison, details on demand, etc. Two techniques
were considered, a simple selection (Basic), and one based on
the graph’s connectivity structure (Propagation). These techniques
were chosen due to their properties: they can benefit graph explo-
ration differently but also face different challenges when adapted
for multiple users on wall-displays. We describe next how we
adapted the techniques for touch interaction on wall-displays, and
for collaborative use. Each description finishes with a summary of
the technique’s properties, motivation for their use, and possible
challenges when used in a multi-user context on wall displays.

3.1 Basic Selection
Basic is inspired by colored selections available in graph visu-
alization software extended for multiple users. We chose it to
investigate the limits of basic selections in collaborative settings.

3.1.1 Interaction and Visual Design
A node (or link) is selected by tapping on it once, and deselected
if tapped again. Inspired by previous work [4, 21], we also
highlight the links (or nodes) attached to it so as to demonstrate
its connections, but do not re-layout the graph to avoid disrupting

collaborators. Given that we do not have keyboard modifiers, and
wanted to keep the touch input vocabulary simple, we decided
to allow users to modify this selection in the following way: if
the user taps on a node adjacent to an existing selection (direct
neighbor), then this node is added to the selection and it, and
its links, are highlighted with the selection’s color. If the node is
adjacent to more than one existing selections it takes the color of
the last edited selection. Tapping on a selected node removes it
from the selection. This way users can edit their selections with
simple taps, keeping the input vocabulary very simple. We chose
to not use lasso-type selections that require dragging to select
multiple items, as they are not well suited to large interactive
surfaces, such as walls, where prolonged dragging is inaccurate,
fatiguing [25], and often disrupted by bezels in tiled walls.

Our wall, similar to many touch enabled surfaces, does not
differentiate between users. Nevertheless, it is important for col-
leagues to differentiate their work. Thus, if users tap on nodes that
are not adjacent to existing selections, we assume a new selection
is being made (potentially by a different user) and assign it a new
color, chosen randomly from a set that is easily distinguishable.

3.1.2 Summary
Basic extends the simple selection available in graph visualization
software to selection of multiple nodes/edges by multiple users. It
is familiar, easy to understand, and our design ensures it relies on
simple taps. It has a small visual footprint as it selects a single
node and its edges at a time, and thus will likely not disrupt
collaborators when used in a multi-user context on wall displays.
Nevertheless, it may require extensive physical movement if users
need to select multiple nodes that are far away on the wall.

3.2 Propagation Selection
As an alternative, we investigate Propagation selection, based on
the idea of progressive transmission of a selection to neighboring
nodes. Propagation allows local interaction on a node that can
highlight its influence across a larger area on the graph (and wall),
without requiring extensive physical movement that can be tiring.
Nevertheless, it may have a large visual footprint if neighboring
nodes are far away, potentially disrupting collaboration.

Variations of the propagation selection from past work (e.g.
[21, 42]) allow a single user to either highlight neighboring nodes
up-to a specific degree only [21], usually 2, or use a menu or text
option to select a node and its neighbors of a certain degree [42].
We explain how we adapted the technique allowing multiple users
to easily expand the selection to the n-th degree using simple touch
interactions. We finally describe its properties and how it can be
used to perform topology-based tasks [37] when analyzing graphs.

3.2.1 Interaction
Propagation allows users to select a node, which we will refer to as
the origin, and then propagate the selection first to its neighbors,
then to their neighbors, and so on. Propagation of a selection
is done through a series of taps (clicks) on a node. The first
tap selects the node itself (Figure 2-a), and the following taps
propagate the selection progressively to the neighboring edges
and nodes: the second tap adds to the selection outgoing links
and first-degree neighbors of the origin (Figure 2-b), and so on
for all following taps1 (Figure 2-c). If users continue tapping,

1 Propagation starts either from a node or a link. To simplify the discussion we
talk about node propagation, but we use a similar selection pattern for links:
link selected first, adjacent nodes and their links next, and so on.
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un-propagate (undo) chained undo

Figure 2. On the left multiple propagations: (a) a first tap on node 0 selects it; (b) a second tap propagates the selection to immediate neighbors;
(c) and a third tap to 2nd degree neighbors (notice the difference in link width according to distance); (d) a tap on node 7 selects it with a new color;
(e) a second tap selects its neighbors, one of which (node 8) is shared with the first propagation and has both colors; (f) a fourth tap on node 0
propagates the first selection a third time, resulting in nodes 6,7,8, and link 8-7 being shared between propagations, with the color and width on
shared link 8-7 alternating. On the top right gesture to undo one propagation step on a node (left) and chained undo for backtracking multiple steps
(right). On the bottom right design variations for displaying propagation distance using color intensity (top) and node-link size (bottom).

propagation continues until no more nodes can be reached from
(are connected to) the origin node. Thus a propagated selection is
a progressive query selection, that adds elements connected to the
origin node at progressively increasing distances.

We note that the first step of propagation (selecting only the
node) is not the same as Basic (selecting the node and its edges).
We made this design choice as initial feedback indicated that the
metaphor of transmission is better served if we consider that each
tap opens the flow of transmission from the selected nodes to their
neighborhood (both links and nodes).

To accommodate multiple users working in parallel, when
users select a node that is not part of an existing propagated query,
it becomes the origin of a new propagation selection (Figure 2-d).
If they select a node already inside a propagation query (but not its
origin), the query expands to also include propagations from this
new origin. Thus one propagation query can have multiple origins.

As we designed the technique for touch surfaces, we chose a
simple crossing zig-zag gesture to undo propagation steps. When
performed on the origin, it backtracks the propagation by one step
(Figure 2 left). The gesture can be chained to perform multiple
backtracks without lifting a finger, undoing quickly several prop-
agation steps in one interaction. When the selection is reduced to
a single node (the origin), this gesture unselects the node.

A crossing gesture on an element (node or link) that is not the
origin of a propagation, removes this node from the selection and
blocks future propagation paths of this selection to go through it.

3.2.2 Visual design
Nodes and links in a propagated selection share a common color
(as traditional color queries). Propagation origins stand out with a
thicker border (Figure 2-a), and new propagations are assigned a
different color, similar to Basic (Figure 2-d).

Due to the propagation of selections, a node can be selected by
two or more colors. The node in question is divided visually into
slices equal to the number of selections, and given the respective
colors (Figure 2-e).

Links can similarly be part of several selections. Dividing them
in segments equal to the number of selection colors (similar to
nodes) could lead to few, but long, colored segments if links are
long. Thus the multiple colors could be hard to see locally on a
wall display. We decided instead to streak (dashing pattern) the
links with the selection colors (Figure 2-f). We fixed the number
of streaks to seven, as we observed that on our wall they were still
visible locally, even on long links. Moreover, as the fixed number
of streaks have different length depending on the total length of
the link, they give locally an indication of its overall length.

We explored different design variations to emphasize the
distance of elements (nodes and links) from the origin. This is
of interest both within a single selection (to identify the farthest
elements), but also for elements that are part of multiple selections
to identify which origin is closest. As color is already used in
selections, we considered other visual variables (Figure 2 right).
Color intensity that drops with distance was considered, but
rejected, as the perception of intensity may be affected by viewing
distance and angle across the wall-display, and color intensity may
vary across screens in tiled wall-displays [57]. We thus chose the
size of elements, i.e., the thickness for the links and the radius
for the node slices. While testing our prototype, we observed
that as nodes have multiple incoming links, it is hard to identify
which path and origin is responsible for the shortest distance that
determines their size. Thus to avoid confusion and reduce clutter,
we chose to only display distance information on the links.

As the thickness of selected links indicates their distance
to the propagation origin node, the thicker the link the closer
to the origin it is. We chose to display three visual levels of
thickness: links with maximum thickness are linked to first-degree
neighbors, ones of medium thickness link first and second-degree
neighbors, and all remaining links selected through propagation
have a similar minimum thickness. We found that more levels led
to small variations in thickness that were hard to perceive in dense
graphs. When a link is traversed multiple ways inside a selection
(e.g., there are multiple origins in a selection, or the link belongs to
multiple paths of different length), the link thickness is determined
by the smallest distance to the closest origin in the selection.

3.2.3 Propagation Properties, Support for Graph Analysis

Multiple propagations allow multiple users to simultaneously ex-
plore different parts of the graph with their own color, examining
connectivity relationships in different areas, as well as interactions
between their selections made visible by the combined colors in
nodes and links when propagations coincide. They also highlight
relationships that may span large distances on wall displays,
without the need for extensive physical movement.

Multiple propagations can also aid a single user to visually
conduct basic set operations between selections. For example, the
union of two or more propagation selections is the set of all the
colored nodes. Their intersection are the nodes and edges colored
by all respective colors simultaneously. And the difference of two
selections (i.e. elements in one but not in the other), are all nodes
and edges that colored by a single color.
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Thus propagation from multiple nodes could be used to an-
swer fairly complex topological questions, such as identifying all
common neighbors of N-degree or less of multiple actors in a
social network (union of N-level propagations), all the co-authors
of one researcher that are not co-authors of her colleagues in a
co-authorship network (difference of 1st level propagations), etc.
We consider next topological tasks, such as the ones described by
Lee et al. [37], that are well supported by propagation.

• Adjacency (direct connections): It is trivial to find and
highlight the neighbors of a node by propagating one level.
Nevertheless, there is no clear strategy for how to identify
the node with most neighbors (highest degree) using the
propagation technique.

• Accessibility (direct or indirect connections): This set of tasks
are well supported by propagation. Nodes accessible from an
origin are colored by the propagation. And the propagation
level highlights nodes at distances less or equal to that level.

• Common Connections: To find the common neighbors of two
or more nodes, we can propagate from each of these origin
nodes and identify nodes that have both colors (i.e. belong
to both propagation selections). And as before we control the
distance of neighbors.

• Connected Components: To identify discrete connected com-
ponents, i.e. subgraphs not connected to each other, we
can choose a node and propagate until no more nodes are
added, thus identifying a connected component. Repeating
the process with uncolored nodes will identify the remaining
connected components.

• Shortest distance between two nodes: The length of the short-
est distance between two nodes can be found by propagating
from one node and counting the number of propagation steps
to reach the second. Nevertheless, determining the actual
shortest path is more challenging: although the path is part of
the propagated selection, it can be hard to identify it within
all the selected elements, particularly in dense graphs.

This is a non exhaustive list of tasks well supported by propaga-
tion, and tested later on. More complex strategies could be devised
for other tasks, to find for example articulation points or bridges (a
node or link that is the only connection between two subgraphs).

3.2.4 Summary
Our adapted Propagation technique for interactive surfaces uses
fast taps to expand, and a crossing gesture to backtrack. We
support multiple propagations that can aid with several graph
topology tasks. By design, propagation can select several nodes
quickly, based on the connectivity structure of the graph, without
requiring extensive moving around the wall-display. Nevertheless,
it may cause visual disturbance in well connected graphs, as it
will quickly span the entire graph, and it may disrupt the work of
colleagues if links cross their work space.

4 EXPERIMENT 1: PROPAGATION VS. BASIC

It is unclear how Propagation and Basic selection will affect
multiple users working on a wall-display. As there is little work
on graph analysis on wall-displays in general, we also studied an
individual user context, to tease out effects due to collaboration
and ones due to the techniques.

As an instrument for this exploration we chose a well-defined
topology task, the identification of the shortest path between two
nodes, for several reasons. First, identifying the shortest path, or

variations thereof, is a task used often in controlled graph evalua-
tion studies (e.g. [59, 15]) and can be fairly involved in complex
graphs. It requires an understanding of both the local context of
nodes (identifying neighbors), as well as more global structure
information, as a shortest path is not necessarily small in absolute
distance. And as it is a well-defined, closed task, with an objective
solution, it is well suited for controlled experiments. Second, the
task is not clearly divisible, as a more global understanding of
the graph structure is required. Thus it is unclear if multiple users
working together would fare better than single users. As it can
be performed individually, it gives us the opportunity to compare
individual vs. multiple user work. Finally, and very importantly
for our purposes, the task does not bias against Basic as it is not
trivial to do with Propagation. As Propagation highlights a large
number of possible paths (explained in section 3.2.3), this task
could reveal issues with visual clutter caused by Propagation.

Based on the design and properties of the two techniques, we
formulate the following general hypotheses:
H1 In both Individual and Multi-user contexts, performance

(time & accuracy) will be better with Propagation than Basic.
H2 With both techniques, performance will be better in the Multi-

user context than in the Individual context.
H3 Propagation will result in less participant movement, but will

cause higher visual disturbance.

4.1 Experimental Design
4.1.1 Participants
We recruited 16 participants in pairs (6 females, 10 males), aged
23 to 39, with normal or corrected-to-normal vision. Pairs knew
each other beforehand. Participants were HCI and visualization re-
searchers or graduate students, with experience in reading graphs.
Most (15/16) reported using at least once a day a device with touch
interaction, and having already used a wall-display (13/16).

4.1.2 Apparatus
We used an interactive wall made of 75 LCD displays (21.6 inches,
3mm bezels each), composing a 5.9m×1.96m wide wall, with a
resolution of 14 400×4800 pixels (Figure 1). The wall was driven
by a rendering cluster of 10 computers. A PQ labs2 multi-touch
layer allowed for direct touch over the wall. Participants’ positions
were tracked by a VICON motion-capture system3.

The experimental software ran on a master machine connected
to the cluster through 1Gbit ethernet, and was implemented in Java
using the ZVTM4 Cluster toolkit [49]. The operator controlled the
experiment progression using a smartphone running an android
application implemented with the Smarties5 toolkit [11].

4.1.3 Graph Types
We considered two different GRAPH types:

• Planar: These graphs can be drawn without edge crossings.
Transport networks (e.g. subway or air-routing networks) are
often planar. We generated them using an algorithm inspired
by Mehadhebi [43] to design air route networks.

• SmallWorld: These illustrate the small-world phenomenon
identified by Milgram [45] in social networks, where most
actors are linked by short chains of acquaintances. Social
networks, communication networks, and airline networks are
often Small-world graphs. We generated them using Klein-
berg’s algorithm in the JUNG toolkit [48].

2 pqlabs.com 3 vicon.com 4 zvtm.sourceforge.net 5 smarties.lri.fr
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Planar-Low (N: 100 and L: 288) Planar-High (N: 200 and L: 582)

SmallWorld-Low (N: 36 and L: 103) SmallWorld-High (N: 196 and L: 588)

Figure 3. Graph examples used in Experiment 1 with their number of nodes (N) and links (L). Colored paths are for illustration purposes only, and
highlight the shortest path between the two target nodes. During the experiment participants were only shown the first and last node (target nodes).

In a pilot study (2 pairs) we tested three types of generated
graphs: Planar and SmallWorld ones, as well as randomly gen-
erated ones inspired by Ware and Mitchell’s [66] algorithm. Par-
ticipants’ performance with the random graphs was very similar
(time, errors, subjective comments) to SmallWorld ones, and we
thus removed them from the experiment.

4.1.4 Complexity
To explore graphs of different complexity, we created two vari-
ations for each graph type, Low and High COMPLEXITY. We
generated them by varying structural characteristics, such as
number of nodes and edges and mean shortest path, and visual
aesthetic criteria that can affect readability, such as visual density
and number of edge crossings [50]. Visual density is calculated
as the ratio of pixels occupied by nodes and links, over the entire
surface used to calculate the layout (discussed later).

GRAPH COMPLEXITY #Nodes #Edges Shortest Path Visual Density #Crossings

Planar Low 100 288 4.27 0.06 179
High 200 582 5.69 0.10 627

SmallWorld Low 36 103 2.27 0.02 249
High 196 588 3.55 0.12 4879

Table 1. Mean metrics of the graphs used in the experiments.

Table 1 reports mean values for the metrics of graphs used
in the experiment. We note that our purpose was not to equate
all metrics across graph types, but rather to create ”difficult” and
”easy” variations for each type (Figure 3). For high complexity
graphs of all types (Planar and SmallWorld), we chose high
complexity graphs with similar visual density, i.e. the amount of
ink or clutter, and number of nodes and edges. For low complexity
graphs we found in a pilot (1 pair) that tasks on Planar graphs with
less than 100 nodes were trivial and did not require interaction.
Thus for the low complexity variation of Planar we chose higher
visual density than for SmallWorld ones.6

Density and crossings depend on the layout used to draw
the graph. To ensure consistent drawing across graph types, we
used for all graphs the ISOM layout [44]. We tested several
layout algorithms, such as classic force directed ones [16, 18],

6 In our pilot we considered a no-interaction condition, but found that for our
graphs (both Low and High complexities), tasks were respectively either very
hard (double the time) or impossible to do without interaction to help trace
one’s process. Thus we did not test the ”no interaction” condition further.

that position neighboring nodes close together and minimize edge
crossings. Nevertheless, the tested force directed layouts [18]
generated larger number of edge crossings compared to ISOM, a
metric associated with readability [50], and did not uniformly fill
our wall space. We thus moved to the ISOM layout that optimizes
similar quantities to force directed layouts, while ensuring best
coverage of our wall surface, and resulting into a smaller number
of crossings. The ISOM layout is well adapted to planar graphs,
but as other layout algorithms, it can lead to layout calculations
that break somewhat the visual planarity of structurally planar
graphs, as can be seen in Table 1. The same graphs and layouts
were seen in both techniques (see Procedure), to keep this experi-
mental factor consistent across techniques.

4.1.5 Task
Participants were asked to identify the shortest path between two
target nodes. Target nodes were positioned in height at the middle
60% of the wall, thus not too high or too low to reach; and were
spaced by a distance of at least 50% and 75% of the width of the
wall to ensure paths were not too localized.

For each graph type and complexity we generated three varia-
tions to be used as ”replications”. In each of the three variations,
we selected a path of LENGTH 3,4 and 5 respectively7. Paths of the
given length were chosen automatically (using exhaustive search)
to fulfill the following criteria: (i) the first and last node, that would
become the ”target nodes”, met the above placement criteria; and
(ii) all nodes in the path similarly fell into the middle 60% of the
wall to ensure they were easily selectable.

4.1.6 Procedure and Design
The experiment was divided in two sessions, an Individual and
a Multi-user one. To counterbalance these conditions, half of the
participants did the Individual session first and half the Multi-
user session first. In the Multi-user session, pairs saw both
techniques (within-subject design), and the order of presentation
was counterbalanced across groups. To end-up with an equal
sample of group and individual sessions, in the Individual sessions
each participant only saw one technique (between-subject design),
chosen at random. Individual sessions lasted approximately 25
min, and Multi-user ones 40 min.

7 The use of LENGTH as a replication factor was justified, as there was no
interaction between LENGTH and TECH, CONTEXT, GRAPH (see Results).
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Overall our mixed experiment design consisted of: 8 sessions
(pairs or individuals) × 2 CONTEXTs (Individual, Multi-user) × 2
TECHs (Basic, Propagation) × 2 GRAPHs (SmallWorld, Planar)
× 2 COMPLEXITIES (Low, High) × 3 LENGTHs (3, 4 and 5) =
384 measured trials.

For each TECH in both contexts, participants conducted 7
training trials before proceeding to the main experiment. Trials
began with a screen indicating the position of the two target
nodes, to ensure visual search was not required. Participants were
then shown the actual graph with the target nodes highlighted.
They then interacted with the wall display to find a shortest
path, and when they had an answer they verbally indicated to
the experimenter to stop the timer, and showed their solution.
An experimenter followed the discussion to ensure they did not
”cheat”, i.e. report done before finding all nodes. No such cases
were observed. If their answer was correct, they would proceed
to the next trial. If their answer was wrong, the trial was marked
as an error. Nevertheless, the task resumed and participants had
to continue the trial until they found the correct answer. This
ensured participants did not rush to give partially formed answers.
At the end of the sessions participants filled a questionnaire on
the perceived load and visual disturbance, and provided general
preferences and subjective comments.

We chose a verbal indication of when pairs had reached a
consensus, because in a third pilot (1 pair) we found that other
procedures did not always ensure a consensus. We first provided
each participant with a mobile device with a ”done” button. We
observed that choosing as a trial completion the first time one of
the two participants pressed ”done” was problematic, as they often
did so while the other was still working. We also considered the
time both participants had pressed ”done”, but found that some
would occasionally forget to press their button while discussing
with their partner. We next provided a single mobile device to
only one participant. Although in most cases a very clear verbal
agreement would take place before they pressed ”done”, occasion-
ally the participant holding the mobile would forget getting verbal
agreement and would press the button too soon. Thus we decided
to enforce verbal agreement between participants, by asking them
to instead tell the experimenter together when they were done,
a process they practiced during training. When the two verbal
indications were given the experimenter would log the time.

For each technique and context, participants were shown the
Low complexity graphs first to ease them into the task, while
the order of graph type and path length was randomized, but
consistent, across participants. The same graphs were seen across
techniques and collaboration contexts, but to avoid learning we
used mirrored versions of the graphs on the x and/or y axis
(resulting in 4 variations per graph).

Participants were instructed to be as fast as possible while
avoiding errors. We recorded the time to the first given answer
as our task completion time (Time), and the count of incorrect
answers. We logged kinematic data of participants’ movements
using a motion tracking system, and video recorded the sessions.

4.2 Results
We report on the measures: (i) Time taken by participants to state
for the first time that they completed the task, approximating ex-
pert behavior. When the first answer was wrong trials were marked
as errors and the task would resume to discourage participants
from rushing through trials (but the extra timing was not logged).

(ii) ErrorRate, i.e. the percent of trials where participants provided
incorrect answers. (iii) TraveledDistance by participants in front
of the wall. (iv) Subjective rating of visual disruption.

Statistical Method – Following recommendations from the APA
[3], our analysis and discussion on continuous measures (Time,
TraveledDistance) are based on estimation, i.e., effect sizes with
95% confidence intervals (CI). Our confidence intervals were
computed using BCa bootstrapping. Error bars in our images
reporting means, are computed using all data for a given condition.

When comparing means, we average the data by partici-
pants/groups (random variable) and compare the two conditions
globally using a (−1,1) contrast (between-subject case), or by
computing the CI of the set of differences by participants/groups
(within-subject case). In our images we display the computed CI
of the differences, and report the corresponding Cohen’s d effect
size, that roughly expresses the difference in standard deviation
units. Finally, for completeness, we also report p values. These
are computed as an approximation of the smallest p ≥ 0.001 such
that the 100.(1 − p)% CI interval does not contain 0 (i.e., we
compute the “largest” I-levels that lead to a “significant” result)8.

To compare errors and Likert results we use non-parametric
tests (Wilcoxon rank sum), which are more adapted to bi-valued
and ordinal measures.

As mentioned, LENGTH was used as a replication factor, and
as such is not considered as part of the analysis. Nevertheless, we
conducted a-posteriori tests and verified that although there was
a difference between the 3 length variations in time and errors,
there were no interaction effects between length and interaction
technique, context, or graph type. We also did not find any learning
effects due to technique presentation order.

4.2.1 Time
Individual: When working individually, participants were

faster with Propagation (29.3 s) than Basic (54.1 s). To better
understand the nature of this difference, we looked separately at
each COMPLEXITY and GRAPH. Our analysis (Figure 4) shows
Propagation consistently outperforming Basic, with the effect
being stronger in SmallWorld-High (most complex graphs).

Multi-user: Similarly, Propagation (22 s) was measurably
faster than Basic (30 s) for pairs, even though the difference was
not as pronounced. Looking at conditions in detail (Figure 5), the
effect mainly exists in the High complexity graphs.

Individual vs. Multi-user: Individuals were slower with Basic
(almost double the time) than with Propagation. This tendency
was also visible in the Multi-user condition, although mainly for
the larger graph sizes. This indicates that Propagation is more
efficient, in particular for larger and complex graphs.

When we compare the Individual and Multi-user condition,
mean times for both Basic and Propagation were better for pairs,
but this difference was not measurable (Figure 6-left). However,
examining the different complexities, we found a measurable time
improvement for Basic when collaborating on Low complexity
graphs, and a measurable improvement for Propagation when
collaborating on High complexity graphs (Figure 6-right). This
indicates that collaboration does not compensate for the weakness
of Basic for complex graphs (in particular the SmallWorld-High
ones). While with Propagation, one user is as effective as pairs
for simple graphs, but that the collaboration benefit is seen in
more complex graphs.

8 A CI of a difference that does not cross 0, can be read as “significant”.
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Figure 4. (Top) Average time to complet the task per TECH in the indi-
vidual user case, aggregated on the left, and by GRAPH×COMPLEXITY
conditions on the right. (Bottom) Corresponding 95% CIs for the mean
differences Basic−Propagation used in analysis: bottom left numbers
show the Cohen’s d effect size and the right ones the p values. This
convention is followed in all images.
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Figure 5. (Top) Average time to complet the task per TECH in the
multi-user case, aggregated on the left, and by GRAPH×COMPLEXITY
conditions on the right. (Bottom) Corresponding 95% CIs for the mean
differences Propagation − Basic.
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Figure 6. 95% CIs for mean time differences Individual − Multi-user, by
TECH and by TECH×COMPLEXITY.

4.2.2 Error Rate

Individual: We observed no measurable difference in Error-
Rate between Propagation (9%) and Basic (13%), even if mean
error rate was lower for Propagation. Table 2 shows the error rate
for the different conditions. We can observe that almost all errors
(95%) occurred with SmallWorld graphs irrespective of TECH.

Multi-user: On the contrary, we measured a difference in
ErrorRate between Propagation (3.1%) and Basic (16.7%) in the

aggregated Planar SmallWorld
Low High Low High

Basic Prop Basic Prop Basic Prop Basic Prop Basic Prop
Indiv. 13.5% 9.4% 0% 4.2% 0% 0% 16.7% 8.3% 37.5% 25.0%
Collab. 16.7% 3.1% 8.3% 0% 12.5% 0% 4.2% 4.2% 41.7% 8.3%

Table 2. Error rate per TECH, aggregated and by GRAPH×COMPLEXITY
conditions, in the individual user case and in the multi-user case.
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Figure 7. (Top) Average distance traveled by participant per TECH
in the individual user case, aggregated on the left, and for each
GRAPH×COMPLEXITY conditions on the right. (Bottom) Difference CIs
for the analysis.
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Figure 8. (Top) Average distance traveled by each participant per
TECH in the multi-user case, aggregated on the left, and for each
GRAPH×COMPLEXITY conditions on the right. (Bottom) Difference CI
for the analysis.
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Figure 9. 95% CIs for mean differences of the traveled distance Individ-
ual − Multi-user, by TECH and TECH×COMPLEXITY.

collaborative case (p’s < .01). We observed that Propagation led to
less errors in all conditions (p’s < .05), except in the SmallWorld-
Low. Table 2 gives a break down for the different conditions.

Individual vs. Multi-user: Overall, the effect of ErrorRate
was different for each technique across the individual and multi-
user case. For Propagation there are marginally less errors
when working in pairs (3.1%) compared to individuals (9.4%)
(p = 0.066), with a very marked drop in error rate in the hardest
graph SmallWorld-High, where pairs had an error rate of 8%
compared to the 25% error rate for individuals.

We do not have such an effect for Basic, where error rate
increased when pairs worked together (16.7%) compared to indi-
viduals (13.5%). When looking at different conditions, the trend
was measurable for the Planar graphs (p = 0.023), but mean error
rates were indeed higher for all conditions apart from SmallWorld-
Low. We come back to this result in our discussion section.
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Figure 10. Bird’s eye views of the movement of participants in trials for individual (2 top lines) and pairs (2 bottom lines), under the condition Planar-
Low (easiest) and SmallWorld-High (hardest). Basic is seen in the left column, and Propagation in the right column. The wall is at the bottom of each
graph, the unit is the meter, and the black little circles (◦◦◦) indicate a touch interaction.

4.2.3 Distance Traveled
Individual: The amount of movement in the individual case

was higher for Basic (17.9m) than for Propagation (9.2m), almost
twice as much (three times in complex graphs), and the effect
exists for all GRAPH×COMPLEXITY conditions (Figure 7).

Multi-user: Similarly, the distance covered by each participant
when working in pairs was less with Propagation (4.6m) than
Basic (9.3m), in all conditions (Figure 8).

Individual vs. Multi-user: As expected the distance traveled
by participants in individual sessions is about twice that traveled
by each participant in Multi-user sessions for both techniques
(Figure 9-left). However, as shown in Figure 9-right, this effect is
strong for Propagation for both Low and High complexity graphs,
but only for Low complexity ones for Basic. This reinforces that
the gain of working in pairs is less with Basic in complex graphs.

Figure 10 illustrates these results with examples of participant
trajectories in front of the wall. Pairs tend to divide their work
spatially, with the exception of using Basic in SmallWorld-High.
Nevertheless, video recording indicates that even here participants
start the task by dividing the space, but as they cannot reach a
solution, they start moving more around the space to verify their
work, stepping back likely to get an overview. Thus, these patterns
are not just due to the need to reach nodes to interact with, but also
due to the nature of collaboration using Basic in complex graphs.

4.2.4 Observed Strategies
Individual: Instead of propagating from a single node, all

individuals using Propagation selected one node, propagated typ-

ically one time (sometimes two), and then moved to the second
to propagate, alternating between the two until they saw an
intersection (two-color node). This strategy reduced the number of
selected nodes and visual clutter (less propagation steps), helping
them identify the shortest path as intersection points are inside it.

The strategy used for Basic was different. Participants con-
sistently selected a subset of neighbors that seem to be between
the two nodes, trying to reconstruct short paths moving from one
node to the other. This was successful for the smaller and less
complex graphs, but did not work well for the hardest condition
SmallWorld-High, where participants had to consider a large
number of nodes, as seen by the high error rate in this condition.

Multi-user: When performing the task in pairs, participants
were again consistent in their strategy. With Propagation it was
similar to the individual sessions, but now each participant took
charge of one of the two nodes, and propagated alternatively
(but not concurrently) until they found intersecting nodes. They
coordinated this asynchronous double-propagation using verbal
communication. Then, both participants reconstructed together a
shorter path candidate, each taking responsibility of their own end
of the propagation. In more complex graphs, they occasionally
checked each other’s work (6 groups).

For Basic, participants again took charge of one node each,
and tried to define paths using selections towards their partner,
until they reached each other’s work area. They worked more
or less independently, and in parallel, until they started finding
intersection nodes. After that, for the more complex SmallWorld
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graphs, they tried checking together candidate paths before making
their choice (e.g. Figure 10 bottom-left graph, notice movement
overlap). But, pairs did not double check each other’s work in the
easier Planar graphs (e.g. in Figure 10, 3rd row on the left, we see
no movement overlap), which may explain the increased error rate.
There was one notable strategy exception, one group decided to
propagate systematically, simulating on their own the Propagation
technique (which they had seen first).

4.2.5 Subjective Comments
Individual Users: Answers to the quantitative questions of the

questionnaire (physical demand, visual disturbance, enjoyment)
was very similar between the two TECH (p’s = 1). This is not very
surprising given that we used a between-subject design for TECH.

Multi-Users: After the collaborative session participants were
able to directly compare the two techniques. All 16 preferred
Propagation. On a 7-point Likert scale participants found that
Propagation was less physically demanding (Avg=2.5, SD=1.2)
than Basic (Avg=4, SD=1.6) since they were required to walk
less (p’s < 0.05). They also found Propagation more enjoyable
(Avg=5.3, SD=1.1) than Basic (Avg=4.1, SD=1.2).

Surprisingly, they also found Propagation to be less visually
disturbing (Avg=2.9, SD=1.6) than Basic (Avg=4.8, SD=1.8) (p’s
< 0.05), contrary to our hypothesis. When asked to explain why
they found Propagation less visually disturbing, they explained
that Propagation helped highlight paths of interest “helps to see
how many possible shortest paths there are, which is very conve-
nient”. Although four mentioned explicitly in their comments the
existence of visual disturbance in Propagation, they commented
that the visual footprint was desirable for tracking their work “it
gets visually disturbing very quickly after a few propagations, but
it is good to be able to see the changes when we can go back and
forth with the propagation easily.”.

When asked if they preferred conducting the task individually
or collaborating with a partner, participants had mixed opinions.
Six out of the eight that run the individual session with Propa-
gation preferred to run the experiment in pairs with Propagation,
instead of alone. As one explained “having a partner is easier be-
cause there’s someone to help check whether the answer is correct
or not and I don’t have to move around. However I’m not sure if
doing it together is faster because sometimes communicating takes
time”. Five out of eight participants that run the individual session
with Basic preferred to do the task in pairs with Basic. But, as one
participant explained “it happens that the other was exploring
different solutions than me [parallel work], so he was disturbing
me”. Thus, overall the multi-user context was been only slightly
preferred than the individual context.

4.2.6 Discussion
Propagation was faster than Basic selection when identifying
shortest paths, particularly in the more complex small-world
graphs (confirming H1 on time). This can be explained by partic-
ipants moving more with Basic, twice as much overall and three
times for complex graphs (confirming H3 on movement). This is
backed by subjective comments reporting less fatigue and higher
preference for Propagation.

When moving from individuals to pairs, the mean time of
both Propagation and Basic was faster, although this difference
was not measurable overall. But there is a clear speed-up for
complex graphs with Propagation, and for easy graphs with Basic
(partially confirming H2 on time). These differences are likely due

to participant strategies. Individuals were fast with Propagation to
begin with, and since pairs spent time coordinating and taking
turns propagating, speedup due to collaboration is not visible. But
as we move to more complex tasks, the cost of coordination drops
compared to that of the task. On the other hand, individuals were
slow with Basic, and as pairs worked in parallel first and combined
their results later, this accelerated the work with simple graphs.
But in more complex graphs this strategy was not effective, and
collaboration did not compensate for the weakness of Basic when
dealing with complex graphs.

Collaboration had an effect on accuracy. It increased when
passing from individuals to pairs in Propagation (partially con-
firming H2 on accuracy), particularly in the most complex graphs.
Participants chose to closely coordinate their actions taking turns
to avoid visual interference (supporting H3 on visual disturbance).
Thus it is possible they had increased workspace awareness [14],
a fact supported by the ease with which they double checked each
other’s work. The colored propagation queries provided a filter
to the interesting areas of the graph, that also helped participants
focus more effectively on both their partner’s and their own work,
leading to the unexpected subjective feeling that propagation was
less visually disturbing (subjective feel contrary to H3 on visual
disturbance). Surprisingly, accuracy decreased for Basic when
moving to the collaborative setting. This can be explained by the
adopted strategy of conducting part of the task independently, thus
lacking a ”big picture”, that participants were forced to adopt in
the individual case. This big picture is crucial for tasks such as
shortest path identification, where dividing the task into spatial
subtasks is not straightforward9.

4.2.7 Summary
The two techniques, Propagation and Basic, support collaboration
and wall display interaction differently:
• Propagation is promising for individual work for the shortest
path finding task, requiring little physical movement. In group
work it leads to increased accuracy, but no measurable increase
in speed as there is an overhead related to coordination due to
its visual footprint. Thus tight coordination, combined with the
technique’s highlighting of areas of interest, helped maintain an
understanding of partners’ work and increased accuracy.
• The Basic technique is as accurate when dealing with simple
graphs for individuals, but considerably slower. And its perfor-
mance degrades with more complex graphs. More importantly,
when pairs divide tasks spatially, it can lead to loss of awareness of
partners’ work, resulting in loss of accuracy in collaborative work
(compared to individual) when task division is not straightforward.

5 EXPERIMENT 2: OBSERVATIONAL STUDY

In the previous study we focused on a single controlled task that
is not clearly divisible and parallelizable in its nature. Although
pairs naturally took responsibility of one node, an overview of a
larger area of the graph is required to correctly address the task.
This is true for most low level graph analysis tasks suggested in
the literature [37]. Nevertheless, studying them gives us insight as
to how users can appropriate existing techniques in a collaborative
manner. For example, Propagation, which quickly affected a large
part of the graph, required explicit coordination. We examine, now,
if this is true for other low level tasks.

9 For example, when choosing among shortest path candidates, considering
only the left half of paths is not enough to identify good candidates.
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More specifically, we are interested in assessing Propagation,
that proved more promising, as a general graph exploration tech-
nique, observing if pairs can ”discover” on their own how to
perform new tasks without task specific training. And in whether
they adopt similar coordination strategies as in Exp 1. Thus we
are less interested in recording time, and more in observing if and
how pairs collaborated.

5.1 Experimental Design

5.1.1 Participants & Apparatus
We recruited 8 volunteers (4 females, 4 males) in pairs, aged 23
to 39, with normal or corrected-to-normal vision. Pairs knew each
other and had taken part in Exp 1. Sessions lasted 30min, using
the same apparatus as in the first experiment.

5.1.2 Tasks
Groups performed the following topology tasks [37]:

T1 Find the shortest distance between two nodes (as opposed to
the shortest path as in Exp 1).

T2 Find the common neighbors of degree 2 between two nodes.
T3 Find all connected components.
T4 Find an articulation point between connected components.
T5 Open exploration, reporting interesting observations.

5.1.3 Graph Types
In T1 and T2 we used high complexity small-world graphs similar
to Exp 1. In T1 the shortest distance was 6 and the two target
nodes were separated by a physical distance of about 75% of the
wall width. In T2 the two target nodes were closer (about 50% of
the wall width) and had 5 common neighbors.

In T3 and T4, we combined unconnected small-world graphs
(20 nodes each) of high complexity: three in T3 (60 nodes in total)
and two fin T4 (40 nodes). To complicate the tasks, we tweaked
the layout to get overlap between subgraphs. And in T4 we hid the
articulation point connecting the subgraphs inside one of them.

The graph used in the open task T5 (similar to Figure 1)
consisted of three subgraphs of different densities, and two un-
connected nodes. Two subgraphs where connected through an
articulation point, hidden within the third subgraph. These were
the insights we wanted our participants to identify. The layout was
tweaked so that subgraphs were not easy to separate visually.

5.1.4 Procedure
Participants were first reminded of the propagation technique,
but no task specific training was given. Then the experimenter
introduced the task without giving instructions on how to solve
it, and participants performed the five tasks in order. Participants
indicated they were done verbally, in a way similar to Experiment
1. If participants succeeded on their first trial within a timeout
limit of 3000sec (5min), they moved on to the next task. If they
failed, a strategy to solve the task was explained to them, and they
were presented with another trial for that task. If they failed again,
they were given a final trial, and then moved to the next task.

The experiment was recorded, and one experimenter took
notes. A second experimenter gave instructions and logged the
time (as in Exp 1). At the end, we asked participants if they had
any suggestions for improving the technique, their thoughts on
collaboration, and how confident they were in their answers.

Tasks Discovered Avg.Time (SD) Correct
shortest distance X (4/4) 63.5s (SD=21.9) X (4/4)

2nd degree neighbors X (4/4) 77.6s (SD=90.3) X (4/4)
connected components X (4/4) 47.6s (SD=22.4) X (4/4)

articulation point X (0/4) timeout (3000s) 2nd try (3/4)
3rd try (1/4)

Table 3. Summary of findings for specific Tasks T1-4, indicating whether
our pairs were able to discover how to perform a task, and the time it
took them to do so (mean and SD). If they did not discover a strategy
on their own within the timeout period, column Correct indicates on what
try they succeeded.

5.2 Results
We report next participants’ success in discovering a correct
strategy and time averages logged during the experiment, as well
as the strategies they adopted based on video log analysis and
notes taken in the experiment.

5.2.1 Discovering
All pairs discovered without any training correct strategies for
identifying the shortest distance between two points, the common
neighbors of degree two, and the connected components (T1-3).
No pair was able to develop a correct strategy for finding an
articulation point (T4), but three pairs understood how to identify
possible candidates. After instruction, three pairs were able to
perform a new T4 trial, and one pair on their third attempt.

All pairs conducted T1-T3 within the time limit, with con-
nected component completed faster 47.6s (SD=22.4), followed
by shortest distance 63.5s (SD=21.9) and 2nd degree neighbors
77.6s (SD=90.3). The larger mean time and standard deviation
of 2nd degree neighbors is due to one pair that did an extensive
verification of their answer (described next in strategies). We note
that the times reported here include both the discussion of strategy
and the actual interaction to find the solution. Table 3 summarizes
the discoverability of strategies and the time taken by our pairs.

In the open task, three pairs found four out of five possible
insights, and one pair found all insights within the time limit. All
pairs found two connected subgraphs and identified an articulation
point between them. They also verified that the third subgraph was
disconnected, and identified the extra disconnected nodes. One
pair noticed the differences in the density of the subgraphs by
calculating shortest paths.

5.2.2 Observed Strategies
We describe next the strategies adopted by participants, focusing
on how they coordinated, and report their subjective comments.

Shortest Distance: In all pairs, each participant propagated
from one of the two target nodes, until one or more nodes were
selected by both their colors. They took turns propagating and
observed each other’s work so as not to loose count of the total
propagation steps performed. One pair also used the thickness of
edges to confirm that bi-selected nodes were at a distance of 3
from each target node.

Common Neighbors of degree 2: All pairs propagated two
levels from both target nodes and then counted the number of
nodes selected in both colors. Two pairs worked independently
first (propagated in parallel) and checked later the bi-colored nodes
together. Of these pairs, one backtracked their propagation to
verify all bi-colored nodes were neighbors of degree two exactly,
rather than neighbors of degree two or less for one of the nodes.
The other two took turns propagating and looking at their partner’s
work, ensuring they considered neighbors of exactly degree two.
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Connected Components: All pairs discovered that the best
strategy was to start propagating from nodes that seem distant, and
if one propagation no longer had an effect (no more nodes added)
they had identified and fully selected a connected component. Two
pairs worked in parallel, propagating in different areas simultane-
ously. While the other two took turns propagating and observing.
One such pair had a discussion at the end of the task, noting they
could have interacted in parallel to be more efficient.

Articulation Point: This task was more complex, even if
the concept of articulation was easy to understand by all par-
ticipants. No pair managed to find a correct strategy on their
own. Nevertheless, three identified several possible candidates
using propagation (including the actual one), although they were
unsure how to proceed with proving it. The strategy of all pairs
consisted of propagating from nodes in different areas in the graph
and consider bi-colored nodes. But they did not verify that all
following propagation steps between subgraphs passed through
their candidates. After this strategy was explained, three pairs
succeeded in their next try, while the last pair ran out of time
and succeeded in its third attempt.

Open Exploration Task: Being inspired by the previous
tasks, all pairs began by propagating from far away nodes and
found the subgraphs connected by an articulation point, and
the third disconnected subgraph. Pairs mixed their strategies,
propagating in parallel at the very beginning of the exploration,
and then coming together to discuss hypothesis and taking turns
propagating and observing.

5.2.3 Subjective comments
All participants felt confident in their answers and strategies,
especially for the first three tasks. Six commented that collabora-
tion increased their confidence in their solutions. When prompted
about their coordination strategy, four explained that taking turns
helped them be more aware of each other’s work, while two men-
tioned that sometimes they still lacked awareness of each other’s
work when working at distant locations. Three participants also
commented on the visual footprint of propagation: occasionally
the colored query of their partner would enter their work area,
causing some visual disturbance, while rarely they also missed the
effects of their own propagation when it was far away from their
location. Nevertheless, these participants also mentioned that these
colors helped them verify their partner’s work.

They all felt the articulation point task was difficult, and
three users independently suggested extending the propagation
selection to better support this task, for example by being able
to “block” a node and prevent propagation from going through
it, or removing nodes temporarily. Four participants commented
that it was sometimes hard to tell how many propagation steps
they had performed, and suggested adding it as a small number
close to the propagation origin. These last two features were im-
plemented. Two participants requested the possibility to collapse
and bookmark propagation queries for later use, and another two
suggested the option to propagate using a different color within an
existing propagation.

5.2.4 Summary
Participants were able to devise correct strategies for the majority
of tested tasks, and in the articulation point task identify good
candidates, demonstrating that the extended Propagation is an
interesting general purpose technique for graph exploration. As

in Exp1, participants divided the space and mostly took turns
propagating (with few exceptions). We got several comments
indicating that the reason for this turn taking was to coordinate and
keep awareness of others’ work, but also to avoid visual disruption
due to the global footprint of the technique. Nevertheless, this
global footprint also helped them check each other’s work quickly.

6 DISCUSSION AND DESIGN IMPLICATIONS

We examined how pairs and individuals work on wall-displays to
solve low-level graph topology tasks. Our findings indicate that:

Exploring complex graphs individually requires interaction
that highlights the structure of the graph, while basic interaction is
enough for simple graphs. Wall-displays can comfortably display
large graphs, nevertheless it is still challenging for individuals
to explore complex graphs such as large small-world ones. Here
we observed a significant benefit in using advanced interaction
techniques, such as Propagation selection. For individuals, Basic
selection did not scale well for complex graphs, nevertheless it
performed reasonably well for simpler planar graphs.

Collaboration improves accuracy only if techniques allow
verification of partners’ work. Pairs were more confident in their
responses than individuals with both techniques. Nevertheless,
their actual accuracy improved only for Propagation. On the
contrary, pairs using Basic were more error prone than individuals.
Our observations and participants’ comments indicate that this is
because with basic selection it is difficult to acquire an overview of
all choices considered by one’s partner, and thus maintain a global
view of the work and identify possible errors. On the contrary,
with propagation selection it was easier to verify at a glance the
work of one’s partner and check for errors. In collaborative graph
exploration, lack of workspace awareness [14, 19] can decrease
accuracy, compared to individual work.

Even when tasks are not clearly divisible, pairs divide the wall
spatially. For many topology tasks identified in the literature, and
used in our experiments, there is no clear strategy to divide them
in space, as they may require a global understanding of subgraphs
that extend across the display. Nevertheless, irrespective of task
and technique, pairs divided the wall spatially. Even when not
optimal, they each took responsibility of one part of the wall and
then combined their work, with mixed results. This division was
observed in tasks that are clearly spatially divisible [32, 39, 62],
but not in tasks that are not clearly spatially divisible, such as route
planning tasks [59]. Designers should anticipate this division of
space and encourage tighter collaboration (discussed next) when
tasks are not spatially divisible.

If a technique has a global footprint, tight coordination is
adopted. Although pairs occasionally worked in parallel with
Propagation, they mostly took turns, working on different sections
of the wall. They commented that this tight coordination was
needed because the technique had a visual footprint that could
reach all areas of the wall, risking disturbing the partner’s work.
Theoretical work on automated graph exploration using a variation
of propagation [12] has shown that automated agents with full
knowledge of others’ exploration (i.e. high awareness) tend to
explore the graph fully more quickly. Given our findings on prop-
agation accuracy and the theoretical result on efficiency, designers
could use techniques with large visual footprints to encourage
close collaboration that can increase accuracy and efficiency. This
is complementary to findings that when collaborating loosely,
participants chose techniques with local visual footprints [59].
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Consider awareness vs. disruption tradeoff in techniques.
Participants’ comments indicate there is a clear tradeoff between
awareness and visual disruption. Propagation can be visually
disrupting and affect the partner’s work, but it also provides higher
degree of workspace awareness [14, 19]. While Basic has a small
visual footprint and is less disturbing, but pairs can loose track
of their partner’s work due to the wall size and graph complexity.
Both types of techniques should be supported, and collaborators
should be able to transition between them depending on how tight
their work coupling is [59], and how divisible their task is.

Provide techniques that do not require extensive walking. Free
walking is beneficial in wall displays [6, 10]. Nevertheless, tech-
niques that require users to repeatedly walk to interact with differ-
ent areas of visualizations (such as Basic) are fatiguing. Designers
should provide interaction alternatives that can be activated locally
but act globally, such as Propagation or ones proposed in the HCI
literature for remote reaching [9, 56] and data manipulation [39].
Alternatively, designers could provide a combination of touch and
distant interaction (e.g. using mobile devices) to ensure users can
perform large scale or remote interactions across distances.

7 CONCLUSION AND FUTURE WORK
In this work, we study two selection techniques for graph explo-
ration on wall-displays, used by individuals and multiple users.
We adapted two existing techniques for use by multiple users
on a touch enabled display, a basic selection, and a propagation
selection using the idea of transmission. We performed a user
study that showed Propagation to be faster in both individual and
multi-user contexts, to be more accurate for multiple users, and to
require less movement than Basic in a shortest path identification
task. It is also versatile enough to be used in a series of topology
tasks, observed in a second study.

Nevertheless, as Propagation has a large visual footprint, it
requires higher coordination when used by multiple users. When
working in pairs, propagation selection increases accuracy overall,
but due to a coordination cost it improves time only for complex
graphs. When using basic selection, that has a small visual
footprint, accuracy dropped for pairs, most noticeably in complex
graphs. Indeed, we observed that using basic selections, partici-
pants tended to work independently and lose awareness of each
other’s work, which proved detrimental for the task we consider,
that is not clearly divisible. We conclude with design implications,
stressing the tradeoffs of techniques with global vs. local visual
footprints, and the need to allow users to switch between such
techniques depending on whether the task is spatially divisible,
and on the nature of collaboration (loose or tight).

A possible future direction includes improving the propagation
technique. As other multicolor query selections, it prevents the use
of color for encoding other information on the graph. We plan to
explore other visual encodings, such as motion [65], that neverthe-
less need to be considered carefully when applied to techniques
that feature a large visual footprint in multi-user settings. More
generally, we plan to investigate design variations for propagation
that reduce this global footprint, for example re-layout the graph
to move selected nodes closer together. Nevertheless, as we are
dealing with multi-user settings, care must be taken to limit
colleague disturbance. Finally, we plan to explore visualization
techniques to better emphasize grouping of nodes belonging to
one [35] or multiple selection groups.

As this is the first work to examine how multiple users that
move freely to explore graphs on walls displays, we focused on

fairly controlled topology tasks. We next plan to investigate more
open ended exploration tasks, where we suspect task division will
be different. Moreover, we plan to explore different types of input,
for example combinations of touch and distant pointing, to better
support user mobility.

Although the idea of multiple propagations was used in the
context of a collaborative vertical surface, we believe it has
potential in horizontal tabletops, but also in desktop settings, and
should be further studied. It can also be adapted to serve other
graph representations such as directed graphs and matrices, and
for dynamic graphs [5, 2].
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Abstract. Stories help us communicate knowledge, share and interpret experi-

ences. In this paper we discuss the use of storytelling in Business Intelligence 

(BI) analysis. We derive the actual practices in creating and sharing BI stories 

from in-depth interviews with expert BI analysts (both story “creators” and 

“readers”). These interviews revealed the need to extend current BI visual anal-

ysis applications to enable storytelling, as well as new requirements related to 

BI visual storytelling. Based on these requirements we designed and imple-

mented a storytelling prototype tool that is integrated in an analysis tool used by 

our experts, and allows easy transition from analysis to story creation and shar-

ing. We report experts’ recommendations and reactions to the use of the proto-

type to create stories, as well as novices’ reactions to reading these stories. 

Keywords: Visual Storytelling, Business Intelligence. 

1 Introduction 

Stories are one of humanity’s communication structures and storytelling a means 

of passing on wisdom and culture. Individually and collectively, stories help us make 

sense of our past and reason about the future. Johnson 17] and Maclntyre [21] argue 

that story narrative also goes beyond communication, it is also a process of extracting 

meaning from events, that is central to human experience and conduct.  

It is thus not surprising that intelligence analysts, who make sense of data, identify 

links between disparate pieces of intelligence, and communicate their findings to de-

cision makers, are interested in storytelling. Their analysis process is supported by the 

construction of stories and narratives, both during sense-making and during presenta-

tion of results. Bier et al. [3] point out that a story is a powerful abstraction to concep-

tualize threats and understand patterns as part of the analytical process, and story 

structures and storytelling is the means to present the analysis results. As analysts 

continue to work with increasingly large data sets, data visualization has become an 

incredibly important asset both during sensemaking analysis, and when communicat-

ing findings to other analysts, decision makers or to a broader public [15, 27].  
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Given the importance of storytelling in different steps of the analysis process it is 

clear there is a need to enhance visual analysis tools with storytelling support. Never-

theless this process is not simple [33, 20], as analysts need to work within very large 

data resources and highlight and explain items or events of importance and their con-

nections to their audiences. Despite the growing use and research work on storytelling 

and narrative visualization in the visualization domain [26, 9, 15], related research on 

the domain of BI has not equally progressed. Our work attempts to rectify this.  

In Business Intelligence (BI) analysis, the most popular visualization tools are 

dashboards. Dashboards [8] are collections of visual components (such as charts or 

tables) on a single view [12], that permit analysts to explore their data and quickly 

view different aspects of complex datasets. Nevertheless, simple collections of visual 

representations cannot be interpreted by untrained audiences; to become meaningful 

they require interpretation and explanation, often presented in a story narrative.  

We attempt to answer the following research questions: What are the actual prac-

tices of BI experts in creating and communicating visual stories to their audiences, 

and do current BI visualization tools support well this story creation and storytelling 

process? How can we enhance BI visual analysis tools with narrative capabilities, and 

are these capabilities effective in communicating analysis stories to others?  

Our work makes the following contributions:  

(1) Interviews with expert BI analysts (story ”creators” and ”readers”), provide a 

better understanding of current practices in creating BI stories. BI stories are an asyn-

chronous, visual, and interactive means of transmitting and sharing information on 

data between analysts and their audience. They include visualized data (dashboards, 

charts or tables) and detailed explanations on the story structure in the form of presen-

tation(s), detailed textual annotations and external resources such as wikis. (2) Current 

tools fail to support the storytelling process, which remains cumbersome and requires 

frequent switching between software (analysis tools, screen captures, text editors, 

presentation tools, etc.). We emphasize the need for storytelling support, and extract 

requirements for enhancing BI tools with visual storytelling capabilities. (3) Follow-

ing these requirements and a user-centered design approach, we implement a storytel-

ling prototype incorporated in an existing visual analysis dashboard, to fluidly transi-

tion from analysis to story creation and reading. (4) We report on feedback from BI 

experts on the usefulness of the prototype as a communication and teaching medium, 

and from BI novices reading a story on its effectiveness for story communication. 

2 Related Work 

Stories are series of ordered events and facts, and their connections (Oxford English 

Dictionary). In intelligence analysis, it is furthermore an abstraction used by analysts 

to conceptualize threats and understand patterns in the analytical process [3], and 

communicate their findings to others [2].  

Stories in Business. In recent years, organizations and their leaders have identified 

the importance and value of narrative and anecdotal information conveyed in the form 

of stories [29], to present either complex ideas, the context and details of crucial in-

formation, or personal interpretation of that information [28].  
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Research conducted to date has demonstrated the value of storytelling to improve 

organizational structure [24] and collaboration quality [23, 6], socialization and adap-

tation of new employees [7, 18, 19], organizational and financial success [4, 5], inno-

vation and new product development [22], and teaching and learning [16].  

The majority of this work is a meta-analysis of the effect of storytelling within an 

organization, rather than identifying the storytellers’ needs in terms of supporting and 

enhancing the storytelling process as is our case. Moreover, the stories themselves 

discussed in this work, relate to the transmission of information and knowledge within 

an organization, mostly in textual or verbal form, rather than in visual form. The 

widespread use of visualization dashboards in the domain is a more recent develop-

ment [8], and so is the transmission of knowledge between organizations (dedicated 

BI analysis organizations and their clients). Thus storytelling needs in the domain 

have evolved. In Section 3 we explain current practices in visual knowledge transmis-

sion and we take a step at characterizing current problems and needs more precisely. 

Stories in sense making. Baber et al.[2] point out that contemporary theories of sense 

making rely on the idea of ’schema’, of a structure to organize and represent factual 

information, as well as the knowledge, beliefs and expectations of the people who are 

engaged in sense making. They can thus be considered as a collection of narratives. 

They further discuss the formalism of stories in sense making, and how the most ef-

fective stories are organized around the actors in the stories, their actions and ration-

ale, events, their context, and most importantly the relationships between these. As 

argued by Bier et al.[3], for effective collaboration and communication we need to use 

less text, and organize knowledge around entities (people, places, things, times etc.) 

rather than free form text. Similarly, Pirolli & Russell [25] propose the mapping of 

intelligence facts and insights into frames, that can be expressed in a variety of forms 

including stories, maps, organizational diagrams or scripts. It is thus clear that con-

ducting intelligence analysis, communicating findings, and organizing knowledge in 

stories, has a strong visual component that represents entities and their connections. 

Stories in data visualization. Often text or audio transmit the main story, while visu-

alizations support the story or provide details. Comics and flowcharts are special nar-

ratives relaying mostly on visuals rather than text. Recently, we have seen an increase 

in integrating complex visualizations into narratives in many news organizations [11], 

journalism reports (e.g. New York Times, Washington Post, the Guardian), and tele-

vision reports (e.g. Gapminder1). Segel et al.[26] explore different aspects of narra-

tives from a variety of sources and identify distinct genres of narrative visualization. 

In the business intelligence domain the main visualization tools are dashboards [8], 

collections of multiple visual components (e.g. charts, tables) on a single view [12]. 

BI dashboards permit users to interpret data at a glance, and are very popular (e.g. 

[Dundas2, Oracle bi 10g3, Xcelsius, Spotfire4, Tableau5]). But as Wojtkowski and 

                                                           
1 http://www.gapminder.org, 2010 
2 http://www.dundas.com/microsite/dashboard 
3 http://www.oracle.com/technetwork/middleware/bi-enterprise-edition/ 
4 http://spotfire.tibco.com/ 
5 http://www.tableausoftware.com/ 
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Wojtkowski [33] point out, dashboards and other visualization tools used to analyze 

complex data cannot simply tell stories. They need to be ”tailored” to accommodate 

storytelling by better highlighting items of importance within very large data re-

sources [14], in a way that is efficient for the storyteller and clear for the audience.  

Some visualization systems began to integrate storytelling [20]. GeoTime [9], a 

geo-temporal event visualization system, integrates a story system that shows events 

in space and time, hypertext linked visualizations, and visual annotations to create an 

environment for both analytic exploration, and story creation and communication. 

The design of the tool was based on real user needs and has been evaluated with intel-

ligence analysts. Wohlfart and Hauser [32] present a system for demonstrating to 

audiences the path followed in analyzing 3D volumetric data, while providing audi-

ence with limited interaction with the 3D data. Both these systems deal with a single 

visualization/chart seen over time or from different views. Thus their designs are not 

necessarily applicable to the multi-dimensional and multi-chart BI visualizations 

where the connections and links between data are not as clear.  

Storytelling tools in BI are not yet as advanced. Systems like Sense.us [15] and 

Tableau5 allow analysts to visualize data, conduct analysis, and store a history of the 

exploration, that can serve as a step towards creating a story. Many Eyes [31], Tab-

leau Public5 and Sense.us [15] publish interactive visualizations online, and permit 

collaborative analysis through comments on a single visualization, creating an evolv-

ing analysis. This collaborative annotation can be seen as a step towards a collabora-

tive knowledge narrative, where an analysis story could be extracted from the visuali-

zations and comments. Nevertheless, these tools do not provide explicit means to in-

dicate story progression and highlight relationships between multiple visualizations 

(seen in dashboards), that are key to intelligence analysis and communication [2]. 

3 Interviews 

To support visual storytelling in BI, we first investigate current practices in transmit-

ting BI analysis results, and identify challenges experts face currently when creating 

and sharing their stories, or reading and interpreting stories of others. We interviewed 

5 BI experts in a leading business intelligence development company, with experience 

from 6 months to 12 years. Participants’ job descriptions included development pro-

ject manager, project manager, development director, data warehouse engineer and 

delivery manager. Three experts used dashboards and communicated their analysis or 

read analysis from others daily, while two several times a week. Interviews were held 

in person or by phone and lasted over 1 hour (Table 1). We report next our major 

findings. Note that they hold true for all BI reporting tools available today, as indi-

cated by our experts’ experience with multiple tools, and our own investigation. 

Table 1. Experts’, experience, dashboard use and interview duration. 

Experts P1 P2 P3 P4 P5 

Experience 7 years 6 months 6 years 3 years 3 years 

Dashboard use daily weekly weekly daily daily 

Duration 90 min 120 min 60 min 60 min 60 min 
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3.1  Current Practices: BI Reports  

All experts communicate their analysis or read analysis from others in the form of BI 

reports. These contain an entire dashboard, often accompanied by several single 

charts and tables. Their purpose is to help monitor aspects of business performance, 

by highlighting with charts key performance indicators (KPIs) that indicate success of 

project management and progression of development teams. Our experts were report 

creators, but occasionally acted as readers of others’ reports.  

A BI report can be a single page, with only a title and a dashboard (Fig.  1.). This 

one-page report summarizes the most important data, and can serve as a starting point 

for longer reports, up to 50 pages in length, that give more details. Details can be ad-

ditional visualizations, tables, annotations, links to the data used in the visualizations, 

and finally block text, although all participants preferred limiting text to 5% of the 

space in a report. When possible, creators want to make their reports ”live”, with in-

teractive visualizations for the audience to explore. Thus BI reports have a very strong 

visual component, with little text added for explanations. The one page report is pre-

ferred by clients like company managers, that want an ”at-a-glance view” of a project 

status, and that see many such reports during a day. Longer detailed reports are used 

to communicate findings to other analysts, project teams and product owners. 

  

Fig.  1. One page BI report from an expert: dashboard presenting bug status in a project. 

Note the lack of annotations/explanations, aside from chart titles and data dimensions. 

Experts mentioned that BI reports are used to (i) answer specific questions (e.g. 

What is the code development progress in project X the last 3 weeks?); (ii) investigate 

specific data (e.g. Investigate the increase of bugs in section Y of project X); (iii) 

manage conflicts and highlight problems (e.g. Team X completed less use cases than 

planned, because test team Y did not complete testing); and (iv) interpret past data 

and predict future trends (e.g. Given last year’s sales, what is this year’s projection?).  

BI reports are nevertheless only one of the tools used to communicate analysis 

findings, and are not a complete BI story.  
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3.2 Current Practices: Supporting material for BI Storytelling 

Experts explained that reports are difficult to understand without detailed explana-

tions from the creator. Thus they don’t represent a complete BI story on their own. 

Before publishing a new report, the creator provides an introduction session to report 

readers. During this (usually one hour long) session, she explains with a presentation 

the entire story and goal of the report, the meaning of each chart, the relations be-

tween different KPIs in different charts, as well as in what sequence to read it. Thus 

their verbal explanations and presentation slides are ways for creators to explain their 

analysis path. These presentations often show relational diagrams, text explanations 

and interpretations, highlight specific visualizations or parts of visualizations using 

colored highlights, arrows and other symbols. The report creator often draws by hand 

on a chart the ideal data values, to help compare the current situation to target goals.  

The audience can ask questions during or after the training sessions, through 

emails or arranged meetings. Content similar to the presentation, is often put on a 

wiki page to answer follow-up questions. The session recording, wiki page, and pres-

entation slides, are made available to the audience as reminders and reference mate-

rial. Experts explained that this material is not a complete story either, as it does not 

include the visualization and data details shown on the report.  

Thus a complete BI story is a collection of visual representations of the most im-

portant data followed by further data details (BI report), accompanied by instructions 

on how to read the visualizations (order, connections, importance) in the form of 

presentations and verbal or textual instructions on a wiki. Although creators present a 

desired way to view data, this structure is not enforced: the audience can pursue the 

story in a different sequence and dig for data details in the report. Thus a BI story 

differs from a simple fixed sequence presentation that prohibits exploration. Its goal is 

to communicate analysis findings and supporting evidence.  

3.3 Current Practices: Teaching BI storytelling 

According to our experts, all the material making up a BI story is also a tool for train-

ing analysts. As a recently trained creator explained (P2), this material taught her the 

key aspects of BI reports and how to interpret them. When analysts start out they read 

in detail older reports and their supporting material to understand how to analyze 

visualizations, see relations, and identify important points and their link to KPIs.  

Experts mentioned that designing a new report is hard and requires a lot of experi-

ence, thus they often use a template that they modify according to their needs. Three 

(P2,P3,P4) stressed the influence of a senior creator (P1), and their reliance on her BI 

report templates to create their own. They still occasionally contact the senior creator 

when facing difficulties or are unsure of the clarity of their message in a report. 

The supporting material is also often reused. All experts explained that data (and 

thus reports) change, but often the structure of BI stories repeats itself. Moreover, 

they sometimes create a sequence of reports on dynamically evolving data (e.g. sales 

over several years). These stories change very little. Thus material on how to read 

reports can be re-used by adapting it to new stories, nevertheless, experts pointed out 

it can be a tedious and repetitive process. 
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3.4 Current Practices: Collaboration in BI Stories 

Experts explained that report creation follows several iterations of communication 

with a client (usually a decision maker like a manager or executive), who is one of 

many possible report readers. Thus the focus and structure of the story changes and 

evolves through the communication between the story teller and the story reader over 

time, and stories become the collaboration product of story tellers and readers. This 

process does not appear in most other visual analysis domains and visualization story-

telling, where the reader’s needs do not directly factor into the creation of the story.  

This interactive report evolution process can be heavyweight (through phone calls, 

emails, etc.) and take several iterations to iron out, while the communication details 

are often lost between different versions of the report. At each iteration, creators ex-

plore the desired data using interactive visualization dashboard tools, create initial 

visualizations, provide additional information and details about the analytical tech-

niques used, and finalize reading paths (i.e. how to read a report).  

Once the story is finalized, it serves to clarify connections in the data and answer 

specific questions analyzed by BI analysts (see section on BI Reports). These answers 

often result in more detailed or tangent questions from the audiences, and the need for 

analysts to conduct side data investigations and generate new stories. As in other 

visualization domains, BI stories are thus a visual communication medium between 

storytellers and their audiences, but contrary to other domains, there is an open 

communication loop, where audiences can continue to ask for new stories.  

3.5 BI Storytelling Challenges 

All experts use an in-house reporting tool, that gives access to different data sources 

and can extract interactive dashboards, charts and tables from their dashboard analysis 

system. It also provides the capability of adding text. Three (P1,P3,P5) also used Ex-

cel for creating less complex reports. Our experts identified several issues with this 

process, which are similar to other BI analysis and reporting tools.  

When extracting interactive visualizations from their analysis tools, metadata and 

annotations from their analysis are not extracted and have to be recreated. Moreover, 

the annotation capabilities of the report creating software are very limited. They can-

not annotate specific data points, while sequences and connections cannot be dis-

played graphically but have to be explained in one of the supporting material. Finally 

the report creation tool can be in-house software. Thus to share reports, creators often 

extract static snapshots of the tool output and save it in PDF format for their readers.  

Some report creation tools give access to interactive visualizations and dashboards 

through hyperlinks. Our experts like this option and add these links to their non-

interactive reports (PDF, Excel) and presentations. Readers within the organization 

may have access to the in-house reporting tool, and can then interact with individual 

visualizations or dashboards (e.g. query and filter data, or drill down/up). This inter-

activity is lost when reports are communicated outside the company.  

To overcome the shortcomings of reporting tools, creators are forced to provide the 

supplementary material (presentations, wiki pages) and when possible links to interac-
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tive visualizations for in-company clients. They described this process as limiting and 

requiring a lot of work duplication.  

We requested clarification on two points regarding the possible integration of 

analysis and storytelling: (i) Given that analysis dashboards are exploratory environ-

ments that allow users to interact fully with data, should such interactions be allowed 

in the storytelling? (ii) If creators had the opportunity to create their entire story with 

all support material in one place, how would they prefer the story to be visualized?  

Interactivity. Due to the constraints of current reporting tools, shared reports are of-

ten non-interactive when accessed outside the organization. When creators were asked 

if they want the visualizations in the reports to be completely interactive and encour-

age readers to interact with them (e.g. using drill down/up, filter, link & brush), four 

(P1,P2,P3,P5) of our experts prefer to have interactive visualizations that permit link-

ing and brushing (i.e. data selection). But they would limit the more advanced interac-

tions such as drill down/up or filtering. They felt that all the data needed to tell the 

story should be displayed clearly in the report without the need to explore the data 

further. The fifth (P4) would not be opposed to fully interactive visualizations. Thus 

authors feel business stories should be mostly author-driven and constraint, known to 

work best when the goal is storytelling or efficient communication [26].  

Story templates. Going from the current practices of storytelling (BI report, presenta-

tions, wiki) to a dedicated storytelling tool is not straightforward. We thus showed our 

experts a group of story templates identified by Segel et al. [26] to see if they met 

their needs. All chose the ”Annotated chart” as the preferred template (Fig.  2), with 

the modification that it should have multiple charts on the same page (dashboard) that 

they can annotate. Four experts (P1,P2,P3,P5) identified ”Partitioned poster” as a po-

tential template, where the side list of charts display details that support the main 

chart in the central region. Three (P1,P2,P5) mentioned that the ”Slide Show” tem-

plate is useful both as a means to focus on attention on each chart and zoom to details, 

and as a step-by-step presentation that clarifies the analysis path and the ideal reading 

sequence. One expert (P5) found the ”Flow Chart” useful for showing some business 

scenarios, like following bugs during development (discovered, tested, fixed etc.). 

Another (P3) found the ”Comic strip” useful template, but with added annotations.  

So besides the templates identified by Segel et al.[26], for BI stories we need a new 

template that consists of an annotated dashboard. Our users attempt to do this with 

their current reporting tools, but they are limited (cannot annotate detailed points and 

relations), or they create it manually in their presentations.  

 

Fig.  2. Genres of visual narratives templates from Segel et al. selected by our BI experts. 
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4 Participatory Design Session 

We brought back the senior BI expert that trained other analysts (P1), to identify the 

best design for a BI storytelling tool. She provided us beforehand with one of her old 

reports and supplementary material. During this session we gave the expert a copy of 

her material, and several cut-outs of the entities in the report (charts, titles or tables). 

She was also given ”narrative aids”, such as arrows, lines, numbered items, grouping 

containers of different colors, and annotation bubbles. We asked her to construct a 

stand-alone story of the report on an A3 paper, with accompanying audio if necessary, 

in a way that it can be interpreted by a general audience with no training. The session 

lasted 2 hours and was recorded.  

Fig.  3 shows the final version of the manually created story by the expert, where 

we can see the intense usage of annotations and explanations, connected by arrows 

and lines. Other structures used by the participant were chart grouping rectangles (en-

closures for placing charts that need to be read together), sequence markers (what 

needs to be read first), and highlight markers (to draw attention to part of the story). 

We asked our expert how she would prefer the readers to see the story, as a static 

image or an animated presentation. She explained that both are needed, the static rep-

resentation shows the ”entire story and gives context”, whereas the animation ”fo-

cuses the audience where I want”. She then played out for us how she wanted the 

animation to be presented, explaining when and how to zoom to specific areas of the 

story. This play-back was recorded using static shots.  

 

Fig.  3. Story created by an expert during the design session. 
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5 Requirements For Creating BI Stories  

Based on expert self-reporting, BI reports, the main communication medium of BI 

analysis, consist of snapshots of visualizations and textual descriptions, made in a 

different environment than the one used for analysis. These reports are fact-based and 

can be interpreted only by an expert audience. To increase their audience, report crea-

tors use supplementary material, like wiki pages, presentations, and when possible 

links to interactive visualizations. Based on our experts’ interviews and a participa-

tory design session, we identified a set of requirements for enhancing BI analysis 

tools with storytelling capabilities: 

R1. Fluid transition. Analysis tools used to explore data and create visualizations 

are different from report creation tools. Exporting visualizations from the first to the 

second to create a BI story costs time and effort, and limits the possibility of embed-

ding meta data or annotations created during the analysis. To ensure that creators do 

not recreate information, they require a fluid and integrated way to transition from 

their analysis and meta data associated with it, to report creation. 

R2. Integration. To tell their stories, BI creators need tools that combine all mate-

rials used currently in their story creation: BI reports, interactive visualizations, ways 

to indicate story structure, highlighting capabilities, presentation of the story in se-

quence, and textual or audio explanations. 

R3. Narrative visual aids. Report creators need to add focus expressions to draw 

attention to specific visualization data, such as highlighting, coloring, annotating and 

zooming. They also require ways to indicate reading sequence (e.g. vectorial refer-

ences, like arrows [13][30]). These are not available in reporting or BI analysis tools. 

R4. Interactive visualizations. Visualizations on shared reports are often non-

interactive when read outside the organization. A storytelling tool should have com-

pletely interactive visualizations, although the way that readers interact with the data 

should be limited (by default to brushing and linking) and be controlled by the crea-

tor. This balance has been identified as a challenging aspect of storytelling [20]. 

R5. Appropriate BI Story templates. BI stories have specific structure not neces-

sarily shared by other story narratives identified by Segel et al.[26]. Our experts iden-

tified templates of interest (Fig.  2) and highlighted the need for a new template that 

consists of an annotated dashboard.  

R6. Reuse. Although BI reports and data changes from analysis to analysis, often 

the underlying structure of BI stories remains the same. It is thus important to be able 

to easily reuse the structure of stories created within the tool both for stories of evolv-

ing data and similar future stories. 

R7. Optional playback. Readers should be provided with a static representation of 

the entire story to get an overview and explore it on their own pace, as well as a 

guided playback to help them follow analysis paths that not easy to discover and un-

derstand the important points according to the creator.  

Such storytelling support would facilitate the creation and learning to read BI sto-

ries. While the scientific visualization storytelling tool 32] supports R3,R4,R7, and 

GeoTime [9] supports R1 and R3, we are not aware of any BI dashboard or other 

multi-chart visualization system that provides all the above functionalities. 
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6 BI Narrative Prototype 

Following these requirements, we extended an existing dashboard exploration tool to 

support the creation of BI stories.  

6.1 Exploration/annotation dashboard (Fig.  4)  

 

Fig.  4. Dashboard with visualizations created during analysis on the left, and list of annota-

tions added to different data contexts while exploring analysis visualizations on the right. 

The user starts from a traditional analysis dashboard, a collection of coordinated (syn-

chronized) charts connecting one or more data sets. It provides advanced exploration 

capabilities such as data selection and filtering, and OLAP functionality (e.g. drill-

up/down) [1]. We build our narrative tool on top of an existing visualization dash-

board system [10] that supports annotations on ”data targets”, such as charts or tables 

(e.g. a bar-chart) or parts of them (e.g. a specific bar in the chart). Annotated data tar-

gets are highlighted in the dashboard and an icon indicates the number of attached 

annotations. A list of all annotations is also available on the right.  

After or while conducting her analysis on the dashboard, the analyst can create a 

story. The menu option ”Create story”, opens up the narrative board window. All vis-

ualizations and their annotations (annotation text + data targets highlighted) are 

placed in the narrative board. Thus the analyst can transition fluidly (R1) from analy-

sis to story creation. Because dashboards can present evolving data, but a story can be 

an instance in time, by default each visualization is placed on the narrative board with 

a time-stamp to indicate when the visualization was taken from the data.  

6.2 Narrative board (Fig.  5)  

Here users create a BI story. Visualizations and annotations from the dashboard ap-

pear on the main window, arranged by default as in the dashboard (to support the 

dashboard template identified in our interviews R5). Users can resize and relocate all 

story entities freely, or choose to organize them using other appropriate narrative 
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templates (R5). They can edit visualization titles, annotations of entities, and add new 

text entities. Users can add visual entities that indicate relations, grouping and empha-

sis (R3) to help create stories, available at a tool palette on the right. The story can be 

seen in: a static representation, where all entities remain one screen; and a playback 

representation, where entities are highlighted sequentially according to an author-

defined sequence (R7). We categorize the entities available on the narrative board as:  

1. Information entities: visualizations, text, annotations. These are mainly imported 

visualizations and annotations created during the analysis. For annotated visualiza-

tions, the annotation text, the visualization, as well as the annotated data target (spe-

cific part of the visualization that is annotated), are all defined as story entries. Users 

can also place text anywhere on the narrative board to further explain their story. 

2. Relational entities: arrows, lines, html links. A story can include relationships 

between entities, such as causality. We provide visual arrows, lines, html links and 

other vectorial references to define relations between entities (Fig.  5.c). 

3. Organization entities: visual grouping and sequences. Previous work [25] and our 

interviews emphasized the need of visual grouping of entities that are to be seen to-

gether in a story. We support this with entity grouping borders. Our experts also indi-

cated the need to define a reading sequence for each entity, to help readers move 

through the story. We achieve this by allowing users to define the order of appearance 

of all entities through a sequence list (Fig.  5.c). Users can change the entity’s se-

quence in the list, delete, or rename any entity. They can also define a playback time 

for each entity, a time for the entity to be in focus in the playback presentation mode. 

Audio can also be recorded for any entity, to be played during the story playback. 

 

Fig.  5. (a) Narrative board containing all story entities arranged by the story teller: infor-

mation, relational (arrows), organization (groupings) and emphasis entities, and numbers indi-

cating author reading sequence. This sequence appears in a list (b), where authors can define 

playback properties and add audio commentary. Below is a pallet of relational and organization 

entities (c), and the Playback panel (d) to control playback through the story time line. 
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4. Emphasis entities: highlighting and zooming. To focus reader’s attention to a spe-

cific story entity, users can add color highlights to any entity (e.g. a visualization, an 

arrow, or text entity), or select and highlight parts of visualizations (e.g. a bar in a bar 

chart visualization). This color highlighting can be present in the static story presenta-

tion (always visible), or during playback (the color highlight appears at a specific 

point in the story timeline). Besides color highlighting, users can add zooming high-

lighting to any story entity, to take place in a specific point in time during playback. 

Playback. As discussed in (R7) our experts desire 2 ways of showing their stories to 

their readers, a static overview version that provides context and allows free explora-

tion, and a playback that shows a recording of the author suggested path. Our narra-

tive board acts as the static version. We provide three options of animated playback, 

giving focus to entities in sequence for a given duration. In the ”color highlight”, enti-

ties in focus change color to grab attention (default playback). In the ”max playback”, 

entities in focus are zoomed-in to the maximum possible size, taking up the entire 

narrative board. Finally, in the ”fade mode”, during playback, all entities except the 

entities in focus fade out (Fig.  6). As mentioned, authors can record audio to accom-

pany the playback. Readers can pause the playback at any point to explore the story. 

 
Fig.  6. Two playback modes: Max (a), and Fade (b). 

Interactive visualizations and exploration. Our visualizations are imported with 

time-stamps referring to a “snapshot” of the dashboard data at the time of the story 

creation. Nevertheless, they are still connected to that version of the data and are still 

live. Thus users can still interact with them to perform brushing and linking actions 

(R4) and explore them further. By default we deactivate advanced interactions like 

drill-down/up, but authors can reactivate them through the visualization’s properties.  

The creators may also decide to take a new snapshot of the data (i.e. change the 

timestamp for the visualizations, and so the values of the data). Thus they can reuse 

the story structure for a new version of data (R6), which is particularly important for 

evolving dynamic data. Finally, users can select and replace any visualization with 

another, even from another dashboard loaded in the system. Thus they can reuse the 

story structure not only for dynamic data, but also for completely different datasets.  

Thus our system integrates all the material used currently in BI story creation (R2): 

BI reports (visualizations and annotations), interactive visualizations, ways to indicate 

story structure, highlighting, optional story presentation in sequence, and text or audio 

explanations. It can then be shared with readers with access to the prototype. With 

respect to other BI systems, ours is one based on a user-centered design based and 

expert user requirements, and is unique in supporting annotations that link multiple 

points in the story, different story playbacks, and providing templates for BI stories. 
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7 User Feedback  

We conducted two user feedback sessions to assess the usability and effectiveness of 

the system, both from the creator’s and the reader’s perspective.  

7.1 Story creation by experts 

We invited back two of the interviewed experts (P1,P2), and showed them the system 

in individual one hour sessions. Expert P1 was the experienced analyst (7 years) that 

has trained others. Expert P2 has been an analyst for 6 months and was trained by P1. 

They explored the prototype, saw story examples, and created stories themselves. 

General feedback and recommendations. Both experts were very enthusiastic with 

the prospect of having access to such a system for their work. They found it easy to 

use and helpful, especially as it is integrated in the exploration/annotation dashboard 

tool. As P1 mentioned it ”saves me from recreating any charts or annotations to pre-

sent to others”. It also saves time and effort not just in report creation, but also in 

communicating reports: as P1 explained, by using the prototype, there is no need for 

an explanation presentation to clients, for wiki pages or recreating interactive charts. 

Both creators reaffirmed that story reading must be guided by the story creator, 

else the goal of the story may be lost. Currently they enforce this by the order of ex-

planations used in their BI reports. They commented that the prototype supports this 

well with the numbered sequence for entities, while the playback (with fade out and 

zoom) guides readers through the story and keeps their focus on one entity at a time. 

But they appreciated that they can create and show a story on one page (even with 

scrolling), as opposed to the current multi-page reports, because as P1 mentioned 

”people tend to read only the first page, and explore less the following pages”. And 

because it gives readers flexibility ”the reader can always understand the position and 

link between parts and the overall story” and ”look for more details when she wants”.  

Participants liked the ability to use the annotated dashboard template, saying that 

”this is how we want to present our analysis story, similarly to our dashboard”. They 

both commented that annotations attached to data points are very important in point-

ing out to readers important data values ”I add a lot of manual arrows to point to an-

notations that refer to specific data points on a chart, and their ideal value”.   

Both experts suggested our system should support two types of BI narrative stories: 

(i)Fixed stories, that present snapshots of datasets at specific points in time, yet are 

interactive (e.g. for filtering), to be shared as tutorials, explanations, or reports. This is 

the default case in our system. And (ii) Online stories, that present dynamically evolv-

ing data, and can have the same analytic scenario regardless of data values. Thus sto-

ries may have the same chart descriptions (e.g. what data is shown), the same KPI 

relations, and the same reading sequence. Here visualizations in stories are no longer 

snapshots, but are updated with data changes. We have implemented this extension. 

Collaboration and Communication with BI stories.  Expert P2 commented on how 

this storytelling prototype can also be used as a means to evolve stories. Multiple ana-

lysts can integrate their own comments and knowledge in the story, encouraging peer 

learning, but also collaboratively creating more complete and detailed stories. 
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Expert P1 mentioned that she could envision using the system to iterate the defini-

tion of the story directly with her clients (a process conducted now by email or phone-

calls). She envisioned clients adding themselves on the story further explanations on 

specific entities and their relations (to explain patterns), possible summaries of deci-

sions they took based on the report, or highlighting what information is missing. This 

goes beyond collaborative analysis and storytelling: it directly empowers readers and 

becomes a medium to communicate what they want from the story.  

In both cases, the prototype moves from a one-way communication to a collabora-

tion medium, where the authoring of a story opens-up and evolves with the contribu-

tions of many users, and acts as an archive of knowledge and different points of view. 

Such a system, our experts explained, needs to clearly differentiate between the con-

tributions of individual authors. We are currently exploring this extension. 

Finally the story can be archived and used by new analysts that learn how to create 

stories (comment from our trainer analyst). P1 stressed how important such an archiv-

ing is for knowledge passing between analysts. The recently trained P2 stated the tool 

can help him further improve his reports by looking at the story structure of others. 

7.2 Story reading by novices 

We then ran a second session to evaluate the prototype from the reader’s perspective, 

and thus close the story communication cycle. We conducted 40 to 50 minute ses-

sions, with 5 BI novices. All were IT professionals, knew what a dashboard is but had 

never worked with one. Two had heard of BI reports but never used one. Participants 

were asked to (1) Read a BI report created by one of our experts, (2) Read a BI story 

(created by an expert in the previous session), and (3) Explore our prototype. 

 The story presented the progress of a development project from different perspec-

tives: General (how is the project evolving in terms of finished code in a sprints time 

line, how many code components are added to a waiting list, and how many critical, 

major or minor code components are done each week); and Detailed (the progress of 

each development team in coding and testing each code component). The develop-

ment is not progressing according to plan because many bugs fixed are not critical, 

whereas new bug reports coming in add critical bugs to the waiting list. The bottom 

right chart in the report highlighted the problem and the rest provide details. 

Reading the report. When given the report, all readers read the first page dashboard 

from left to right and up to down (which is not the ”author” suggested order). They 

understood the goal (progress of a project) and what the charts displayed (e.g. bugs in 

waiting list) with the aid of chart titles and legends. But they all struggled to find the 

problem illustrated in the report. Only one participant noticed that the project devel-

opment is not progressing over time, but she could not understand why. This supports 

our experts’ comment that reports cannot be read without the supporting material.  

Reading the story. Participants found that reading a story was easier ”it showed the 

facts in an understandable manner”. All 5 readers found the system easy to use, un-

derstood the story, and were able to answer correctly comprehension question related 

to the story content. We report here our main observations and readers’ comments:  
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Memorization: All users remembered even detailed aspects of the story and only 

went back to the system when answering detailed quantitative questions (e.g. to re-

trieve numbers from charts), while all general comprehension questions were an-

swered without going back to the story visualizations and comments. They tended to 

answer using the same terms used by the expert analyst in the story. When asked 

similar questions on the report, they went back to it each time to search for answers.  

Confidence: Readers were not confident in their understanding of the report as they 

had to draw their own conclusions. They expressed worry that they may have misun-

derstood or not noticed important points. While when reading the story, all felt confi-

dent, as their interpretations are confirmed by the analyst’s comments. 

Guidance: All readers appreciated the guidance in reading the story, both static and 

playback. They commented on the importance of both modes: ”the static mode per-

mits to understand the whole story” and ”dig for facts”, while in playback it ”is easier 

to follow” the story sequence and focus on important data. Four participants preferred 

the fade playback, and three the max mode when focusing on an entity. 

Understanding: All users understood the story using our tool, and found it easy to 

read and interpret. They commented on how it was easy to find answers both to quali-

tative and quantitative questions. The story structure showed clearly what is the prob-

lem, how to analyze it and how to find the cause. While they described the report as 

ambiguous, as they couldn’t identify the relation between charts or KPIs.  

Transmitting knowledge: All readers found annotations very helpful in explaining 

the relationships between charts and KPIs, and in teaching them the analysis logic 

they should follow. Four mentioned that the system can ”aid in transmitting different 

knowledge in the company between different users”, and two would like to use the 

system to communicate with their team their own data (even if they are not analysts). 

Engagement: Three readers got very engaged with the story, as ”stories are more 

encouraging than static reports”. They began searching in charts to find how this 

problem can be solved, exploring the story outside the suggested structure. 

The comparison of BI reports without supplementary material to our story proto-

type is clearly unfair and our goal is not to prove its superiority in terms of communi-

cation value. It serves to illustrate how our stand-alone prototype could be an effec-

tive means of communicating BI stories without additional material. A comparison of 

our tool against the collective BI story material used today is future work, but our 

experts already identified its superiority in terms of saving time on report creation, the 

sharing of interactive stories, and being a medium for collaborative story evolution. 

8 Discussion and Conclusions 

We identify for the first time the current practices and needs of BI storytelling. BI 

analysts often organize visually and communicate their analysis story to others. Nev-

ertheless their tools do not allow easy transition from visual analysis to storytelling. 

They often use multiple tools, replicate work, and train their audience to understand 

their analysis. This reinforces the need for explicit storytelling support, missing in 

most existing visual analytics systems even in other domains, and provides insights on 

how to address this need for dashboards and other coordinated view systems.  
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Based on interviews and a paper prototyping session with expert BI analysts, we 

derived requirements for extending BI visual analysis dashboards to support storytel-

ling. These can be adopted as-is by designers of BI systems, or inspire and inform 

visual storytelling research in other domains. For example providing an author sug-

gested story structure, seeing the story in either a playback or it in a static overview, 

and imposing exploration constraints to interactive visualizations, can apply to other 

domains. Others, like the need to reuse story structure, may be BI specific and need to 

be reexamined for other domains. Using these requirements we implemented an ex-

tension to a BI dashboard, allowing transition from analysis to storytelling.  

We evaluated our prototype with story creators and found the requirements and 

prototype meets their needs. More importantly, they highlighted the potential of story-

telling tools as (possibly asynchronous) two-way communication channels, were 

authors communicate their findings, and readers also pose questions directly on the 

story. This empowers readers, informs authors of limitations of their story, and cap-

tures the evolution of the story. In BI it also accelerates story creation, that is highly 

client driven, and whose details are often lost in emails and phone calls. Tools can 

also act as collaborative platforms, where multiple authors refine, create variations of, 

and archive stories. Our findings open questions regarding the archiving and naviga-

tion mechanisms of story versions, trust in authoring changes, and maintaining a clear 

story focus. These questions open up exciting new research avenues.  

We then presented a story from an expert to novice readers, to test the understand-

ability of stories in our system, and its potential as a stand-alone tool for communicat-

ing BI stories. Readers understood the stories without training, and answered complex 

comprehension questions. Few previous works (e.g. [9]) evaluate visual storytelling 

systems from the reader’s perspective, a crucial step in the communication cycle. 

Our system was identified by experts as having great potential for reaching a 

broader audience, as little to no training is required to read stories, and for training 

analysis. Although designed as a stand-alone tool, it does not aim to replace expert 

analysts. As an expert mentioned, ours and other storytelling tools can aid novice ana-

lysts or readers to quickly read analysis results and focus their questions to experts on 

more complex aspects, such as methodology, goals, content details, etc.  

We are finalizing our prototype to give to BI analysts. We aim to verify require-

ments gathered through expert self-reported with more direct observations of the use 

of the tool and its impact on current analysis and communication practices. 
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The Attraction Effect in Information Visualization
Evanthia Dimara, Anastasia Bezerianos, and Pierre Dragicevic

Abstract—The attraction effect is a well-studied cognitive bias in decision making research, where one’s choice between two alterna-
tives is influenced by the presence of an irrelevant (dominated) third alternative. We examine whether this cognitive bias, so far only
tested with three alternatives and simple presentation formats such as numerical tables, text and pictures, also appears in visualiza-
tions. Since visualizations can be used to support decision making — e.g., when choosing a house to buy or an employee to hire —
a systematic bias could have important implications. In a first crowdsource experiment, we indeed partially replicated the attraction
effect with three alternatives presented as a numerical table, and observed similar effects when they were presented as a scatterplot.
In a second experiment, we investigated if the effect extends to larger sets of alternatives, where the number of alternatives is too
large for numerical tables to be practical. Our findings indicate that the bias persists for larger sets of alternatives presented as
scatterplots. We discuss implications for future research on how to further study and possibly alleviate the attraction effect.

Index Terms—Information visualization, decision-making, decoy effect, attraction effect, asymmetric dominance effect, cognitive bias.

1 INTRODUCTION

Suppose you are voting for primary elections and need to choose be-
tween candidates Bob and Alice (Table 1). Bob has a solid education
plan, but not much concern for crime control. In contrast, Alice’s
education plan is weak but she has an excellent strategy for crime
control. If both education and safety are important to you, this can
be a difficult choice. Now suppose there is a third candidate, Eve.
Like Alice, Eve focuses more on crime control than education, but
her crime control strategy is not as good as Alice’s. O’Curry and Pitts
[38] used a similar decision task in a study, and showed that adding
Eve as an option shifted participants’ preference towards Alice.

Table 1: Three hypothetical candidates in political elections

Bob Alice (Eve)
education ? ? ? ? ? ? ? ? ?

crime control ? ? ? ? ? ? ? ? ? ? ?

This shift in preference called the attraction effect (also known as
the decoy effect and the asymmetric dominance effect), is a cogni-
tive bias whereby people tend to favor the option for which there
exists a similar, but slightly inferior, alternative. Like other cognitive
biases, the attraction effect leads to irrational decisions and has im-
portant implications in many areas such as politics and advertising.
Our goal in this article is to find out whether the attraction effect also
has implications for information visualization design. In our exam-
ple, voters’ decision is influenced by the presence of Eve, which is
inferior in all respects and therefore irrelevant to the choice. If, in
the same way, if someone uses a visualization to choose among sev-
eral options (e.g., when buying an apartment [55]), will the presence
of inferior choices affect their decision? In other words, does the at-
traction effect transfer to visualizations?

The current information visualization literature does not offer
much empirical data to help us answer this question. Although bi-
ases and misjudgments have been studied, the focus has been on
perceptual biases such as in color perception or magnitude estima-
tion [53]. Cognitive biases differ from perceptual biases in that they
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persist even if the information has been correctly processed at a per-
ceptual level. There is a growing interest in cognitive biases in infor-
mation visualization, but studies have so far focused on probabilis-
tic reasoning and judgment under uncertainty [34, 42].

While there has been little work studying the role of cognitive bi-
ases in information visualization, visualization systems are increas-
ingly used to support decision making. Large companies switch to
visualization solutions to improve their human strategic decisions
for profitable drug trials [46], or use visualizations to choose which
features of a software they should release and when [3]. In addition,
many visualization tools previously introduced in research explicitly
or implicitly claim to help people make decisions such as choosing
a house to buy [55], finding a nursing home [57], selecting healthy
cereals [58], choosing a digital camera [16, 32], finding a profitable
investment [42, 13], or selecting a site for a new factory branch [2].

A visualization is generally considered effective if it helps people
extract accurate information [9, 59]. Nevertheless, we know from
decision making research that full access to information does not
necessarily yield good decisions [28]. Generally, the more complex
a decision, the more we resort to heuristics, i.e., “simple procedures
that help find adequate, though often imperfect, answers to difficult
questions” [28]. While heuristics can be very effective [18], they can
also lead to cognitive biases [28]. Therefore, in order to fully under-
stand how information visualizations can support decision making,
we need to study how they interact with cognitive biases.

We focus on the attraction effect for two reasons. First, it is one of
the most studied cognitive biases in fields such as psychology, con-
sumer research and behavioral economics. Second, these studies
generally employ very small sets of alternatives (typically three) and
numerical presentation formats, so it is still unknown whether the
bias generalizes to data visualizations. Although some visual repre-
sentations have been considered, there is conflicting evidence and
a heated debate on whether the effect generalizes [17, 26, 48, 56].
Some argue that the effect occurs only in numerical stimuli [17], e.g.,
when attributes are presented in tables. Whereas others argue that
it is generic and robust, and can be observed in many contexts such
as visual judgments in shapes [52], oral instructions [44], or even
among animals when they choose their food [31]. This debate sug-
gests that the attraction effect is far from being fully understood and
needs to be investigated from a variety of perspectives.

We study the attraction effect from an information visualization
perspective in two crowdsourcing experiments. In the first, we test
and verify that the attraction effect indeed persists when alterna-
tives are presented in a scatterplot rather than in a numerical ta-
ble. We then generalize the attraction effect procedure to more than
three alternatives, and verify that the effect can persist when par-
ticipants are presented with more realistic scatterplot visualizations
involving about 20 data points. We finally discuss our findings and
conclude with implications for future research.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TVCG.2016.2598594
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2 BACKGROUND

We review work on decision-making and cognitive biases in infor-
mation visualization, and on the attraction effect in other fields.

2.1 Information Visualization
Compared to numerical and textual formats, it is known that data
visualizations can highlight relationships in the data, facilitate the
recognition of patterns, and reduce cognitive load [9, 43, 50]. As they
aid data exploration and understanding, it is generally assumed that
data visualizations can support better decision making [2]. Based on
this intuition, several decision-support systems that rely on interac-
tive data visualization have been developed [59].

2.1.1 Use of Visualizations in Decision Support
A range of interactive data visualization tools have been proposed to
help people make decisions. Sometimes decision making is simply
used to demonstrate a new visualization or interaction technique.
For example, HomeFinder [55] helps people find a house to buy
using scatterplot visualizations and dynamic queries. The Dust &
Magnet tool [58] is illustrated with a scenario for choosing cereals by
moving magnets that attract or repel cereals according to attributes
such as calories. Other tools target explicitly decision support. For
example, Asahi et al. [2] visualize hierarchical decision criteria us-
ing treemaps, augmented with interactions to make decisions such
as whether or not to construct a dam, file a patent, or choose a fac-
tory’s location. ValueCharts [5] let consumers choose a TV set or a
hotel by providing a set of domain-independent visualizations.

Domain-specific decision-support visualization systems have
also been proposed. For example Decision Map / Table & Box [57]
helps people find an appropriate nursing home by combining sev-
eral coordinated views. Stratos [3] helps software project managers
select which features to include in each production stage, by simul-
taneously visualizing all possible software release plans. VisIDM
[13] helps people choose a financial investment through uncertainty
visualizations and support for personalized risk preferences.

Although most of these tools come from research, similar ones
are used in industry. For example, after losing millions of dollars in
late drug trial failures, a large pharmaceutical company decided to
use interactive visualizations to better track and facilitate decisions
of “cut or go” projects in their early stages [46].

2.1.2 Limitations of a Pure Informational Approach
Interactive data visualizations facilitate data exploration and sense-
making, making data accessible and promoting informed decisions.
Furthermore, the use of interactive systems, rather than automatic
analysis, leaves room for human judgment, which is crucial where
expert knowledge or subjective preferences cannot be fully formal-
ized (e.g., importance of education vs. crime control). However,
most visualization tools for decision support appear designed un-
der the assumption that decisions are made by rational people who
only need to be given complete information to be able to make good
decisions. And thus, that good decisions should be the natural out-
come of reliable data conveyed with well-designed visualizations.

It is by now widely recognized that even perfectly informed peo-
ple are not perfect decision makers [28]. The imperfections of
heuristics we routinely use manifest themselves as cognitive biases,
like the attraction effect. Cognitive biases are far from trivial to over-
come: they occur even when all relative information is available and
well perceived, and they persist even when we inform or train peo-
ple on how to overcome them [19]. Thus we need to investigate fur-
ther if visualization designs are likely to suffer from cognitive biases,
and whether we could improve our designs to alleviate these biases.

2.1.3 Cognitive Biases and Visualizations
Information visualization has studied perceptual biases [53, 60], but
cognitive biases have comparatively received little attention.

Zuk and Carpendale [61] discuss cases where visualizations may
aid to remediate uncertainty biases. Researchers have studied how
visualizations, such as Euler diagrams and frequency grids, can re-
duce the base rate bias in probabilistic reasoning [34, 29]. FinVis

[42] is a tool that shows investment options using tables and visual-
izations to help investors overcome the uncertainty aversion and di-
versification bias. Miller et al. [35] used scatterplots and histograms
to help fantasy baseball experts overcome regression bias in their
predictions. Although many of these previous studies try to examine
how visualizations can help overcome cognitive biases, some stud-
ies found that visualization-based remediation can be challenging
[34, 30], or that cognitive biases can co-occur with visualizations.
For example, Zhang et al. [59] showed that startup companies pre-
sented with tabular visualizations were subject to conservatism and
loss aversion biases in their probability judgments. Some biases,
like the within-the-bar bias, only appear with visualizations [11].

Most of these previous studies focused on judgment under uncer-
tainty. Although reasoning based on uncertain information is hard
and pervades our everyday lives, uncertainty is not the only cause of
irrationality in decision making. In the attraction effect, irrationality
stems instead from the fact that decisions are influenced by irrele-
vant information (the presence of a decoy). Our work is thus signif-
icantly different from previous work about reasoning under uncer-
tain information.

2.2 The Attraction Effect

We next define the attraction effect and the terminology used in this
article. We present theories on why the effect exists, and discuss
recent studies investigating the effect on visual stimuli.

2.2.1 Terminology

A decision task involves choosing one among several alternatives
(i.e., Alice, Bob or Eve in our example). Alternatives are character-
ized by attributes (e.g. their support for education and crime con-
trol), which take values that are unambiguously ordered in terms of
preference (e.g. more crime control or education is better than less).

An alternative dominates another if it is strictly superior in one
attribute and superior or equal in all others. An alternative is dom-
inated within a set of alternatives if there is at least one alternative
that dominates it. In our example Eve is dominated by Alice, be-
cause she is equal in education and worst in crime control. In this
decision task Eve would be formally a “wrong” answer.

An alternative is asymmetrically dominated within a set of alter-
natives if it is dominated by at least one alternative, but is not dom-
inated by at least one other [25]. Eve is asymmetrically dominated
because she is dominated by Alice but not Bob, since Eve offers bet-
ter crime control than Bob. We call two alternatives formally un-
comparable if neither dominates the other, as is the case for Alice
and Bob. The best candidate is a matter of personal choice.

A typical attraction effect experiment involves a decision task
with three alternatives, two that are formally uncomparable, and
one that is asymmetrically dominated. They are referred to as: the
decoy, the asymmetrically dominated alternative (Eve); the target,
the alternative that dominates the decoy (Alice); the competitor, the
alternative that does not dominate the decoy (Bob). This decision
task is typically compared with a task where the decoy is absent, i.e.
that involves only the two formally uncomparable alternatives.

The attraction effect is a cognitive bias where the addition of a
decoy (Eve) in a set of two formally uncomparable alternatives in-
creases people’s preference for the target (Alice) [25, 27]. In experi-
mental settings this preference switch is observed not for any single
individual but between groups, where a higher percentage of people
generally choose the target when the decoy is present. This switch
in preference is irrational because it violates a basic axiom of ratio-
nal choice theory, the principle of regularity, according to which the
preference for an alternative cannot be increased by adding a new
alternative to the choice set [25]. Attraction effect experiments as-
sume that decision makers behave rationally in all other respects,
and that they are able to perceive dominance relations. As a conse-
quence, they are expected to never choose the decoy.

Later on, we will generalize the attraction effect to more than
three alternatives. For now, we discuss previous work on the attrac-
tion effect, which always involves two alternatives plus a decoy.
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2.2.2 Why does the Attraction Effect Occur?
Two types of explanatory theories have been offered for the attrac-
tion effect: strategic ones and perceptual ones [33].

Strategic Explanations: According to strategic theories, people
use the dominance over the decoy as a heuristic to simplify an oth-
erwise difficult decision. Choosing the target is also easier to justify
to others [47] — in our example, someone who chooses Alice could
argue that she is at least better than Eve. Neuroimaging studies have
additionally shown that the presence of a decoy tends to reduce neg-
ative emotions associated with the decision task [21].

Perceptual Explanations: So-called “perceptual” theories assume
that the addition of a decoy changes how people perceive the rel-
ative importance of the attributes involved, giving more weight to
the attribute on which the target is strong [1, 22]. By analogy with
perceptual contrast effects (e.g., an object appears larger when sur-
rounded by small objects), the target appears more attractive when
surrounded by unattractive alternatives [49]. In our example, if Eve
is present, crime control may appear more important as two can-
didates perform relatively well on this criterion. Since this is the
strength of Alice, it may raise her perceived value compared to Bob.

All explanations agree that for the attraction effect to occur, a per-
ceptible dominance relation between the target and the decoy is key.

2.2.3 Can the Attraction Effect Occur with Visualizations?
Studies suggest the attraction effect is quite general and robust, e.g.,
it occurs when people choose consumer products like beers, cars,
or films [25], when they gamble [54], select candidates to hire [24],
decide which suspect committed a crime [51], or vote [38]. Even
animals like hummingbirds [4], bees [45], and amoebae [31] appear
to be subject to the same bias when selecting their food.

The attraction effect has been observed under a variety of exper-
imental conditions, the majority of which present decision tasks as
numerical tables. A few studies have shown that the effect general-
izes to non-tabular representations, such as pictures of consumer
products [49], verbal instructions [44], and physical objects (i.e.,
people choosing between cash and a pen, or between tissues and
towels) [49]. Studies have further suggested that the effect occurs
when carrying out visual judgment tasks, such as finding the largest
rectangle [52] or finding similarities in circle and line pairs [10].

Nevertheless, several authors [17, 56] have recently argued that
the attraction effect only occurs when attributes are presented in
numerical format, and reported failures to replicate the previous
studies involving the representations mentioned above. Others sub-
sequently questioned the validity of these replications [26, 48]. This
debate on whether the effect generalizes to non-numerical presen-
tations opposes (i) numeric displays of quantitative information
with (ii) displays of qualitative information such as photos, verbal
descriptions, or physical objects. As most data visualizations are
pictorial displays of quantitative information, the debate does not
provide evidence on whether the effect occurs in visualizations.

Frederick et al. [17] however studied a gambling task with two or
three bets presented either as a table, or as a diagram. Each bet had
a prize in dollars and a probability to win. In the diagram condition,
the probability of each ticket was shown as a “probability wheel”
(analogous to a pie chart), and the prize was shown underneath, as
a number. When gambles were presented as numeric tables, the de-
coy nearly doubled the share of the target, but when pie charts were
used, the effect disappeared. To the best of our knowledge, this is the
study that comes closest to a test of the attraction effect on visualiza-
tions. Nevertheless the diagram design was very domain-specific,
and only one of the two attributes (probability, but not price) was
encoded visually. We address this by using 2D scatterplots.

Although why the attraction effect occurs is still not fully un-
derstood, the possibility that it persists in visualizations is consis-
tent with both the strategic and the perceptual explanatory theories.
Both assume that the effect requires the ability to make attribute-to-
attribute comparisons and to recognize the dominance relation be-
tween target and decoy. If anything, visualizations could make these
tasks easier and could perhaps even amplify the effect.

3 GYM EXPERIMENT: TABLE/SCATTERPLOT, 3 CHOICES

The purpose of this first experiment is to replicate the design of a
standard attraction effect experiment (two alternatives plus a decoy
presented in a numerical table), and then to test if the effect persists
when alternatives are shown using a scatterplot visualization.

Similar to Frederick et al. [17] who successfully replicated the at-
traction effect with tables but not with non-numerical formats, our
study was conducted using crowdsourcing. Crowdsourced experi-
ments are now commonly used in information visualization [23], in-
cluding in studies involving judgment and decision making [34, 29].
We used Crowdflower1 as the crowdsourcing platform.

3.1 Design Rationale
Although the attraction effect is thought to be robust, a replication
can fail if not enough attention is paid to the details of the exper-
imental design [26, 48]. We therefore based our design choices on
lessons and recommendations from the attraction effect literature.

3.1.1 Scenario and Attribute Values
By scenario we refer to the semantic and narrative context of the
decision task. In our introduction example, alternatives are candi-
dates, attributes are support for education and crime control, and
the decision consists of voting for a candidate.

Many different scenarios and attribute values have been em-
ployed since the original studies of the attraction effect [25, 27]. We
reasoned that a recent study is more likely to employ an optimal
design, since it has more accumulated knowledge to build on. We
therefore chose to replicate the scenario from the first experiment
of recent work by Malkoc et al. [33], that involved choosing a fitness
club (or gym), and found a clear attraction effect.

In Malkoc et al.’s study, each gym was defined by its variety and
its cleanliness, both rated from -10 to +10. A positive rating meant
better than average, and a negative rating meant worse. The study
investigated whether undesirable options (all negative ratings) elim-
inate the attraction effect. But as the effect was strong for their con-
trol condition (all positive ratings), we chose it for our replication.

The experiment employed four gyms gC , gV , g∗
C , g∗

V , where gC
was cleaner, gV had more variety, and g∗

C and g∗
V were slightly less

attractive than gC and gV respectively. The attribute values were
gC (variety = 1,cleanliness = 4), gV (4,1), g∗

C (0,4), and g∗
V (4,0). Three

decision tasks were tested: {gC , gV } (no decoy), {gC , gV , g∗
C } (decoy

on gC ), and {gC , gV , g∗
V } (decoy on gV ). These attribute values how-

ever cause the data points g∗
C and g∗

V to overlap with scatterplot
axes, possibly creating visual anchoring effects that could affect par-
ticipant responses. Since such effects were outside the scope of our
study, we incremented all values by one. Thus we used as attribute
values gC (2,5), gV (5,2), g∗

C (1,5), and g∗
V (5,1). These values preserve

all dominance and similarity relationships between alternatives.

3.1.2 Stimuli: Tables and Scatterplots
We used a numerical table as a control condition, to test our ex-
periment design and compare our results with previous studies.
Figure 1a shows the 2×2 table representation for the decision task
{gC , gV }, and Figure 1b shows the 3×2 table for the decision task
{gC , gV , g∗

V }. Attributes were presented in rows and alternatives in
columns, as in Malkoc et al. [33]. Alternatives were labeled A, B or A,
B, C from left to right. The ordering of rows and columns in the table
will be discussed in the next subsection.

In the visualization condition, alternatives were conveyed with
scatterplots (see Figure 1c,d) and similarly labeled A, B or A, B, C
from left to right and from top to bottom.

There are four main reasons behind the choice of scatterplots
for the visualization condition. First, 2D scatterplots are a stan-
dard information visualization technique [16, 37]. Second, they are
suited for visualizing any tabular dataset with two quantitative di-
mensions, which captures the decision tasks used here and most de-
cision tasks used in previous studies on the attraction effect. Third, a

1http://www.crowdflower.com/
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a

c d

b

Fig. 1: Examples of experimental stimuli for the table (a,b) and the
scatterplot (c,d) conditions. The left decision task (a,c) has no decoy,
while the right decision task (b,d) has a decoy on B.

scatterplot shows all data cases within the same frame of reference,
thus providing a rapid overview of all alternatives. A unified frame
of reference also likely supports comparisons better than side-by-
side views such as Frederick et al.’s [17] pie charts discussed in the
background section. In fact, scatterplots are used as figures in most
articles on the attraction effect for conveying the alternatives used
in the experiments [4, 20, 24, 25, 27, 31, 33, 36, 38, 40, 45, 47]. Finally,
scatterplots scale up to more than three items, which is an impor-
tant requirement for our follow-up experiment.

The appearance of tables and scatterplots was kept as similar as
possible to avoid experimental confounds due to choices in visual
design. Both presentation formats took approximately the same
amount of screen real estate, and graphical attributes (colors, line
thickness and font sizes) were kept consistent. In both conditions,
participants indicated their choice through separate radio buttons.

3.1.3 Ordering of Alternatives and Attributes
Although Malkoc et al. [33] used a fixed order of presentation for
attributes and alternatives, the choice of ordering may affect par-
ticipant responses, in particular in our experiment where different
presentation formats are used. For example, participants may give
more weight to variety if it is shown first on a table, but on a scat-
terplot, it is not clear whether the choice of horizontal vs. vertical
axis would have a similar effect. In addition, alternatives can be pre-
sented in any order within a table, while on a scatterplot the way
alternatives are laid out is dictated by attribute values.

To balance out any possible order effect, we thus randomized the
order of presentation of attributes and alternatives across partici-
pants. In the scatterplot condition, axes can be flipped, leading to
2 different attribute orderings (variety on x and cleanliness on y ,
or vice versa). In a 2×2 table, there are 2 ways to order rows and
2 ways to order columns, yielding 4 different tables. Similarly, a 2×3
table can be presented in 12 different ways. Since the decoy is typi-
cally placed next to the target in attraction effect experiments (e.g.,
[17, 20, 21, 22]), we removed cases where the target was not next to
the decoy (4 tables out of 12). Since the decoy cannot appear be-
tween the target and the competitor in the scatterplot, we also re-
moved cases where the decoy was in the middle (4 tables out of 12).
In summary, we used 4 different table stimuli and 2 different scatter-
plot stimuli for each of the three decision tasks {gC , gV }, {gC , gV , g∗

C }
and {gC , gV , g∗

V }, for a total of 18 different experimental stimuli.

3.1.4 Crowdsource Quality Control
Quality control is important in any crowdsource experiment [23],
and in attraction effect studies in particular [48]. Quality was en-
sured by recruiting highly-rated crowdsource contributors (level 3
on the Crowdflower platform), by including test questions, and by

devising a job assessment scheme prior to running the experiment.
Four criteria were used for job assessment:

Completion time. A job completion time of less than 1 minute
or more than 30 minutes was considered abnormal. Our pilots indi-
cated an average task completion time of 6 minutes.

Justification. Participants had to provide a textual justification
for their choice. Justifications were classified by one investigator as
either proper or improper, depending on whether it made a refer-
ence – direct or indirect – to either cleanliness or variety. Partici-
pants were informed in advance that they would have to justify their
choice, as this has been linked to a stronger attraction effect [47].

Prior preferences. After the experimental task, participants were
asked if they suffered from an abnormal fear of dirt (or bacteriopho-
bia), with “no”, “yes”, or “unsure” as answers. This identified partic-
ipants with a strong prior preference for cleanliness, as strong prior
preferences are known to reduce the effect [36, 41].

Table and scatterplot tests. After carrying out the task, partici-
pants were subjected to two screening tests: a numerical table test,
and a scatterplot test, irrespective of the condition they saw. Both
tests involved choosing between three laptops based on their RAM
and CPU, with one laptop clearly dominating the other two (i.e., had
both higher RAM and higher CPU). The tests were designed to be
trivial, with a single correct answer, using a presentation format sim-
ilar to the experimental task (see Figure 1). The purpose of the table
test was to screen for contributors who did not pay attention to the
tasks. The purpose of the scatterplot test was to control for visual-
ization literacy [8], and make sure that participants were able to read
scatterplots and to perceive dominance relations [26].

We classified jobs in three categories: the Red, where the job is
rejected (and the contributor not paid); the Orange, where the job
is accepted but the data discarded from our analysis; and the Green,
where the job is accepted and the data kept in our analysis. Due to
limitations in the Crowdflower platform we had to pay all contribu-
tors, but we report here on the three categories nonetheless.

A total of 437 jobs were submitted, after removing invalid comple-
tion codes and duplicate worker IDs. A job was marked Red if: the
completion time was abnormal (1 % of all submitted jobs), the gym
choice was not properly justified (14%), or the contributor failed
the table test (12%). A job was marked Orange if: the response to
the bacteriophobia question was “yes” (12% of all submitted jobs),
or the contributor failed the scatterplot test (13%). In total, 16% of
all submitted jobs were marked Red and 14% were marked Orange.
These jobs were discarded from all our analyses.

3.2 Experiment Design

The experiment followed a 3×2 between-subjects design. The first
independent variable was the decision task, which involved three
different datasets: {gC , gV }, referred to as the no decoy condition;
{gC , gV , g∗

C }, referred to as decoy on cleanliness; and {gC , gV , g∗
V }, re-

ferred to as decoy on variety. The second independent variable was
the presentation format, with two conditions: table and scatterplot.

3.2.1 Procedure

We conducted a first pilot study to ensure the clarity of the instruc-
tions, and we then uploaded the experiment as a Crowdflower job.

Participants had to open an external 8-page Web form. They
were told they would have to choose a fitness club based on two
attributes: variety of the machines and cleanliness of the club. They
had to assume that they had done some preliminary research, and
had narrowed down their choices to two (in the no-decoy condition)
or three (in the decoy conditions) clubs. They were then shown the
gyms as a table or a scatterplot (Figure 1) and asked to choose one.

Once finished, participants rated their confidence on a 7-point
scale and provided an open text justification for their choice. They
also rated their enthusiasm towards fitness clubs on a 7-point scale
and reported on whether they suffered from bacteriophobia. Fi-
nally, they were given the table and scatterplot tests (Section 3.1.4),
and filled a short questionnaire with demographic information.
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At the end of the experiment, participants copied the provided
completion code and pasted it in the crowdflower platform to re-
ceive payment. The entire job took on average 6 minutes to com-
plete, and participants were paid $0.60 upon completion.

3.2.2 Participants
Our population sample consisted of 305 crowdsource contributors
who submitted valid responses, i.e., jobs classified as Green (Sec-
tion 3.1.4). Job assignments were left on the crowdsourcing server
until the planned sample size of n=50 per condition was approx-
imately reached. We obtained n=54, 51, 50 for the table decision
tasks, and n=47, 53, 50 for the scatterplot tasks.

A summary of our participants’ self-reported demographics is
shown in Figure 2 (map and bar charts labeled “Gyms”). As can be
seen, participants tended to be educated young male adults.

Gyms Bets

No schooling completed, or less than 1 year

Nursery, kindergarten, and elementary (grades 1-8)

Some high school, no diploma

High school (grades 9-12, no degree)

High school graduate (or equivalent)

Some college (1-4 years, no degree)

Associate’s degree (occupational & academic)

Bachelor’s degree (BA, BS, AB, etc)

Master’s degree (MA, MS, MENG, MSW, etc)

Professional school degree (MD, DDC, JD, etc)

Doctorate degree (PhD, EdD, etc)

F

M

< 25

25-34

35-44

45-54

> 54

73 participants

305 participantsGyms

Bets Gyms Bets

GenderLocation

Age

Education

Fig. 2: Participant demographics for both experiments.

3.2.3 Hypotheses
Our statistical hypotheses were:
H1 A larger proportion of participants will choose the target in the

table × decoy on cleanliness and the table × decoy on variety con-
ditions than in the table × no decoy condition.

H2 A larger proportion will choose the target in the scatterplot ×
decoy on cleanliness and the scatterplot × decoy on variety condi-
tions than in the scatterplot × no decoy condition.

3.3 Results
We analyze, report and interpret all our inferential statistics using
interval estimation [15]. The experimental stimuli, data and analysis
scripts are available at http://www.aviz.fr/decoy.

3.3.1 Planned Analyses
All analyses reported in this section were planned before data was
collected. One planned analysis (an analysis of differences between
attraction effects) was not conducted because it required equal sam-
ple sizes across all conditions.

Only one participant out of 306 chose a decoy, which is low com-
pared to previous studies, where decoy selection rates can be as
high as 13% [17]. This shows that participants carried out the tasks
seriously and could perceive dominance relationships. The decoy
choice is removed from the rest of this analysis.

Participant choices are shown in the top of Figure 3 marked
"Gyms" ("Bets" refers to our second experiment) .The top three bars
are for the table format, in the conditions no decoy, decoy on clean-
liness and decoy on variety. Adding a decoy is expected to increase
the proportion of choices of the target, in the direction indicated by
the arrow. This was indeed the case for the decoy on variety con-
dition (a 20% increase), but not for decoy on cleanliness (a 6% de-
crease). The next three bars refer to the scatterplot format. Here the
expected increase was observed for both decoy on cleanliness (a 18%
increase) and decoy on variety (a 3% increase). We now turn to infer-
ential statistics to determine to what extent these effects are reliable.

The previously reported effects are shown in Figure 4 — the four
black dots under the category “Gyms”. Effects are expressed in per-
centage points, where a positive value (i.e., to the right of the ver-
tical dashed line) indicates an attraction effect. Dots are sample

cleanliness variety

31%

37%

52%

45%

26%

48%

69%

63%

48%

55%

74%

52%

probability prize

83%
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17%

33%

decoy

decoy

decoy

decoy
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AT

T
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Fig. 3: Proportions of participant choices in both experiments.
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Fig. 4: Point estimates and 95% confidence intervals for the attrac-
tion effects in Malkoc et al. [33], and in our two experiments.

statistics, while error bars are 95% confidence intervals indicating
the range of plausible population effects [12]. Confidence intervals
were computed using score intervals for difference of proportions
and independent samples.

Figure 4 shows that the unexpected reversal observed in the ta-
ble × decoy on cleanliness is too unreliable for any conclusion to be
drawn. The same is true for the small effect found for scatterplot ×
decoy on variety. However, we have good evidence for an attraction
effect in the other two conditions. The magnitude of the effect is
comparable to Malkoc et al. [33], shown on the top of Figure 4.

Thus, our results partially confirm H1 and H2, but are less “clean”
than in Malkoc et al.’s [33] original study.

3.3.2 Additional Analyses
Participants reported similar confidence in their answers across all
conditions (Figure 5). They were overall highly confident, with a
mean rating of 5.9 to 6.1 on a 7-point Likert scale, depending on
the condition. Participants’ reported familiarity with fitness clubs
varied, but they were overall rather familiar (Figure 5).

We computed combined attraction effects, shown as purple dots
and error bars in Figure 4. A combined attraction effect is the sum of
the attraction effects obtained in both decoy conditions, or equiva-
lently, the difference in choice proportions between these two con-
ditions (i.e., the differences between the bars marked “decoy” in
Figure 3). This combined measure generally yields more statisti-
cal power and facilitates comparisons of results since some experi-
ments (e.g., [54] and our next experiment) do not include a no-decoy
condition and thus only report combined attraction effects.

The two purple error bars in Figure 4-Gyms show that the data
overall speaks in favour of an attraction effect, both for the table
and the scatterplot. To better quantify the strength of evidence, we
conducted a Bayesian analysis using the Jeffreys prior for propor-
tions [7]. Ignoring previous studies and considering our data only,
the presence of a combined attraction effect in the table condition is
34 times more likely than a practically null effect (set to±1%), and 11
times more likely than a “repulsion” effect. In the scatterplot, a com-
bined attraction effect is 150 times more likely than a practically null
effect, and 66 times more likely than a repulsion effect.
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PLOT

TABLE

ALL

Familiaritynot at all familiar extremely  familiar

Con dence extremely  con dent

DECOY

DECOY
NO DECOY

NO DECOY
Gyms

Bets not at all con dent

Gyms

Bets

Fig. 5: Self-reported confidence and familiarity in both experiments.

3.3.3 Discussion
We found evidence for an attraction effect on table for the decoy
on variety condition, but not for the decoy on cleanliness condition,
where the effect may be smaller or even possibly negative (see Fig-
ure 4). We do not have an explanation for this asymmetry, but the
wide confidence intervals and their large overlap suggests that the
difference may be due to a large extent to statistical noise [12].

Based on the combined attraction effect which is a more holistic
measure with more statistical power, we replicated the attraction ef-
fect on tables (H1) but the results are less strong than in the initial
study [33] (i.e., about half of the original study, as shown by the pur-
ple CIs in Figure 4). It is common for a replication to yield smaller
effect sizes [39], but the differences in results could also be due to
modifications we made to the original experiment design.

We produced four different stimuli for each decision task in order
to eliminate possible presentation order effects for alternatives and
attributes, whereas Malkoc et al. [33] used a unique table. The use of
different stimuli could have yielded a higher variability in responses.

Our study was also a crowdsource experiment, whereas Malkoc
et al. conducted theirs with students in a lab, where participants are
less diverse and generally more focused [34]. Perhaps the feeling of
being evaluated was also stronger for students, which we know can
amplify the attraction effect [47]. Our rejection criteria (e.g., textual
justification for the answer, table and scatterplot test, attention test)
could have also filtered subsets of the population that are more vul-
nerable to the effect. Finally, our participants were on average rather
familiar with gyms (Figure 5), and 11% were unsure if they suffered
from bacteriophobia, and we know that familiarity with the subject
matter and strong prior preferences can reduce the effect [36, 41].
Malkoc et al. [33] do not report on familiarity and prior preferences.

Despite mixed results for the table condition, we obtained good
evidence for an attraction effect in the scatterplot condition. There
still appears to be an asymmetry between the two decoy conditions
(this time, in the opposite direction), but CIs show no evidence for a
difference. The combined attraction effect provides compelling ev-
idence that the attraction effect can generalize to scatterplots (H2).
This observed shift in preference after adding an irrelevant option to
a two-point scatterplot gives credence to the idea that people may
make irrational decisions even when they use visualizations as de-
cision making aids. Thus we decided to explore the effect further,
using scatterplots with larger sets of alternatives.

4 EXTENDING THE ATTRACTION EFFECT

Our gym experiment confirmed that the attraction effect can ex-
tend to scatterplot formats. However, we have so far only considered
three data points, which does not capture most real-word decision
tasks where visualizations would be used.

Previous work has focused on only three alternatives because in
numeric tables, it is hard to perform rapid attribute-to-attribute
comparisons and recognize dominance relationships between
many points. Bettman et al. [6] point out that the attraction effect
requires asymmetric dominance relationships to be “perceptual in
nature” and “easy to access”. They expect that the bias will be elim-
inated with multiple alternatives, as the number of pairwise com-
parisons increases and these relationships become harder to under-
stand. This may be true for numerical tables, but not necessarily
for visualizations such as scatterplots, that are designed to aid view-
ers read and understand complex data, and support comparison of
many data points at once [37]. It is thus plausible that visualizations
of many alternatives can also elicit attraction effects.

4.1 Ways of Adding More Alternatives

There are three ways the classical attraction effect procedure can be
extended to include more than three alternatives:
1. By adding more non-dominated options. In our introduction ex-

ample, the only non-dominated alternatives were Bob and Al-
ice. We could add more candidates that neither dominate nor are
dominated by Bob and Alice. The set of formally uncomparable
or non-dominated alternatives is also called the Pareto front.

2. By adding more decoys. In our example the only decoy is Eve. We
could however add more decoys similar to Eve.

3. By adding “distractors”, i.e., irrelevant options that play neither
the role of target, of competitor, or of decoy. An example would
be a dominated candidate that appears both in the baseline con-
dition and in the decoy condition.
The first approach is problematic in at least two respects. One is

that since it breaks the dichotomy between target and competitor, it
would require a major change in the way the attraction effect is mea-
sured in experiments. A second problem is that it would cause the
attraction effect to interfere with other cognitive biases. For exam-
ple, the compromise effect is a bias by which if presented with several
formally uncomparable alternatives, people tend to avoid extremes
and choose options in the middle [47]. Even though it could be in-
formative to study how the two effects may combine, we decided
here to focus on the attraction effect only.

Adding an arbitrary number of distractors (option 3) is however
possible. With many distractors a single decoy is unlikely to produce
a measurable effect, but more decoys can be added (option 2). The
Pareto front however still needs to consist of only two alternatives –
a target and a competitor. We present an extension of the attraction
effect procedure using this approach.

4.2 Extended Procedure

A

B

RAB RB

RA
T0A

B

A

B

TBTA
Decoy

Decoy

Decoy

Decoy

Fig. 6: A baseline decision task T0 and two possible test decision
tasks: TA , where A is the target, and TB , where B is the target.

The procedure consists of starting with a baseline decision task
T0 (see middle of Figure 6 for an example). This baseline decision
task has two non-dominated alternatives, A and B . All other alter-
natives are dominated by A and/or B , and are called distractors.

For convenience, we divide the space of all possible alternatives
into three dominance regions, shown in Figure 6. If dA is the region
dominated by A (blue hatches in the Figure) and dB is the region
dominated by B (red hatches), then RA = dA \dB (region dominated
by A but not by B), RB = dB \ dA (region dominated by B but not by
A), and RAB = dA∩dB (region dominated by both). In the figure, the
baseline decision task contains two distractors per region.

From the baseline decision task one can derive two types of test
decision tasks, labeled TA and TB in the figure. The decision task
TA is created by adding extra alternatives to the region RA . Thus
TA only differs from T0 in that it contains more alternatives that are
dominated by A but not by B (twice as many, in this example). These
extra asymmetrically dominated alternatives are referred to as de-
coys, while A is called the target and B the competitor. Similarly,
the task TB is created by adding extra decoys to the region RB , and
this time B is the target and A is the competitor.

In case no distractor is included in T0 and a single decoy is added
to TA and to TB , we obtain a classical attraction effect experiment.
Thus our new definitions for decoy, target and competitor are con-
sistent with the definitions from Section 2.2.1 and generalize them
to more complex cases. However, decoys, targets and competitors
are always defined with respect to a baseline decision task.
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5 BET EXPERIMENT: SCATTERPLOT, MANY CHOICES

We expand our study of the attraction effect to situations where par-
ticipants are presented with scatterplots with multiple alternatives.
We conducted another experiment prior to the one reported here,
with a different design and inconclusive results. This inconclusive
experiment is reported in a separate research report [14].

5.1 Design Rationale
Here we describe and motivate the design of this new experiment,
highlighting the differences with the first (gym) experiment.

5.1.1 Replicated Study
Most attraction effect studies (including our previous experiment)
follow a between-subjects design. However, these designs typically
suffer from low statistical power. The width of confidence intervals
in our gym experiment indicates this was the case there.

We therefore decided to adopt a within-subjects design.
Wedell [54] was able to measure a clear attraction effect with numer-
ical tables using a within-subjects procedure, where participants
were given multiple decision tasks. He further tried to increase sta-
tistical power by i) excluding no-decoy conditions and only mea-
suring the combined decoy effect, and ii) choosing a scenario with
which people were less familiar in an attempt to amplify the ef-
fect [36, 41]. We therefore decided to replicate Wedell’s design.

5.1.2 Scenario and Attribute Values
Wedell’s scenario involved choosing among three lottery tickets,
each defined by two attributes: the probability of winning (proba-
bility), and the amount that can be won (prize). Participants were
presented with twenty decision tasks in sequence. Each time, three
lottery tickets were presented and participants had to choose one.
Wedell thought that the abstract nature of the task and of the at-
tributes would reduce possible carry-over effects, such as partici-
pants building up strategies based on past choices.

Table 2: The non-dominated alternatives used in our tasks.
A B C D E (F)

probability 0.83 0.67 0.5 0.4 0.3 0.25
prize $12 $15 $20 $25 $33 $40

The non-dominated alternatives (targets and competitors) used
in all Wedell’s tasks were taken from a pool of five alternatives (A to
E in Table 2). All had the same expected value of ∼$10. Thus, though
a rational decision maker would only need to compare alternatives
along a single dimension (expected value), the decision tasks had
the same dominance structure as tasks involving two independent
attributes such as in the previous gym experiment.

For each possible pair of alternatives in (A,B ,C ,D ,E) Wedell gen-
erated two decision tasks, one with a decoy on probability, and one
with a decoy on prize. We use the notation X Y to refer to a task
where X is the target and Y is the competitor, and refer to the two
decision tasks X Y and Y X as matched. For example, the pair of al-
ternatives (A,C ) yields the two matched tasks AC (where the decoy
is on A) and C A (where the decoy is on C ). Wedell’s design resulted
in 10 pairs of matched decisions tasks (20 tasks in total).

Although we planned to reuse the same targets and competitors,
it appeared that the distance between the target and the competi-
tor was visually very small in some scatterplots compared to oth-
ers. Thus we added an alternative with the same expected value
(F in Table 2) and excluded all tasks that involved adjacent tar-
get/competitor pairs (e.g., AB , or DE). This new design also resulted
in 10 pairs of matched decisions tasks, and 20 tasks in total.

5.1.3 Adding Distractors and Decoys
While Wedell only added one decoy to each of the decision tasks,
our goal was to present many alternatives as explained in the previ-
ous section. For each pair of matched decision tasks, the procedure
consisted of two steps. We explain the procedure for AC and C A (see
results in Figure 7), but it is the same for all other pairs:

A
C C

A

AC decision task CA decision task

decoy

distractor
competitor

target

Fig. 7: Experimental stimuli for the two matched decision tasks AC
and C A (black-and-white background images), and explanatory an-
notations (box overlays). See Section 4.2 for the full details.

Step 1. A baseline decision task analogous to T0 in Figure 6 was
created by adding distractors dominated by A and/or C . One or two
distractors (number randomly drawn) were added in each of the re-
gions RA , RC and RAC , following a uniform spatial distribution.

Step 2. Two separate decision tasks AC and C A were then cre-
ated by adding decoys as shown in Figure 6. For the task AC (de-
coys on A), 10 to 20 decoys (number randomly drawn) were added
to the region RA following a bivariate half-normal probability distri-
bution. On each axis, the mode of the half-normal was A’s value on
this axis, and the mean was this value multiplied by 0.7. The use of
half-normals yielded decoys that tend to cluster near A, but whose
density smoothly decreases with distance to A for a more natural
look. The same was done for the decision task C A.

In both steps, overlaps were eliminated by i) defining overlap be-
tween two alternatives as a distance less than 0.025 in normalized
coordinates (prize divided by 40, probability left unchanged) and ii)
whenever a new alternative is randomly drawn, iterating until there
is no overlap. The reason why the number of alternatives to draw
was randomized (i.e., 1–2 for each region in Step 1 and 10–20 in Step
2) was to create more variation across scatterplots and make it more
difficult for participants to infer patterns in the experiment.

5.1.4 Ordering of Decision Tasks
Our presentation order for the 20 decision tasks was inspired from
Wedell [54], but modified to account for our different set of tasks and
for the fact that we present each task on a separate Web page, while
Wedell used a four-page paper-and-pencil test.

We created a task ordering such that i) a decision task and its
matched task (e.g., AC and C A) are always at least 5 pages apart;
and ii) the role of an alternative alternates over time. For example, if
D appears as a target in a task, it will be a competitor the next time
it appears. To reduce further possible ordering effects, we created a
second ordering where each task is replaced with its matched task.
Participants were randomly assigned to each ordering.

To make it more difficult for participants to infer patterns in the
sequence of decision tasks, we additionally inserted seven irrelevant
decision tasks at various positions, which were not used in our anal-
yses. These tasks differed in that they had either one or three non-
dominated alternatives (instead of two), and they did not exhibit an
imbalance in the number of asymmetrically dominated alternatives.

5.1.5 Stimuli: Interactive Scatterplots
In this experiment, we added minimal interaction to the scatter-
plot visualizations. In the first experiment, the scatterplots were
static and each data point was labeled with a letter (Figure 1), so
that participants could specify their choice through separate radio
buttons. As we are now dealing with more data points, labels were
removed to prevent clutter (Figure 7), and participants were asked
to specify their choice by selecting the data point. Points were high-
lighted when hovered. Hovering a point also displayed horizontal
and vertical projection lines, and the data point’s X and Y values
were overlaid on the axes. Such interactions help examine the data
and are not uncommon in scatterplot visualizations. After a point
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was clicked, its color changed and the participant was asked to con-
firm her choice by clicking on a button at the bottom of the page.

We added a short flicker during task transitions in order to elicit
change blindness and prevent participants from easily detecting
similarities and differences between two successive scatterplots.

5.1.6 Crowdsource Quality Control
We made two major modifications to the previous procedure: i) we
added a preliminary tutorial, ii) we used a real decision making task
where choices affected subsequent monetary gains.

The tutorial simultaneously explained the scenario (the lottery
tickets, and what their probability and prize meant), and how to
read scatterplots. Although Wedell [54] did not provide similar train-
ing, crowdsource contributors do not necessarily have the same
qualifications as university students, and the notion of probability
in particular is known to be challenging [34]. In order to prime par-
ticipants to use their intuition rather than doing calculations, prob-
ability was explained qualitatively rather than quantitatively.

After the tutorial, participants were given a test question consist-
ing of choosing one among 13 lottery tickets presented as a scatter-
plot. Three tickets were non-dominated (and thus formally uncom-
parable), and the remaining 10 were considered wrong answers.

In order to better approximate real-life decisions and motivate
our participants, we informed them that a computer will run the lot-
tery after the experiment is completed, and for every winning ticket
they picked, they will be payed a bonus proportional to the ticket’s
prize. The use of a real decision task with consequences is common
in behavioral economics and is occasionally used when studying the
attraction effect (e.g., choosing between objects or money [49]).

Similarly to our previous experiment, we defined our rejection
criteria in advance and categorized jobs as Red (rejected and not
payed), Orange (payed but not analyzed) and Green (analyzed).

A total of 120 jobs were submitted with a valid completion code.
A job was marked as Red (12%) if its completion time was abnormal
(0.8%), if the contributor failed the tutorial test (11%), or if during
the experimental trials, the contributor selected a dominated op-
tion more than half of the time (12%). A job was marked as Orange
(27%) if the contributor always chose the highest probability (27%)
or the highest prize (0%). These contributors had a too strong prior
preference (in this case, risk aversion) to be sensitive to the attrac-
tion effect. The remaining 61% (N =73) were marked as Green.

5.2 Experiment Design
The design consisted of two within-subjects factors: task pair (10
pairs of matched tasks), and decoy position (on probability or prize).

5.2.1 Procedure
We first briefed our crowdsource contributors that they will have
to choose lottery tickets and will receive a bonus for each winning
ticket, for a total of $0.60 on average. They then opened an external
link to the 10-page tutorial. Contributors who chose a valid ticket
on the test were told that the ticket won, and that they would get a
$0.10 bonus for the ticket if they proceed and complete the job.

Participants then opened a second external link to the main
study, a 31-page form, where they saw the twenty decision tasks,
mixed with the seven distractor tasks. After completing all deci-
sion tasks, participants rated their overall confidence, their per-
ceived difficulty of the job, their familiarity with gambling games,
and whether they knew of the notion of “expected value” in proba-
bility. They then filled a short demographic questionnaire.

Finally, participants were presented again with one of the study’s
scatterplots with the target and competitor labeled A and B, and
were asked whether the higher number of tickets near A affected
their choices, why they thought there were more tickets, and
whether they had this explanation in mind during the study.

All participants received a baseline payment of $0.20, while Or-
ange and Green received a bonus of $0.10 plus a lottery bonus. The
expected lottery bonus was $0.50 if no dominated alternative was
chosen, based on a conversion rate of 0.0025 between the scenario’s

“virtual dollars” and USD. After the experiment was over, we deter-
mined each lottery bonus by i) running Bernouilli random draws to
determine the winning status of each chosen ticket, ii) summing up
the prizes of winning tickets iii) multiplying by the conversion rate.

5.2.2 Participants
Our participants were 73 crowdflower contributors whose job was
marked Green. Their demographics, shown in Figure 2, were similar
to the first experiment.

5.2.3 Hypotheses
Our statistical hypothesis was H3: the mean attraction score (as de-
fined in the next section) will be strictly positive.

5.3 Results
One planned analysis for assessing the consistency of participants’
responses within matched tasks is not reported for space reasons.
We report on all other planned analyses.

5.3.1 Planned Analyses
We first report descriptive statistics of participant choices in a simi-
lar way to Wedell [54]. We recorded a total of 1460 choices (73 partic-
ipants × 20 decision tasks). We pair choices according to matched
tasks (e.g., tasks AC and C A in Figure 7), yielding 73 × 10 = 730
choice pairs. Of all these choice pairs, only 24 (3.3%) included a
dominated alternative. Wedell reports similar results (2%), even
though his tasks only involved a single dominated alternative.
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Fig. 8: Contingency tables showing choice pairs for all matched tasks

Figure 8 (right) summarizes the remaining 706 choice pairs as a
contingency table, shown next to Wedell’s (on the left). Choice pairs
fall into four categories. One is choosing the ticket with highest
probability in both tasks (i.e., ticket A in Figure 7). This represents
59% of all choice pairs, and is reported in the top-left cell in Figure 8.
A second possibility is choosing the ticket with highest prize twice,
which represents 10% of all cases. The remaining two possibilities,
shown in bold cells, consist in always choosing the target (23%), or
always choosing the competitor (8%).

The patterns in our contingency table follow Wedell’s closely [54]:
participants favoured higher probability overall (reflecting again
risk aversion), but when their choice was inconsistent across two
matched tasks, they chose the targets more often than they chose
the competitors. We now turn to inferential statistics.

Similarly to Wedell, we used as dependent variable an attraction
score, calculated on a per-participant basis as follows. Each of the 20
decision tasks was assigned a score of 1 when the ticket with high-
est probability was chosen, a score of 0 when the ticket with high-
est prize was chosen, and a score of 0.5 when another (dominated)
ticket was chosen. Then, we averaged all scores for the 10 deci-
sion tasks where the decoys were on probability (yielding a score
Sprob) and did the same for the 10 tasks where the decoys were on
prize (yielding a score Sprize). The difference between the two scores
S = Sprob −Sprize was the attraction score.

A participant who is not subject to the attraction effect should
exhibit the same preference for high probability irrespective of the
position of the decoys, thus her attraction score should be close to
zero. We multiplied the attraction score by 100 to obtain a percent-
age analogous to the combined decoy effect reported in the gym ex-
periment. The difference here is that the percent difference is com-
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puted within-subjects instead of between-subjects, and it incorpo-
rates choices of dominated options as “neutral” observations.

The mean attraction score was 15%, with a 95% bootstrap confi-
dence interval of [10%, 22%] (see Figure 4). Thus we have very solid
evidence for H3, even if the effect is smaller than in Malkoc’s gym
study [33]. We cannot directly compare our effects with Wedell’s [54]
due to the use of different statistical methods, but Figure 8 suggests
the effect sizes are comparable.

5.3.2 Additional Analyses
As shown in Figure 5, participants reported various levels of famil-
iarity with gambling and were confident in their choice overall, al-
though slightly less than in the gym experiment. Data on partici-
pants’ knowledge of expected values was missing due to a bug.

Concerning the final questionnaire on how participants inter-
preted the presence of decoys (see Section 5.2.1), 8 participants re-
ported not being able to see the scatterplot image, leaving data from
65 participants. When asked whether the uneven distribution of
tickets affected their choices, 41% replied “never” or “rarely”, 46%
replied “sometimes”, 12% replied “often”, and none replied “always”.
When asked why they thought there were more tickets in one re-
gion than the other, most (86%) gave responses that were irrele-
vant or unintelligible based on an informal content analysis of open
text responses. Out of the 9 remaining responses, 5 referred to a
strategy employed by the lottery organizer (e.g., “To tempt people to
choose tickets of high prize but with low probability, increasing the
profitability of lottery owner”; “To distract from choosing the higher
chances of winning”), and 4 referred to tickets as past choices from
other players (e.g., “Customers want to win a higher prize”; “Maybe
more people played the same”). Only 4 participants (quoted here) re-
ported that they had their explanation in mind while performing the
task, while the other 5 reported that it was prompted by our ques-
tion. Thus there is little evidence that participants’ preference for
the target was motivated by deliberate, reasoned strategies.

6 GENERAL DISCUSION AND CONCLUSIONS

Taken together, our two experiments suggest that the attraction ef-
fect generalizes to data visualizations. While the first experiment fo-
cuses on a traditional procedure with only two or three alternatives,
the second experiment shows that the effect can persist with more
alternatives. Bettman et al [6] expected that the effect would dis-
appear as more alternatives are added, since pairwise comparisons
and dominance recognition becomes hard if numerical tables are
used. Our findings suggest that this may not be the case when us-
ing visualizations, as visualizations such as scatterplots support fast
comparisons and dominance recognition. Overall, our study indi-
cates that when people visualize choice alternatives using scatter-
plots, the number and position of irrelevant (dominated) alterna-
tives may influence their choice. This shift in preferences violates
basic axioms of rational choice theory [25]. In addition to being
the first infovis study on the attraction effect, our work contributes
to the ongoing debate in decision-making research on whether the
effect generalizes to non-numerical formats [17, 26, 48, 56].

6.1 Implications for Design
On a general level, our study indicates that cognitive biases can af-
fect decisions even if the data is well visualized and fully understood,
thus traditional visualization design rules may not apply when the
goal is to support decision making. This article has not considered
debiasing techniques for the attraction effect, but a simple way to
eliminate the bias would be to only show the Pareto front, i.e, to
hide all dominated options. However, this approach assumes that
the system has full knowledge of the user’s choice criteria, which
may not be the case in practice. In addition, dominated options
can help understand dataset trends, and may in some cases provide
useful context when making decisons. Thus, debiasing techniques
should only be available as options, and activated on demand. Al-
ternatively, one could consider techniques such as de-emphasizing
dominated options or highlighting the Pareto front, but the effec-
tiveness of such techniques remains to be experimentally tested.

6.2 Limitations
There are several potential limitations to our study. One stems from
a general criticism of cognitive bias research, namely, that heuristics
that appear irrational may not be so upon deeper examination [18].
Concerning the attraction effect, the way dominated alternatives are
distributed could in some cases provide relevant information. For
example, a real estate investor may infer from a region with many
dominated alternatives that a certain type of house is more com-
mon, and therefore represents a larger market. At the same time,
situations also exist where the number and position of dominated
alternatives is clearly irrelevant and where a preference for the tar-
get would be irrational. This was the case for our experiment involv-
ing real bets, and our data does indicate that the vast majority of our
participants were unable to rationalize their choices based on where
the dominated alternatives were located.

Although we have observed attraction effects, we did not inves-
tigate why they occur. In particular, we do not know how much of
the effect has cognitive vs. perceptual causes. Since in the bet ex-
periment regions with many decoys were visually more salient, it is
possible that they drew participants’ attention towards the target, or
similarly, that participants sometimes failed to see the competitor
because it was an isolated point. This possibility does not invalidate
the existence of an attraction effect (as defined in Sections 2.2.1 and
4.2), but it does raise the possibility that part of the effect with scat-
terplots (but not with numerical tables) has perceptual origins.

Finally, we tested very specific datasets, i.e., synthetically-
generated datasets with only two non-dominated options and a
large number of decoys. More realistic datasets need to be tested,
although our inconclusive results with real datasets suggest that the
effects may be small and hard to measure [14].

6.3 Future work
While our work is a first step in investigating the attraction effect in
visualizations, much more work is needed. More realistic datasets
and decision making situations remain to be tested. We also fo-
cused on scatterplots, but clearly other commonly used visualiza-
tions need to be evaluated to assess whether the effect persists
across visual encodings. Other cognitive biases [19] remain to be
studied, both in isolation (as we did here), and in combination. How
cognitive biases interact with visual perception is also an important
and difficult question that has remained largely unexplored.

ACKNOWLEDGMENTS

We thank S.A. Malkoc for sharing their material and D.H. Wedell for
their study advice, our colleagues J.-D. Fekete, F. Vernier, T. Isenberg,
P. Goffin and L. Besancon for feedback on the paper, and our review-
ers for their insightful comments and suggestions.

REFERENCES

[1] D. Ariely and T. S. Wallsten. Seeking subjective dominance in multi-
dimensional space: An explanation of the asymmetric dominance ef-
fect. Organizational Behavior and Human Decision Processes, 63(3):223
– 232, 1995.

[2] T. Asahi, D. Turo, and B. Shneiderman. Using treemaps to visualize the
analytic hierarchy process. Information Systems Research, 6(4):357–375,
1995.

[3] B. A. Aseniero, T. Wun, D. Ledo, G. Ruhe, A. Tang, and S. Carpendale.
Stratos: Using visualization to support decisions in strategic software
release planning. In Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems, pages 1479–1488. ACM, 2015.

[4] M. Bateson, S. D. Healy, and Hurly. Irrational choices in hummingbird
foraging behaviour. Animal Behaviour, 63(3):587–596, Mar. 2002.

[5] J. Bautista and G. Carenini. An empirical evaluation of interactive visu-
alizations for preferential choice. In Proceedings of the working confer-
ence on Advanced visual interfaces, pages 207–214. ACM, 2008.

[6] J. R. Bettman, M. F. Luce, and J. W. Payne. Constructive Consumer
Choice Processes. J. of Consumer Research, 25(3):187–217, Dec. 1998.

[7] W. M. Bolstad. Introduction to Bayesian statistics. J. Wiley & Sons, 2013.
[8] J. Boy, R. Rensink, E. Bertini, and J.-D. Fekete. A principled way of as-

sessing visualization literacy. Visualization and Computer Graphics,
IEEE Transactions on, 20(12):1963–1972, Dec 2014.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TVCG.2016.2598594

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

Anastasia Bezerianos 165



[9] S. K. Card, J. D. Mackinlay, and B. Shneiderman, editors. Readings in
Information Visualization: Using Vision to Think. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1999.

[10] J. M. Choplin and J. E. Hummel. Comparison-induced decoy effects.
Memory & Cognition, 33(2):332–343, 2005.

[11] M. Correll and M. Gleicher. Error bars considered harmful: Exploring
alternate encodings for mean and error. Visualization and Computer
Graphics, IEEE Transactions on, 20(12):2142–2151, 2014.

[12] G. Cumming and S. Finch. Inference by eye: confidence intervals and
how to read pictures of data. American Psychologist, 60(2):170, 2005.

[13] M. Daradkeh, C. Churcher, and A. McKinnon. Supporting informed
decision-making under uncertainty and risk through interactive visual-
isation. In Proc. Fourteenth Australasian User Interface Conference-Vol
139, pages 23–32. Australian Computer Society., 2013.

[14] E. Dimara, A. Bezerianos, and P. Dragicevic. Testing the Attraction Effect
on Two Information Visualization Datasets. Research Report RR-8895,
Inria, Mar. 2016. http://hal.inria.fr/hal-01295624.

[15] P. Dragicevic. Fair statistical communication in HCI. In Modern Statis-
tical Methods for HCI, pages 291–330. Springer, 2016.

[16] N. Elmqvist, P. Dragicevic, and J.-D. Fekete. Rolling the Dice: Mul-
tidimensional Visual Exploration using Scatterplot Matrix Naviga-
tion. IEEE Transactions on Visualization and Computer Graphics,
14(6):1141–1148, Nov. 2008. Best Paper Award.

[17] S. Frederick, L. Lee, and E. Baskin. The limits of attraction. Journal of
Marketing Research, 51(4):487–507, 2014.

[18] G. Gigerenzer. Why heuristics work. Perspectives on psychological sci-
ence, 3(1):20–29, 2008.

[19] M. L. Graber, S. Kissam, V. L. Payne, A. N. Meyer, A. Sorensen,
N. Lenfestey, E. Tant, K. Henriksen, K. LaBresh, and H. Singh. Cogni-
tive interventions to reduce diagnostic error: a narrative review. BMJ
Quality & Safety, pages bmjqs–2011, 2012.

[20] T. B. Heath and S. Chatterjee. Asymmetric decoy effects on lower-
quality versus higher-quality brands: Meta-analytic and experimental
evidence. Journal of Consumer Research, 22(3):268–284, 1995.

[21] W. Hedgcock and A. R. Rao. Trade-off aversion as an explanation for
the attraction effect: A functional magnetic resonance imaging study.
Journal of Marketing Research, 46(1):1–13, 2009.

[22] W. Hedgcock, A. R. Rao, and H. A. Chen. Could ralph nader’s entrance
and exit have helped al gore? the impact of decoy dynamics on con-
sumer choice. Journal of Marketing Research, 46(3):330–343, 2009.

[23] J. Heer and M. Bostock. Crowdsourcing graphical perception: using
mechanical turk to assess visualization design. In Proceedings of CHI
2010, pages 203–212. ACM, 2010.

[24] S. Highhouse. Context-dependent selection: The effects of decoy and
phantom job candidates. Organizational Behavior and Human Deci-
sion Processes, 65(1):68 – 76, 1996.

[25] J. Huber, J. W. Payne, and C. Puto. Adding asymmetrically dominated al-
ternatives: Violations of regularity and the similarity hypothesis. Jour-
nal of Consumer Research, 9(1):90–98, 1982.

[26] J. Huber, J. W. Payne, and C. P. Puto. Let’s be honest about the attraction
effect. Journal of Marketing Research, 51(4):520–525, 2014.

[27] J. Huber and C. Puto. Market boundaries and product choice: Illustrat-
ing attraction and substitution effects. Journal of Consumer Research,
pages 31–44, 1983.

[28] D. Kahneman. Thinking, fast and slow. Macmillan, 2011.
[29] A. Khan, S. Breslav, M. Glueck, and K. Hornbæk. Benefits of visualiza-

tion in the mammography problem. International Journal of Human-
Computer Studies, 83:94–113, 2015.

[30] U. Khan, M. Zhu, and A. Kalra. When trade-offs matter: The effect
of choice construal on context effects. Journal of Marketing Research,
48(1):62–71, 2011.

[31] T. Latty and M. Beekman. Irrational decision-making in an amoeboid
organism: transitivity and context-dependent preferences. Proceedings
of the Royal Society B: Biological Sciences, 278(1703):307, 2011.

[32] S. Lelis and A. Howes. Informing decisions: how people use online rat-
ing information to make choices. In Proceedings of CHI 2011, pages
2285–2294. ACM, 2011.

[33] S. A. Malkoc, W. Hedgcock, and S. Hoeffler. Between a rock and a hard
place: The failure of the attraction effect among unattractive alterna-
tives. Journal of Consumer Psychology, 23(3):317 – 329, 2013.

[34] L. Micallef, P. Dragicevic, and J.-D. Fekete. Assessing the effect of visual-
izations on bayesian reasoning through crowdsourcing. IEEE Transac-
tions on Visualization and Computer Graphics, 18(12):2536–2545, 2012.

[35] S. Miller, A. Kirlik, A. Kosorukoff, and J. Tsai. Supporting joint human-
computer judgment under uncertainty. In Proceedings of the Human
Factors and Ergonomics Society Annual Meeting, volume 52, pages 408–
412. SAGE Publications, 2008.

[36] S. Mishra, U. Umesh, and D. E. Stem Jr. Antecedents of the attraction
effect: An information-processing approach. Journal of Marketing Re-
search, pages 331–349, 1993.

[37] T. Munzner. Visualization Analysis and Design. CRC Press, 2014.
[38] Y. P. S. O’Curry and R. Pitts. The attraction effect and political choice in

two elections. Journal of Consumer Psychology, 4(1):85–101, 1995.
[39] Open Science Collaboration et al. Estimating the reproducibility of psy-

chological science. Science, 349(6251), 2015.
[40] J. C. Pettibone. Testing the effect of time pressure on asymmetric domi-

nance and compromise decoys in choice. Judgment and Decision Mak-
ing, 7(4):513–523, 2012.

[41] S. Ratneshwar, A. D. Shocker, and D. W. Stewart. Toward understanding
the attraction effect: The implications of product stimulus meaningful-
ness and familiarity. J. of Consumer Research, pages 520–533, 1987.

[42] S. Rudolph, A. Savikhin, and D. S. Ebert. Finvis: Applied visual analytics
for personal financial planning. In IEEE Symposium on Visual Analytics
Science and Technology, pages 195–202. IEEE, 2009.

[43] A. Savikhin, R. Maciejewski, and D. S. Ebert. Applied visual analytics for
economic decision-making. In Visual Analytics Science and Technology,
2008. VAST’08. IEEE Symposium on, pages 107–114. IEEE, 2008.

[44] S. Sen. Knowledge, information mode, and the attraction effect. Journal
of Consumer Research, 25(1):64–77, 1998.

[45] S. Shafir, T. A. Waite, and B. H. Smith. Context-Dependent Vio-
lations of Rational Choice in Honeybees (Apis mellifera) and Gray
Jays (Perisoreus canadensis). Behavioral Ecology and Sociobiology,
51(2):180–187, 2002.

[46] A. Shen-Hsieh and M. Schindl. Data visualization for strategic decision
making. In Case Studies of the CHI2002, pages 1–17. ACM, 2002.

[47] I. Simonson. Choice based on reasons: The case of attraction and com-
promise effects. Journal of Consumer Research, 16(2):158–174, 1989.

[48] I. Simonson. Vices and virtues of misguided replications: The case of
asymmetric dominance. J. of Marketing Research, 51(4):514–519, 2014.

[49] I. Simonson and A. Tversky. Choice in context: Tradeoff contrast and
extremeness aversion. Journal of Marketing Research, 29:281–295, 1992.

[50] J. J. Thomas and K. A. Cook. Illuminating the path:the research and
development agenda for visual analytics. IEEE Computer Society, 2005.

[51] J. Trueblood. Multialternative context effects obtained using an infer-
ence task. Psychonomic Bulletin and Review, 19(5):962–968, 2012.

[52] J. S. Trueblood, S. D. Brown, A. Heathcote, and J. R. Busemeyer. Not
just for consumers context effects are fundamental to decision making.
Psychological science, 24(6):901–908, 2013.

[53] C. Ware. Information visualization: perception for design. Elsevier,
2012.

[54] D. H. Wedell. Distinguishing among models of contextually induced
preference reversals. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 17(4):767, 1991.

[55] C. Williamson and B. Shneiderman. The dynamic homefinder: Evaluat-
ing dynamic queries in a real-estate information exploration system. In
Proceedings of the 15th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR ’92, pages
338–346, New York, NY, USA, 1992. ACM.

[56] S. Yang and M. Lynn. More evidence challenging the robustness and
usefulness of the attraction effect. Journal of Marketing Research,
51(4):508–513, 2014.

[57] J. S. Yi. Visualized decision making: development and application of in-
formation visualization techniques to improve decision quality of nurs-
ing home choice. PhD thesis, Georgia Institute of Technology, 2008.

[58] J. S. Yi, R. Melton, J. Stasko, and J. A. Jacko. Dust & magnet: multivari-
ate information visualization using a magnet metaphor. Information
Visualization, 4(4):239–256, 2005.

[59] Y. Zhang, R. K. Bellamy, and W. A. Kellogg. Designing information for
remediating cognitive biases in decision-making. In Proceedings of the
33rd Annual ACM Conference on Human Factors in Computing Systems,
pages 2211–2220. ACM, 2015.

[60] C. Ziemkiewicz and R. Kosara. Laws of attraction: From perceptual
forces to conceptual similarity. Visualization and Computer Graphics,
IEEE Transactions on, 16(6):1009–1016, 2010.

[61] T. Zuk and S. Carpendale. Visualization of uncertainty and reasoning.
In Smart Graphics, pages 164–177. Springer, 2007.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TVCG.2016.2598594

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

Anastasia Bezerianos 166



Eurographics Conference on Visualization (EuroVis) 2013
B. Preim, P. Rheingans, and H. Theisel
(Guest Editors)

Volume 32 (2013), Number 3

Evolutionary Visual Exploration:
Evaluation With Expert Users

N. Boukhelifa1, W. Cancino1, A. Bezerianos2,1 and E. Lutton1,3

1INRIA Saclay - Île-de-France, France 2Univ Paris-Sud & CNRS, Orsay, France 3INRA, Grignon, France

Abstract
We present an Evolutionary Visual Exploration (EVE) system that combines visual analytics with stochastic op-
timisation to aid the exploration of multidimensional datasets characterised by a large number of possible views
or projections. Starting from dimensions whose values are automatically calculated by a PCA, an interactive evo-
lutionary algorithm progressively builds (or evolves) non-trivial viewpoints in the form of linear and non-linear
dimension combinations, to help users discover new interesting views and relationships in their data. The criteria
for evolving new dimensions is not known a priori and are partially specified by the user via an interactive inter-
face: (i) The user selects views with meaningful or interesting visual patterns and provides a satisfaction score. (ii)
The system calibrates a fitness function (optimised by the evolutionary algorithm) to take into account the user in-
put, and then calculates new views. Our method leverages automatic tools to detect interesting visual features and
human interpretation to derive meaning, validate the findings and guide the exploration without having to grasp
advanced statistical concepts. To validate our method, we built a prototype tool (EvoGraphDice) as an extension
of an existing scatterplot matrix inspection tool, and conducted an observational study with five domain experts.
Our results show that EvoGraphDice can help users quantify qualitative hypotheses and try out different scenarios
to dynamically transform their data. Importantly, it allowed our experts to think laterally, better formulate their
research questions and build new hypotheses for further investigation.

1. Introduction

The purpose of visual exploration is to find meaningful
patterns in the data which can lead to insight. In a high-
dimensionality context, this task becomes rather challeng-
ing as viewers may be faced with a large space of alter-
native views on the data. One way to help navigate such
a space is the “grand tour” method [Asi85] which offers a
complete view of the search space in a smooth sequence of
projections showing various viewpoints of the data. How-
ever, the time required to inspect all these views may be pro-
hibitive [Hub85]. A related approach that improves on this is
“projection pursuit” [Fri87] where the aim is to visit only the
most interesting views; interesting referring to projections
that deviate more from a normal distribution. The criteria
for deciding whether a projection is interesting have mostly
been defined prior to user exploration, using objective mea-
sures such as the quality metrics surveyed in [BTK11].

We present a novel visual analysis tool to explore multi-
dimensional datasets where the system proposes interesting
views based on both objective measures, such as different vi-

sual patterns in the two-dimensional projections of the data,
and subjective measures corresponding to user satisfaction
with the presented view. These subjective measures are not
known prior to user exploration. To demonstrate our ideas,
we built a prototype (EvoGraphDice) as an extension of an
existing scatterplot matrix inspection tool. We use low di-
mension projection to handle data multi-dimensionality, and
linear and non-linear combinations of dimensions for an axis
of the projection plane to propose alternative views. User ex-
ploration is guided by an Interactive Evolutionary Algorithm
(IEA) which can both generate new views and adapt to user
interest. Below, we provide background for the topic of evo-
lutionary computation before listing our contributions.

Evolutionary Algorithms (EAs) are stochastic optimi-
sation heuristics that copy, in a very abstract manner, the
principles of natural evolution that let a population of in-
dividuals be adapted to its environment [Gol89]. They have
the major advantage over other optimisation techniques of
making only few assumptions on the function to be opti-
mised. In short, an EA considers populations of potential so-

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and Blackwell Publish-
ing Ltd. Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ,
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Figure 1: EvoGraphDice prototype showing an exploration session of a synthetic dataset. New extensions to the GraphDice
system are indicated by coloured label arrows. Widgets: (a) an overview scatterplot matrix showing the original data set of 5
dimensions (x0..x4) and the new dimensions (1..5) as suggested by the evolutionary algorithm. (b) main plot view. (c) tool bar
for main plot view. (d) a tool bar with (top to bottom)“favorite” toggle button, “evolve” button , a slider to evaluate cells and
a restart (PCA) button. (e) the selection history tool. (f) the favorite cells window. (g) the selection query window. (h) IEA main
control window. (i) window to limit the search space. (j) dimension editor.

lutions exactly like a natural population of individuals that
live, fight, and reproduce, but the natural environment pres-
sure is replaced by an “optimisation” pressure. In this way,
individuals that reproduce are the best ones with respect to
the problem to be solved. Reproduction consists of gener-
ating new solutions via variation schemes (the genetic op-
erators), that, by analogy with nature, are called mutation
if they involve one individual, or crossover if they involve
two parent solutions. A fitness function, computed for each
individual, is optimised by the EA. Evolutionary optimi-
sation techniques are particularly efficient to address com-
plex problems (irregular, discontinuous) where classical de-
terministic methods fail [Ban97, PLM08], but they can also
deal with varying environments [JB05], or non computable
quantities [Tak08]. More specifically, Interactive Evolution-
ary Algorithms (IEAs) are focussed on the optimisation of
subjective quantities captured via a user interface.

Evolutionary Visual Exploration (EVE): we feel that

Interactive Evolutionary Algorithms (IEA) are convenient
for guiding the user in exploring complex datasets. This
opinion is founded by the following characteristics of EAs:
(i) focus: an IEA performs an optimisation, i.e. it drives the
exploration towards “interesting” areas of the search space
(areas of high fitness function and good user satisfaction),
(ii) diversity: by nature, an IEA has a stochastic behaviour,
and its population-based scheme allows to display a variety
of solutions to the user at any time, (iii) adaptation: EAs are
able to deal with time varying environments and are able to
follow changes of user interest and focus [Lut06].

The contributions of this paper are: (1) a framework for
Evolutionary Visual Exploration (EVE) that marries tech-
niques from visual analysis and evolutionary computation
to guide user exploration towards interesting views on the
data; (2) a prototype tool (EvoGraphDice) [Evo] to demon-
strate our framework; and (3) an observational study with
five domain expert users to evaluate EvoGraphDice.

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.
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2. Related Work

Related work is organised as follows; (1) a brief overview of
quality metrics used to describe specific properties of data
projections; (2) description of quality metrics we use in this
work as part of the automatic evaluation of scatterplots; and
(3) a summary of related work to IEA.

Quality Metrics: faced with the overwhelming possibil-
ities of exploration paths in multidimensional visualization,
researchers in the field designed quality metrics that evaluate
the various projections of the data, in the hope of focusing
user search on the most promising views. In a recent survey,
Bertini et al. [BTK11] used the data flow model to classify
quality metrics into three types: metrics that draw informa-
tion from the data space, from the image space or from both.

Amongst metrics calculated at the data space are clus-
tering and outliers. The rank-by-feature framework [SS05],
for instance, visualises an optimal set of features accord-
ing to a user selected quality metric such as correlation
or uniformity. They use axis-parallel projections to pro-
duce 1D or 2D views and color brightness to denote rank-
ing scores. Amongst image based metrics are scagnostics
[WW08] which describe measures of interest for pairs of di-
mensions based on their geometrical appearance on a scatter-
plot. The mixed metrics combine information from the data
and image spaces at the same time. Peng et al. [PWR04], for
example, combine data features such as correlation informa-
tion with view features such as axes adjacency to measure
clutter as a result of reordering visualization axes [BTK11].

When interaction with quality metrics is available, it is
either to select a metric amongst others, or to set threshold
values [BTK11]. Having to specify the type of ranking cri-
teria requires users to be familiar with advanced statistical
concepts. In our case, the quality metric is pre-defined as a
vector of nine image-based measures (described in the next
section) and the threshold values are adapted according to
user feedback. Thus, our method leverages automatic tools
to detect interesting features and human interpretation to de-
rive meaning, validate the findings and guide the exploration
without having to grasp advanced statistical concepts.

Scagnostics† are based on geometric graphs which are
calculated from areas, perimeters and lengths of these
graphs. They include nine measures to characterise scatter-
plots (Fig. 2) and are useful for quickly discovering regulari-
ties and anomalies in scatterplot matrices. The underlying al-
gorithm detects different types of point distributions includ-
ing multivariate normal, log normal, multinomial, sparse,
dense, convex and clusters. It does so by binning, detect-
ing outliers and computing measures based on the follow-
ing three statistical properties: shape for convex, skinny and
stringy distributions; trend for monotonic distributions; and

† Available as a free downloadable package in R from http://
www.rforge.net/scagnostics/

Figure 2: Nine scagnostics measures from [WW08].

density for skewed, clumpy, outlying, sparse and striated.
These measures have proven statistical properties and are
computable for moderately large data sets [WW08].

Visualization and IEA: visualization tools have been
used in IEA both as representation and exploration tools to
help users better evaluate the output of interactive evolution-
ary algorithms [HT00, LSA∗06]. Despite efforts to design
good user interfaces for IEA, human interaction with these
systems usually raises several problems, mainly linked to the
“user bottleneck” [PC97], human fatigue and slowness. Var-
ious solutions have been considered [PC97, Tak98, Ban97]
such as reducing the population size (micro-EAs), constrain-
ing the search space to focus on a priori “interesting” areas,
and deploying approximated user models (also called surro-
gate functions) to filter obvious bad solutions [LPLV05]. In
the visualization community, work on parameter space ex-
ploration and optimisation relates to ours. Matkovic et al.
[MGJH11], for instance, tried to interactively find an optimal
combination of input parameters for a complex diesel engine
injection system using visual analysis techniques. However,
to our knowledge, we are the first to propose using IEA as
optimisation tools to help navigate large search spaces.

3. EvoGraphDice

Since our main contribution in this work does not lie in
a novel visualization system, but in enabling an IEA to
guide user exploration, we used an existing visualization
tool (GraphDice [EDF08, BCD∗10]) to manage the various
projections of the data. Views are organised in a scatterplot
matrix (SPLOM) of 2D projections, Fig. 1(a). Users can
do brushing and linking using a lasso tool. EvoGraphDice
displays the dimensions proposed by the IEA as additional
rows (and columns) in the SPLOM. The system initially dis-
plays dimensions returned by a PCA, after which the user
can evolve new dimensions by pressing the “evolve” but-
ton, Fig. 1(d). The proposed views are displayed in yel-
low background; the darker the color the more interesting
the view. The system provides an initial score (1 to 5) for
each new view but the user can adapt this score using the
slider in Fig. 1(d). User evaluated cells are flagged (small
black square) to distinguish them from system evaluated

c© 2013 The Author(s)
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cells. EvoGraphDice can be initialised at any time using the
“restart” button which resets parameters of the IEA. Users
can save views (Fig. 1(f)) and bring them back into the
SPLOM if they have been replaced during the exploration.

The current population is also displayed as a table (Fig.
1(h)) where each row corresponds to a combined dimen-
sion described by a mathematical expression and various
components of the fitness function such as the scagnos-
tics measures. The user can edit an individual using the
“dimension editor” in Fig. 1(j), and limit the dimension
search space Fig. 1(i), which results in a system reset sim-
ilar to precessing the “restart” button. Note that many EA
parameters can be tuned, such as the fitness threshold and
crossover/mutation/replacement rates (see [CBL12]).

Our prototype has been developed from a first version
[CBL12] based on an IEA that only manipulated linear com-
binations of dimensions. Our new extensions are: (i) a Ge-
netic Programming (GP) algorithm allowing the manipula-
tion of non-linear combinations of dimensions as variable
size mathematical formula, (ii) user assessment of proposed
views is explicitly captured via a slider, (iii) a surrogate func-
tion based on scagnostics measurements is used to predict
and simplify the interactions of the user with the IEA, (iv)
color highlighting of cells is used to draw user attention to
the most interesting views.

Search Space: The space searched by the evolutionary pro-
cess is the set of all dimensions that can be built by combin-
ing the initial dimensions with operators and constants, en-
coded as trees according to the Genetic Programming (GP)
framework [Koz92]. These combinations can be complex
mathematical expressions containing quadratic, exponential
or logarithmic terms (evolved expressions can be any com-
bination using +, −, ∗, /, (.)(.), exp and log operators).

Genetic Engine: We have chosen to evolve a small set of
combined dimensions, in order to let the user see all individ-
uals of the population at a glance: if n is the number of initial
dimensions, a population of another n combined dimensions
is evolved. At each iteration, that is each time the user clicks
on the “evolve” button, a new generation is produced by ap-
plication of selection/crossover/mutation operators and then
presented to the user whose judgment (evaluation) is explic-
itly collected via a slider.

Initialisation: A set of a priori interesting dimensions has
been chosen as a starting point. A PCA analysis is performed
[Smi02] on the original data and the corresponding n linear
combinations form the initial population.

The fitness function, that is optimised by the genetic engine,
is a sum of three terms:

1. A surrogate function fsc, that plays the role of a predic-
tor, and helps the system to better adapt to user needs. It
is based on scagnostics measurements computed for ev-
ery cell of each dimension yi, the corresponding fitness

term is a linear combination of the highest values of the
scagnostics (SCk(yi,x j)) of each scatterplot cell (yi,x j):

fsc(yi) = ∑
k=1..9

wk(max
j

SCk(yi,x j)) (1)

The weights wk that govern the relative importance of
each scagnostic measurement are initialised to a uniform
weight (1/9). Then, as soon as enough interactions are
recorded (n, the number of variables), wk are updated via
a simple multilinear regression on the m past interactions
(m ≥ n corresponds to the length of the “memory” of the
system).

2. A Complexity term that favours dimensions made of a
small number of variables and simple mathematical ex-
pressions :

fc(yi) =

(
1− nvars(yi)

n

)
× 1

depth(yi)
, (2)

nvars(yi) is the number of original variables involved in
the mathematical expression of yi, and depth(yi) is the
depth of the GP tree representing yi.

3. A user evaluation term, fu(yi), that is an average of the
user evaluation for each cell corresponding to yi (range
of 1 to 5 from “bad” to “excellent”).

Diversity management : The evolutionary mechanisms nat-
urally tend to concentrate the population around good solu-
tions. So for small populations sizes, there is a risk of pre-
mature convergence if no diversity preservation mechanism
exists. In EvoGraphDice, each time a new dimension y′i is
generated, its Euclidean distance to the current population is
computed. If y′i is too close to one of the individuals of the
current population, it is replaced by a random individual.

4. Case Studies with Expert Users

We conducted an observational study with five domain ex-
perts. During the study sessions, we encouraged participants
to think-aloud and share their findings with the study facili-
tator. We wrote observations, conducted semi-structured in-
terviews and questionnaires, video-recorded the sessions and
logged user interactions. The following sections describe the
study setup, observations and findings for each expert.

4.1. Method

Due to the open-ended style of exploration using Evo-
GraphDice, and the subjective nature of our fitness func-
tion, we chose a qualitative observational study methodol-
ogy [Car08, MSM12, SMM12] that better suits our evalua-
tion needs. We wanted to evaluate the usability and utility of
our tool. In particular, we attempted to answer the following
three questions: (i) is our tool understandable and can it be
learnt; (ii) are experts able to confirm known insight in their
data; and (iii) are experts able to evolve views that contain
new insight or allow them to generate a new hypothesis, and
if so how easy or difficult is it to reach those findings.

c© 2013 The Author(s)
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4.2. Participants and Apparatus

We evaluated our prototype with 5 domain expert users
(2 female), ages 27 − 42 (mean 34.2). Experts were aca-
demics and practitioners who had multidimensional datasets
related to their domain of expertise (scientific simulation,
medicine and geography) and were interested in further ex-
ploration. They consisted of one graduate student, four se-
nior researchers and one medical surgeon. Participants had
previously explored their datasets using graphical tools (e.g.
Excel and JMP) or used statistical methods (PCA and re-
gression analysis) but felt there is more to discover in their
data than their current tools allowed them to. Experience
with advanced multidimensional visualization tools varied
from none, to experts who already used GraphDice or other
SPLOM-based tools (two experts). None of our participants
previously used dimension combination to analyse their data
but three performed PCA-type analysis. The first three case
studies ran at our research lab on an HP Z800 workstation
PC with a 19′′ dual monitor (1280 x 1024 screen resolution).
The last two case studies ran on a similar setup at the experts’
institutions. Each session lasted on average 2.5 hours.

4.3. Tasks and Procedure

Participants were asked to carry out two main tasks: (T1)
show in the tool what they already know about their data,
hypothesis and questions they wanted answered; and (T2)
explore their data in light of these hypotheses and research
questions. The first task (and a training game) was designed
to test if the tool is understandable, easy to learn, and can
help experts rediscover known findings. The second open-
ended one explores how domain experts use our tool to an-
swer questions about their data and gain new insights.

Prior to the actual study, participants filled by e-mail a pre-
questionnaire to elicit their background, knowledge about
the dataset they want to explore, and experience with mul-
tidimensional data visualizations. In particular, they were
asked to describe the dimensions of the data sets they pro-
vided, known relationships between variables, and hypothe-
ses they wanted to investigate. The main study ran in two
parts; first training then open exploration as follows:

Training: participants played a game designed to teach them
how to operate the tool. A 5D dataset was synthesised with
two enclosed curvilinear dependencies between two vari-
ables (x0 and x1) and random data for the rest of the dimen-
sions. Participants were asked to evolve a scatterplot where
it is possible to separate the two curves in Fig. 3 (left) with a
straight line and were given around 20 minutes to complete
the task (this task is equivalent to separating the two convex
hulls in Fig. 3). Two participants successfully separated the
two curves, while the remaining experts evolved views very
close to a correct solution within the allocated time.

Open Exploration: the second part of the study ended af-
ter about one hour of exploration (a maximum limit of two

hours was set based on a pilot to avoid user fatigue), and par-
ticipants were encouraged to take breaks. A facilitator was
present to answer experts’ questions and discuss their find-
ings. Throughout the study, a second screen with an open
text editor and pen and paper were provided to the experts as
means of writing down their exploration findings. At the end,
participants filled in a short questionnaire rating aspects of
the tool (5-point Likert scales), such as the ease of perform-
ing the two main tasks, and open ended questions regarding
their exploration strategy and helpful features of the tool.

Figure 3: Two different solutions (screenshots of plots) for
the training game problem (left) that involve a simple dimen-
sion combination (middle) and a complex formula (right).

4.4. Data Collection and Analysis

Participants were video-taped and log data of user interac-
tions was gathered for further analysis (table1). Live and
video observations, the results of the questionnaire, and the
log analysis are described separately for each case study.

4.5. Expert 1: Electrical Consumption Profiles

Dataset: (9D) describes the electrical consumption of 900
anonymised businesses during non-peak (npk) and non-plan
(npn) hours (‘plan’ refers to an agreed unit rate for a defined
period of time) for winter (W) and summer seasons (S), their
geographical altitude and the total consumption cost.

Goal: the expert wanted to investigate electricity consump-
tion patterns of these businesses and their impact on the
total cost of consumption. The expert noted in the pre-
questionnaire that he would like to sum-up some dimensions
in twos in order to focus on one aspect of consumption (e.g.
non-plan and non-peak for summer), and therefore had a
clear motivation for combining dimensions. This, he argued,
may allow him to see interesting consumption profiles.

Observations: the expert hypothesised that altitude has an
influence on electricity consumption during both summer
and winter seasons. He also had some prior knowledge about
existing outliers in the data. During the study he was able to
quickly verify both of these hypothesis.

The most important new finding made by the expert,
which was not part of the original search space, is a view
showing a linear combination of the four parameters of inter-
est to the expert (npn and npk for summer and winter) which
brought to evidence in a quantitative manner that npnW con-
sumption is the more correlated to the total consumption.
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Expert G T1 T2 Q Data Size D LimitSearch Evolve Eval OVisits NVisits Insight
1 - 4 4 3 business 9x900 1:10 3 3 16 40 105 2(1)
2 - 4 4 3 timeseries 7x78 1:33 4 3 8 114 115 4(3)
3 9 5 5 3 geometrical 12x67 0:49 4 21 90 99 344 2(1)
4 7 5 4 3 statistical 10x200 2:23 7 13 83 110 309 6(1)
5 - 3 2 4 geospatial 11x653 1:27 5 5 20 64 229 -

Table 1: Log data showing: (G) the generation when a solution for the game was found, (T1&T2) experts’ scores for ease of
completing tasks T1&T2 on a 5-point Likert scale, 5 signifies “very easy”, (Q) score for user agreement with EvoGraphDice cell
evaluations on 5-point Likert scale, 5 indicates strong agreement, (Data&Size) type and size of dataset, (D) duration (hh:mm)
of T2, (LimitSearch) breath of exploration indicated by the number of times the expert limited the search space, (Evolve)
depth of exploration indicated by the maximum reached generation, (Eval) how many new cells were evaluated by the user,
(OVisits&NVisits) number of times the expert visited the original cells and the new cells respectively, and (Insight) number of
times the expert limited the search space and the generation (between parenthesis) where the insight was found.

In the user’s own words: “we always talk about this quali-
tatively. This is the first time I see concrete weights ... To
understand what is a better fare, it is necessary to find a
good approximation of the consumption profile”, like the
one found in Fig. 4. Thus this insight can lead to electricity
plans that are better suited to clients’ consumption needs.

Figure 4: Confirmed findings (left and centre) and new in-
sight found by the expert (right): a linear combination of
four parameters that approximates customer consumption.

According to this participant, his exploration strategy was
to look at propositions in detail along a row, e.g., to examine
proposed dimensions plotted against the total consumption.
Overall, the expert did not evolve many generations (depth
of exploration was three generations at most), but used “limit
the search space” facility three times, indicating that he was
trying to formulate an interesting hypothesis more than he
investigated one in depth. The solution he found was after
limiting the search space for the second time.

The expert liked the ability to limit the search space and
to enter formulae for the combined dimensions using the di-
mension editor, e.g. to invert a weight.

4.6. Expert 2: Biscuit Baking Process

Dataset: (7D) describes 78 data points recorded from sev-
eral industrial biscuit training processes taken by experts in
the industry. There are two input parameters relating to tem-
perature settings and three output parameters relating to bis-
cuits (weight loss, height and colour) and a timestep.

Goal: the expert wanted to visualise dependencies in the
data between input and output parameters (intuitively such
correlation should exist but its exact nature is not clear).

Observations: the expert was able to quickly verify known
profiles in the data, for instance the influence of temperature
on height and color of the biscuit.

The more general profile of the relationships between in-
put and output parameters was not evident from the origi-
nal dimensions, thus the expert looked at a wider space us-
ing combined dimensions. He observed that there might be
some exponential factors that link outputs and inputs, in par-
ticular an exponential dimension of one of the input param-
eters (proposed by the GP) was linearly correlated between
all output variables: “we would probably not have consid-
ered looking at exponential relationships” indicating a sur-
prising finding and, thus, the ability of the tool to encourage
lateral thinking. Further investigation showed that the expo-
nential of temperatures has a specific meaning in thermally
activated processes (explained by the Arrhenius law [Wik]).

To look for new relationships, the expert’s strategy was
to evolve a few generations and choose a visualization that
showed linear or quadratic relationships. Like the first ex-
pert, he edited promising views using the “dimension editor”
to see if this had better or worse impact on the relationship
between variables. Most importantly he tried to reduce for-
mula complexity to make better sense of the relationship.

The expert found the evolution functionality and the pre-
view matrix useful to reach interesting cells. However, he
wanted to examine scores per dimension as well as per
views, e.g. to see if a dimension is always highly ranked;
and for the tool to highlight new dimensions that have not
been visited before.

4.7. Expert 3: Anatomical Planning for Surgery

Dataset: (12D) of which half describe anatomical and geo-
metrical values related to a 3D planning of a surgical opera-
tion (total hip arthroplasty) for 67 patients, and the other half
represent values for the same parameters after surgery.

Goal: the expert wanted to investigate whether there is a
correlation between the planned values and the final values
for each of the investigated parameters, and, if it exists, how
strong is this correlation. Since there are many parameters to
examine with potentially many interactions between them,
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the expert focussed on examining the offsets for the cup an-
teversion parameter (AntvCupSupine) which corresponds to
the orientation angle of the cup of the hip prosthesis.

Observations: the expert already knew that there is a re-
lationship between the planned and real values for the
AntvCupSupine parameter. This was easily verified in the
original dimension space. To explore this further, the expert
examined the view showing the before and after values, then
made three lasso selections corresponding to over-fit, best-
fit and under-fit values (Fig. 5 left), then examined brushed
cells in the original search space.

In terms of new insight, the expert found a new cell where
the two problematic groups (in red and blue) were separated
from the well-restored group (in green) with the exception
of one data point. The proposed dimension had a simple for-
mula that involved two original dimensions. Views showing
such separation may correspond to special geometrical set-
tings or anatomical features for the observed patients. The
expert noted that he needs to examine these patients more
carefully with special attention to the selected parameters
which can then lead to better pre and post-surgery results.

The expert followed the training game example as his ex-
ploration strategy, which may explain the big depth of explo-
ration (21 generations): he made lasso selections of groups
of data points, and evolved views that he scored highly de-
pending on whether the overlap between the clusters is min-
imised. He examined the proposed dimensions in relation
to the AntvCupSupine parameter and made use of the “fa-
vorite” facility to compare interesting cells that were re-
placed in the next generations. Notably, he evaluated more
than 26% of new visited cells. This seemed to be an impor-
tant part of his exploration strategy.

Figure 5: Selections of over-fit (red), best-fit (green) and
under-fit (blue) parameter values (left), and (right) a finding
by the expert showing a separation between the two groups
of interest in relation to a new parameter.

The expert commented that he liked the direct visual in-
teraction with the data but he did not like the uncertainty in
whether a solution existed and whether the tool will find it.
For example, he was interested to see if the degree of separa-
tion between his data groups became smaller between evolu-
tions. He suggested adding more adapted tools for selecting
data clusters and including statistical information.

4.8. Expert 4: Pareto Front Exploration

Dataset: (10D) describes the outpt of a genetic algorithm
that was used to calibrate a city growth and emergence
model. The data represents a set of parameter values (7 di-
mensions) and their objective fitness scores (3 dimensions).
The explored dataset only includes the first best 200 param-
eter values that the algorithm found according to the three
objectives of the calibration model (i.e. the Pareto front of
the global parameter space exploration).

Goal: the expert wanted to explore the dataset from the
two different perspectives (parameter and objective space)
as well as the interaction between the two spaces, e.g. does a
special profile in the parameter space correspond to a special
profile in the objective space?

Observations: prior to the study, the expert had an idea
about some characteristics of the data, e.g. there are two
large clusters that can be differentiated by the value of one
parameter (pAdoption). This type of calibration was also
known to produce a characterisable response in the objec-
tive space. This hypothesis was easily verified using Evo-
GraphDice via brushing and linking between cells in the pa-
rameter space and the objective space.

Figure 6: An interesting combined dimension from the pa-
rameter space and its impact on two objective dimensions.

In terms of new insight, the expert was able to find an
interesting combined dimension that gave a good correlation
for two parameters of the objective space (Fig. 6). The expert
commented that this combination may be an important find-
ing because it involves parameters that affect only one part
of the simulation model. This indicates that those parame-
ters, at least for these two output indicators, work together;
and that this linear combination could be one way to reduce
the complexity of the model.

As for strategies, the expert mentioned primarily limiting
the search space (7 times), evolving (13 generations) and ex-
amining cells that had monotonic or striated distributions.
She also made good use of visual queries and cell evaluation;
27% of new visited cells were evaluated by the participant.

The expert liked the ability to limit the search space and
the freedom the tool offers to explore the data by “evolu-
tion”. She added that the tool was helpful in reaching insight
because of its ability to visualise and suggest combinations
of dimensions that actually had a visual pattern: “in Excel it
is difficult to find a formula that would give a nice pattern”.
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4.9. Expert 5: Urban Organisation and Perception

Dataset: (11D) describes geo-spatial information about 653
inhabitants and their urban environments including their pro-
files (e.g. gender, age), perception of their neighbourhood
and objective variables describing their street such as the dis-
tance to the nearest metro station and type of district.

Goal: as with other experts, this participant was interested
in finding relationships between variables; specifically she
wanted to identify groups of inhabitants having similar pro-
files and to find the most discriminating variables for these
individuals in order to make sense of the formed groups.

Observations: the expert had already found interesting cor-
relations between the different original variables using her
own statistical tools. She was able to confirm these findings.
For instance, that an individual’s perception of the size of
their neighbourhood was dependent on the distance to the
next metro station, but this was only true if context (type
of district) was taken into account. However, the expert was
aware of correlations requiring an interaction between two
variables against a third but found it difficult to see them us-
ing EvoGraphDice. The expert noted two major difficulties
that may have hindered the exploration and thus lack of early
insight or hypothesis generation: (a) difficulty in determin-
ing the criteria for scoring patterns without knowing what a
good pattern is in advance; and (b) the nature of data about
human behaviour and perception has high variability, thus
examining averages, for instance, is more appropriate.

Despite the aforementioned difficulties, the expert found
two interesting views where clusters and outlier groups seem
to correspond to a known profile (Fig. 7). However, she was
not able to fully interpret the proposed combined dimensions
as the choice of variables made sense, but the overall inter-
pretation of the pattern was not clear to the participant.

Figure 7: Two interesting combined dimensions (centre and
right) found by the system and their impact on one objective
dimension (aireha). Brushing and linking to an original view
(left) shows interesting profiles.

This expert’s exploration strategy was to limit the search
space to 3− 4 variables and examine their interaction with
one original dimension (e.g. perception of space). She also
made selections and examined the brushed views in the orig-
inal space. Since the expert did not evolve many genera-
tion (5 max) and only evaluated a few cells (20 overall)–due
to the aforementioned difficulties– the system did not learn
well the type of distributions the expert was looking for.

The expert tended to agree with the system’s proposed
scores (Table 1 Q), which she found interesting because of
the choice of variables and the simplicity of the proposed
formulae. As interpretation of results was difficult using the
current point-based presentation, the expert noted that show-
ing aggregated values and variance would help her better un-
derstand the views.

5. Summary of Results

Almost all participants were able to easily confirm prior
knowledge about their datasets (2 x ‘very easy’, 2 x ‘easy’,
1 x ‘neutral’). One expert found this task challenging be-
cause of the lack of data aggregation that her type of analysis
requires. Overall, participants confirmed known correlation,
clusters or outliers in their data. In the remainder of this sec-
tion, we summarise our study findings concerning new found
insight, successful tasks and exploration strategies.

5.1. Insight Generation and Tasks

If we include hypothesis formation as part of insight gen-
eration, similar to work by Saraiya et al. [SND05], Evo-
GraphDice helped our participants generate new insight in
the form of distinct observations about the data (4 experts),
new hypothesis (1 experts) and better formulation of re-
search questions (4 experts). Distinct observations found by
the experts were either clustering, linear or non-linear re-
lationships, and similarly to generated hypotheses, they al-
ways linked a dimension in the original data set and a new
proposed dimension. The subjective evaluation of ease of
task T2 (table 1) shows most experts found it easy to find
new insight: 1 x ‘very easy’, 3 x ‘easy’ and 1 x ‘not easy’.
Not surprisingly, those who reached a concrete new finding
scored the tool highly in comparison to those who did not.

The found solutions were regarded by the experts as in-
teresting because they had one or more of the following
properties: (i) a visual pattern such as those modeled by the
scagnostics measures; (ii) a simple formula involving few di-
mensions; (iii) a selective choice of dimensions (correspond-
ing to an unformulated hypothesis or an inherent aspect of
their data model); and (iv) a domain value. Regarding the
latter point, not all participants were able to state the imme-
diate domain value but in general, our participants stated that
EvoGraphDice helped them:

• interact visually with data (experts 3)
• try out alternative scenarios by editing dimensions (ex-

perts 1,2)
• think laterally (expert 2)
• quantify a qualitative hypothesis (expert 1)
• formulate a new hypothesis or refine an existing one (1-4)

5.2. Exploration Strategies

Overall, participants followed the same exploration pattern
consisting of first examining the original dimensions then
inspecting and evaluating the first generation of the pro-
posed dimensions (returned by the PCA) followed by one
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or more iterations of the following steps: (i) limit the search
space; (ii) select and rank cells; (iii) evolve; and (iv) interpret
and verify. However, the frequency of using some tools (e.g.
“evolve” vs. “limit the search space”) varied depending on
whether the expert had an a priori focused hypothesis (i.e. a
research question involving typically 3−4 dimensions). We
observed that the looser the initial hypothesis, the more often
they tried to change the search space; and the more focused
the hypothesis the more generations they inspected. Indeed,
these two strategies of exploration and exploitation are sup-
ported by EAs [Ban97] where on the one hand the user wants
to visit new regions of the search space and on the other hand
they want to explore solutions (combined dimensions) close
to one region of the search space.

6. Discussion

Most of our experts were able to formulate interesting hy-
pothesis or reach new insight requiring looking at data in
terms of a combination of dimensions. Our approach con-
sists of proposing new views based on automatically cal-
culated metrics and user feedback. On the one hand, our
method is complimentary to PCA, clustering and regression
analysis that automatically find data patterns, and optimise a
fit. On the other hand, we allow users to interactively select
examples of visual pattern types they are interested in, and
that may not be easy to express mathematically. Users can
then verify the new relationships they find in EvoGraphDice
by using the dedicated automatic data analysis tools.

In comparison to automatic analysis such as in statistics
and data mining, our approach offers: (i) Intuitiveness: a vi-
sual approach to interact with data requiring no prior statisti-
cal knowledge; (ii) Interactivity: rather than fitting the data
to pre-defined shapes in a static manner, using an IEA the
user can dynamically steer the exploration process towards
a pattern of interest. These patterns can involve dimension
concatenations that are not obvious at the outset of the ex-
ploration; (iii) Flexibility: ability to edit and try out alter-
native dimension combination scenarios, or limit the search
space. (iv) and Adaptability: the system can adjust to user
change of interest over time.

There are limitations to using our tool, such as the types of
datasets to explore and issues related to the interpretation of
combined dimensions which we discuss below. Moreover,
the issue of the convergence of the genetic algorithm is an
interesting one given that the IEA deals with optimisation.
However, this is not easy to study in our case as there is
no unique solution to converge to, rather the optimisation is
dynamically adapted to follow user interest over time.

First, we are constrained by the SPLOM representation
of EvoGraphDice which does not provide a natural way to
interact with some dataset types such as timeseries. Data
with high variability provides additional challenges that we
do not currently address, such as detecting and evolving ag-
gregated patterns. In addition, we tested our prototype with

user-provided datasets that are small to medium sized, hav-
ing dimensions between 7−12. Although our algorithm can
deal with a large number of data points, it may not handle
well larger number of dimensions as complex combined di-
mensions may be difficult to avoid. In this case, a dimen-
sion reduction technique can be applied to the dataset before
feeding the results to EvoGraphDice.

Second, not all variables can be combined, therefore the
user should as soon as possible limit the search space to
“combinable” dimensions. This in a sense requires the user
to have some domain knowledge and to make an initial hy-
pothesis about the data. The proposed dimensions can in-
volve complex or unforeseen combinations yielding a visual
pattern but one that can be difficult to interpret. To help ad-
dress this issue, we used “complexity” of a combined dimen-
sion as a component of the IEA fitness function. Nonethe-
less, our method can still yield complex dimensions that are
difficult to interpret. We noticed that our participants only
looked at the combined dimensions in relation to an origi-
nal dimension, most likely to ground the observation. This
problem of interpretation, however, is common to all tools
that offer dimension combination.

7. Conclusion and Future Work

We presented a prototype tool (EvoGraphDice) for support-
ing Evolutionary Visual Exploration (EVE) that combines
visual analysis with interactive evolutionary computation to
help steer the exploration towards interesting views on the
data. Our method complements PCA, clustering and regres-
sion types of analysis, offering additional features such as in-
teractivity and adaptability. We conducted an observational
study with domain experts and found that our tool allowed
users to evolve characteristics that are not visible in the origi-
nal dimensions space. Our experts were able to try out differ-
ent scenarios, think laterally, quantify qualitative hypotheses
and formulate new ones.

Future work for our tool includes longitudinal user stud-
ies to explore in detail the long term evolution of user fo-
cus, as well as addressing issues such as improving the IEA
to detect more complex visual patterns (beyond those cur-
rently detected by Scagnostics), handling data with high-
dimensionality and bridging EvoGraphDice and existing sta-
tistical packages to combine powerful statistical analysis
with flexible and intuitive visual exploration.

Our work demonstrated that tightly combining visualiza-
tion and optimisation techniques can yield exciting results
in data analysis and opens new venues for research, but also
highlights challenges such as monitoring algorithm conver-
gence, history visualization of diverging exploration paths,
and appropriate methodologies for evaluation.
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A Comparison of Visualizations
for Identifying Correlation over Space and Time

Vanessa Peña-Araya, Emmanuel Pietriga, Anastasia Bezerianos

Small Multiples (juxtapose location) Single Map (juxtapose time)
Cartogram (visual encodings use map features) Proportional Symbol Map (visual encodings use symbols on top of map features)

GlyphSMDorlingSM Barchart1M(a) (b) (c)

Fig. 1. The three visualizations compared in our study. (a) Dorling cartograms as small multiples, (b) proportional symbols (circles) on
maps as small multiples, and (c) proportional symbols (bar charts) on a single map. In this example, each map shows the values of
two artificially-created variables over four years. In each case, both variables have an overall positive correlation (Pearson correlation
coefficient ≥ 0.75) and no monotonic evolution.

Abstract— Observing the relationship between two or more variables over space and time is essential in many domains. For instance,
looking, for different countries, at the evolution of both the life expectancy at birth and the fertility rate will give an overview of their
demographics. The choice of visual representation for such multivariate data is key to enabling analysts to extract patterns and trends.
Prior work has compared geo-temporal visualization techniques for a single thematic variable that evolves over space and time, or
for two variables at a specific point in time. But how effective visualization techniques are at communicating correlation between two
variables that evolve over space and time remains to be investigated. We report on a study comparing three techniques that are
representative of different strategies to visualize geo-temporal multivariate data: either juxtaposing all locations for a given time step, or
juxtaposing all time steps for a given location; and encoding thematic attributes either using symbols overlaid on top of map features, or
using visual channels of the map features themselves. Participants performed a series of tasks that required them to identify if two
variables were correlated over time and if there was a pattern in their evolution. Tasks varied in granularity for both dimensions: time
(all time steps, a subrange of steps, one step only) and space (all locations, locations in a subregion, one location only). Our results
show that a visualization’s effectiveness depends strongly on the task to be carried out. Based on these findings we present a set of
design guidelines about geo-temporal visualization techniques for communicating correlation.

Index Terms—geo-temporal data, bivariate maps, correlation, controlled study, bar chart, Dorling cartogram, small multiples

1 INTRODUCTION

Understanding phenomena often requires looking at multiple variables,
their inter-relationships, and how these evolve over time. Take Hans
Rosling’s visualization of the demographics of countries in his seminal
2006 TED talk [55]. Looking at the life expectancy and the fertility rate
together is key to understanding the phenomenon at hand. Watching
their co-evolution provides many of the insights unveiled by the speaker.

In many cases, the data will also feature a spatial dimension. Rosling
refers to individual countries, but also different groups of countries
multiple times. The spatial dimension plays an important role in his
story, even if it is only indirectly represented in the scatterplot. Again,
understanding the interplay between the considered variables, and the
spatial arrangement of the entities they describe, can yield key insights.
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This famous example illustrates the potential of multivariate geo-
temporal data visualization as a storytelling device. The speaker com-
municates insights about two variables that are related thematically,
and that describe a phenomenon that is situated both spatially and tem-
porally [2]. Beyond data storytelling, geo-temporal visualization can
also support the analysis of such phenomena. The context, however,
is different. While animation can illustrate temporal evolution when
telling a story, it will often not be as effective for analysis purposes [65].
Moreover, depending on the application domain considered, informa-
tion about group membership (e.g., a country belonging to a particular
continent) might not be sufficient to understand what role the spatial
dimension plays in the phenomenon. Thus more detailed information
about the topological relationship between entities might be necessary.

The problem of designing an effective visual representation in this
context is challenging, as multiple data of different nature must be
combined, each having specific characteristics: the thematic variables
that describe the first-class entities in the dataset (life expectancy, fertil-
ity rate), the spatial properties of those entities (countries, continents),
and the evolution of the thematic variables over time (years). Design
choices will influence how well the representation can enable analysts
to detect correlations between variables over space and time. It is thus
important to identify guidelines to inform such designs.

Prior studies have compared geo-temporal visualization techniques
for a single variable that evolves over space and time [21, 39, 40, 58].
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Others have looked at two variables on a map (bivariate maps), but at a
specific point in time [15, 18, 45]; or at how to visualize the correlation
between two variables [31, 52, 53, 69], including visualizations that
can be used to depict temporal evolution [26], but not in a geospatial
context. To our knowledge, how effective visualization techniques
are at communicating correlation between two thematic variables, that
evolve over both space and time, remains to be studied.

We identify the different strategies used to combine thematic, spatial
and temporal data into a visualization. The first design choice to be
made concerns the combination of thematic variables in the representa-
tion: is the representation juxtaposing all locations for a given time
step; or juxtaposing all time steps for a given location. The second
choice concerns the visual encoding of thematic variables: either over-
laying symbols on top of map features; or using visual channels of
the map features themselves.

We discuss design variations for each strategy and identify three
candidate techniques (see Fig. 1). Our study is designed to evaluate
participants’ ability to identify whether two variables are correlated over
time or not, and if they are, if there is a pattern to their evolution. As we
expect the techniques to fare differently depending on the number of
time steps and the number of geographical entities to consider, we test
them on tasks that vary both in temporal and in geographical granularity.
Our results confirm this intuition, leading to a set of design guidelines
about visualization choices for effectively communicating correlations
in thematic geo-temporal data.

2 RELATED WORK

We first review some of the available visualizations categorized by
how they combine space and time, and then how thematic variables are
encoded to create multivariate maps. We finally discuss research related
to perception studies of visualizations of correlated geo-temporal data.

2.1 Visualizing Combined Dimensions of Space and Time

Maps are the most direct visual representation of geo-temporal data.
When combining both dimensions of space and time, thematic variables
can be displayed by either juxtaposing locations (e.g., small multiples
of compact map representations); or juxtaposing time (e.g., glyphs that
represent multiple time steps overlaid on locations on a single map).

Juxtaposing location. From this category, small multiples are the
most popular technique. For example, Johnson et al. [29] use small
multiples to observe the correlation of Internet adoption with GDP and
with population over the years. Animation can also be considered as
a technique that juxtaposes location on maps that are presented in a
sequence. Animation has been used to smooth the transition between
views [9], or combined with symbols to depict change [32].

Juxtaposing time. The most common approach is to use glyphs in
2D (e.g., [3, 17, 33, 47, 61]) or 3D (e.g., [64]) on top of a single map.
Additionally, the 3rd dimension has been used to juxtapose time over a
map. For example, Space Time-Cubes [35] arrange time steps on the
z-axis, effectively piling up the maps that correspond to each one of
them. They have been used in several applications, e.g., [19, 43, 50].

2.2 Visually Encoding Thematic Variables

Visually encoding data on a map can be done using two main strategies:
mapping thematic attributes to visual properties of the map features;
or overlaying symbols (e.g., basic shapes such as circles, or glyphs
such as pie charts and bar charts) on top of a base map, which remains
untouched. As stated by Elmer [15], the number of possibilities to
create bivariate or multivariate maps can range from dozens to hundreds
(the declarative model of Jo et al. [28] for multiclass density maps
shows numerous examples). Thus in this section we focus on those
representations that are most commonly used or studied.

Encodings that use visual channels of the map features. Choro-
pleth maps are among the most popular in this category [22, 41, 62].
They visually encode thematic attribute values using the map features’
fill color. A bivariate type of choropleth, called value-by-alpha maps,
allows for two variables to be displayed at the same time by combining
color hue and transparency for each map feature [18].

Juxtapose
location

Juxtapose
time

No time

Visual encodings use
symbols on top of map features

[6] [16]
[58]*

[33]†
[39, 40]

[15]* [18]* [30]*
[63]†

[71] [38] [70] [4]

Visual encodings use
map features

[21] [44]
[45]*

[39, 40]
[45]*

[15]* [18]* [30]*
[63]†

[23]* [24] [42] [62]
Table 1. Categorization of studies comparing geo-spatial visualizations.
The first two columns represent the juxtaposition strategy. The third
groups studies which compare visualizations that do not include time.
The two rows represent the categories of visual encodings (symbols
or map features). (*) indicates studies that consider more than one
quantitative variable, and (†) studies that consider one quantitative and
one qualitative variable. Note that some references are included in more
than one cell as they make comparisons across categories.

Cartograms, use size as a visual encoding channel, and deform geo-
graphical shapes proportionally to the variable of interest [46]. There
are four major types of cartograms: contiguous, non-contiguous, Dor-
ling and rectangular. Contiguous cartograms distort regions to make
their size reflect the thematic variable’s value, preserving topology,
and in particular adjacency, at the cost of statistical accuracy. Non-
contiguous cartograms rescale each region of the map independently.
They yield better statistical accuracy but fail to preserve topology (geo-
graphical regions are no longer contiguous). Dorling cartograms [12]
yield more abstract representations of the geographical entities, re-
placing each region with a circle (Fig. 1-a). The circle’s area can be
mapped to a thematic variable. The position of circles is computed so
as to preserve the overall topology, putting each circle as close to its
original location as possible, adjusting their actual position to avoid
circles overlapping one another. Finally, rectangular cartograms are
similar to Dorling cartograms, but use rectangles to represent each
region, yielding even more abstract representations of the geographical
entities. Bivariate cartograms [66] use color or shade to encode a sec-
ond variable in addition to that mapped to size. A recent variation on
bivariate cartograms was presented by Nusrat et al. [45], in which two
variables are visually encoded with size.

Encodings that use visual channels of symbols on top of map
features. Overlaying thematic glyphs on top of a base map (“symbols
on maps” [25]) gives more flexibility compared to mapping data to the
attributes of the map features themselves. A wide variety of glyphs can
be used to encode multivariate data. They are typically placed on top
of geographical regions, on an independent layer. Proportional circles
are the most frequently-used shape, but other basic shapes like squares,
triangles or any other symbol can also be used [66]. Beyond simple
shapes, more elaborate glyphs have been proposed; from generic glyph
designs such as star glyphs or Chernoff faces [7] to domain-specific
ones such as those used in meteorology [68].

2.3 Perception Studies on Correlated Geo-Temporal Data

We now summarize the studies we consider most relevant to geospa-
tial visualization. From the extensive literature, we selected a subset
using keyword searches involving maps, geographical, geo-temporal,
empirical study, evaluation. We filtered out papers that were more
than 20 years old, ones that consider numerical metrics but not visual
perception (e.g., [1, 41]), or that evaluated a new proposed technique in
isolation (e.g., [14, 37]). The final set of articles can be seen in Table 1.

We observe that most work on evaluating map-based visualizations
does not focus on temporal evolution. From the results of those that
do, we conclude that choosing the best-suited technique will depend
on the task. For example, for analyzing statistical data over time and
space, the results of Boyandin et al. [6] indicate that users get more
insights with small multiples than with animation. This is confirmed
by Robertson et al. [54] for the analysis of trends using non geo-spatial
visualizations. For identifying moving patterns, Griffin et al. [21] show
that animation leads to better results than small multiples. Other studies
that consider temporal change focus on comparing only two points in
time (e.g., [44, 45]). They do not provide insights about the compared
techniques’ performance for identifying trends over space and time.
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Regarding visual encoding, we observe that most studies do not
focus on more than one quantitative variable at the same time. Par-
ticularly regarding correlation, two of them study user performance
for tasks that require analyzing the relationship between two variables.
The first, from Gao et al. [18], compares value-by-alpha maps with
non-contiguous cartograms and proportional symbol maps. The latter
displayed better overall performance. The second is from Elmer [15],
who evaluated eight different visual encodings for bivariate maps. He
focused on studying the effectiveness of different combinations of vi-
sual variables for the analysis of patterns. His results indicate that the
eight combinations were consistent in accuracy, showing the utility of
bivariate maps. Time was not considered in these studies.

Other research studies the perception of spatial autocorrelation [4,34]
(how much a phenomena is dependent on spatial location). Yet other
studies investigate the perception of correlation in visualizations that
do not involve maps [26, 31, 52, 53, 69]. While such studies relate to
our work, none of them considers all dimensions (correlation of two
variables, over both space and time) simultaneously.

3 STUDY RATIONALE AND HYPOTHESIS

The literature describes many visualization techniques capable of en-
coding two thematic variables in a geo-temporal context. As it would
be impractical to test them all, we discard general strategies that are
ill-suited to the context of visual analysis, and identify representative
techniques based on the strategies briefly introduced earlier. We then
motivate our tasks, formulate our hypotheses, and explain how we have
generated the synthetic datasets used in the study.

3.1 Selection of Visualization Techniques
Our first decision is to discard techniques that use animation to convey
the temporal evolution of thematic variables. There has been much
discussion about the role of animations [8] and their effectiveness [65],
with sometimes-contradictory findings. But there seems to be relatively
broad consensus that they are ineffective for detailed analyses of multi-
ple variables over sequences of many time steps: showing only a single
step at a time, they require users to remember previously-seen steps,
thereby increasing cognitive load [27].

We also discard techniques that use 3D representations. These can
provide more opportunities for mapping data attributes to visual vari-
ables (see, e.g., [64]), which can be useful when visualizing multivariate
data. But they typically force users to interact more with the represen-
tation, and require more elaborate means of navigation because of the
higher number of degrees of freedom, among other pitfalls [60].

To make our study tractable, we make one final choice: to focus
on visualizations based on how they represent the information, inde-
pendently of any interaction technique. This means that we consider
only static visualizations, in which elements can neither be filtered nor
highlighted. As we discuss later in Sec. 7.1, follow-up studies should
investigate how adding interaction impacts performance, but as this
is the first empirical study to investigate the perception of correlation
over space and time, there are already many factors to include before
considering interaction techniques.

Based on these choices, we identify strategies used to combine the-
matic, spatial and temporal data into one visual representation. 1) We
first categorize visualizations according to how they organize thematic
variables. They can juxtapose values for all locations at a given time
step, yielding small-multiples maps. Or they can juxtapose values
for all time steps at a given location, yielding a single map. 2) We
then categorize visualizations according to how thematic variables are
visually encoded [15]. They can be mapped to the visual properties of
symbols overlaid on top of the corresponding map features, eventually
forming a proportional symbol map [18]. Or they can be mapped to
the visual properties of the map features themselves. Both choropleth
maps and cartograms fall in this category, but we only consider car-
tograms here. Indeed, encoding two thematic variables on choropleth
maps is mostly limited to fill color hue, saturation and brightness, but
these often interfere in terms of visual perception. Variations on the
original design exist, such as, e.g., Banded Choropleth Maps [14], but
have not proven effective so far.

Combinations of these different strategies each yield multiple design
variations. To avoid having to handle an unmanageable number of
conditions, we choose at most one design per combination of strategies,
and limit ourselves to designs that are actually used in practice. Those
choices are rationalized below, taking into account the fact that our two
thematic variables are quantitative in nature.

Proportional Symbol Map + Small Multiples: these techniques
juxtapose values for all locations at a given time step. They consist
of multiple identical base maps, one for each time step, with symbols
superimposed on top of map features. The symbols’ visual channels
encode the thematic variables, showing individual values for the corre-
sponding time step. We select circles, as they are the most frequently
used shape [66], mapping the thematic variables to their radius and fill
color brightness, respectively. This technique, which we refer to as
GlyphSM in the study, is illustrated in Fig. 1-b.

Proportional Symbol Map + Single Map: these techniques juxta-
pose values for all time steps at a given location. They consist of a
single base map. Because all values for all time steps are juxtaposed,
we can create miniature bar charts [28], encoding one of the thematic
variables using bar length instead of circle radius. Length is consid-
ered a more effective encoding channel than area, and this also makes
for a more compact glyph than juxtaposed circles would. The second
variable is mapped to each bar’s fill color brightness. This technique,
which we refer to as Barchart1M, is illustrated in Fig. 1-c.

Cartogram + Small Multiples: these techniques juxtapose values
for all locations at a given time step and encode thematic attributes
directly on the map features, without using symbols. They consist of
multiple cartograms, one for each time step in the dataset. Among
all variations on cartograms (discussed in Sec. 2.2), prior studies have
shown that contiguous cartograms and Dorling cartograms perform best
overall [44]. We chose Dorling cartograms over contiguous cartograms
as results of previous studies indicate they yield higher statistical accu-
racy and are better suited to summarize tasks, therefore better aligned
with the analysis of correlations. This technique, which we refer to as
DorlingSM, is illustrated in Fig. 1-a.

Cartogram + Single Map: while instances of this combination do
exist, all the ones we identified are somewhat contrived. Indeed, it is
difficult to have a single small glyph meet all requirements: (i) show
two thematic variables; (ii) show individual values for each of them,
(iii) for each time step; and (iv) preserve the global topology of map
features. One possibility would be to take the above Dorling cartogram,
slice the circles radially into as many time steps (transforming them into
pie charts), and map the thematic variables to each slice’s radius and fill
color, effectively creating a rose chart. Such a design, however, makes
it difficult to compare values across entities. Other possibilities exist,
involving, e.g., augmented donut charts or treemaps, but none of these
is in reasonably widespread use and none stands out as a promising
technique. We thus did not include this combination in the study.

3.2 Task Motivation
Our goal was to compare the effectiveness of visualization techniques,
when it comes to identifying the correlation between two variables
and its evolution over time. We had no hypothesis about which part
is more difficult: detecting different types of correlations (positive /
negative / non-existent), or characterizing their evolution (following
a trend or not). We thus treat them as a single integrated task, that
requires viewers to identify both potential correlations and their trends.
We varied the combinations of these factors in our tasks to cover their
range, but without exhaustively testing all combinations (Sec. 3.4) and
without making any assumption about their difficulty. Such integrated
tasks fall under “characterize the relationship among multiple map
features” in Roth’s task taxonomy [56].

To construct our tasks, we used the geo-temporal framework pro-
posed by Peuquet [51], that describes the linked triad of “what”, “where”
and “when”. Each task corresponds to a question of the type when +
where→ what, where what is the participant’s characterization of the
correlation and its evolution.

We varied the when and where in a way similar to other research
(e.g., [20, 59]), using three granularity levels. In particular, the classifi-
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Fig. 2. Summary of tasks based on spatio-temporal granularity. In each
cell, the image illustrates the task, together with an example (Ex), and
our hypothesis (H) about which visualization will perform best overall.

cation of granularity levels for time (when) is divided in (i) one time,
(ii) a time interval, and (iii) all times. Space (where) is categorized as (i)
one location, (ii) locations in a region, and (iii) all locations. Crossing
the spatial and temporal dimensions results in a matrix of nine possible
tasks illustrated in Fig. 2, together with a concrete example. Correlation
at one location in one point in time (top-left cell) is not meaningful
and was discarded as a task. We thus ended up with eight possible
spatio-temporal tasks.

We hypothesized that the best-performing visualization would de-
pend on the task considered. Specific hypotheses are detailed in Sec. 3.3,
and the techniques hypothesized to perform best for each task are also
indicated in Fig. 2.

3.3 Hypotheses
The following hypotheses capture our expectations and were formulated
before data was collected:

H1: We expect small multiples (GlyphSM, DorlingSM) to result
in better performance (less time and fewer errors) than single maps
(Barchart1M) for tasks that require analysis at one point in time only.
The search for the desired point in time is done only once across
small multiples, and then the focus is on the spatial information that is
grouped closely together. Whereas for a single map the specific point in
time needs to be identified repeatedly across map features (bar charts).

H2: For time intervals in a single location, we expect better perfor-
mance (time or errors) for a single map, as all information is colocated
(one bar chart) (H2.1). When it comes to locations in a region, or to
all locations, small multiples (GlyphSM, DorlingSM) will fare better
than single maps (Barchart1M) (H2.2). We expect that repeatedly
identifying the right time interval across multiple locations in a single
map will make this visualization slower and lead to more errors.

H3: We expect single maps, that juxtapose time (Barchart1M),
to result in better performance (time or errors) than small multiples
(GlyphSM, DorlingSM) for tasks that require analysis over all time
steps. Indeed, small multiples require users to continuously change
their focus between many maps to see trends for locations and make
comparisons. This is not the case for single maps as they allow getting
an overview of the behavior at each location quickly and identify trends.

H4: We expect that among small multiple techniques, GlyphSM,
which overlays symbols on a base map, will feature better performance
across all tasks. Cartograms (DorlingSM) adjust the layout of features
in each map independently, thus making it hard to identify and match
them across small multiples.

3.4 Dataset and Task Construction

For the setup of our experiment we use the map of the United States
(i.e., map features are US states) over nine years of temporal evolution
(i.e., a point in time is a year).

The geography of the US states provides good diversity in terms of
size of individual features (e.g., Texas compared to South Carolina) and
density of those features (e.g., west coast compared to east coast). In
trials involving a single location, we varied the size of target features
(smaller & larger states) and density of the surrounding geographic area.
We grouped locations in contiguous regions using the four cardinal
points: north, south, west and east. These regions were selected as
they represent common geographic division of countries or other ad-
ministrative levels. Regions were determined by drawing an imaginary
line that divided the country into two equally-sized areas, vertically for
east and west, horizontally for north and south. This resulted in areas
of varying density across trials. To avoid participants fixating their
gaze over discontinuous areas, especially for tasks involving a subset
of locations in a region (Fig. 2, second row), we removed Alaska and
Hawaii from the map. This resulted in a total of 48 locations, a fair
amount of locations to analyze.

Regarding time granularity, we define all time spans to be nine years
long (a number that utilizes the space of a small multiple setup). Time
intervals were made of four consecutive steps, selected in the middle of
the range so as not to favor single maps – identifying the first or last
part of the small bar charts is much easier. Four years represent almost
half of the total time steps, which allows us to balance the amount of
patterns (correlations to identify) and noise (additional data-points to
make the task realistic).

The two variables were presented to participants as literacy rate
and working hours per week. Nevertheless, to control the displayed
correlation and trends within the different spatio-temporal constraints,
we used artificially-created datasets. We initially created variables that
followed normal distributions, as other perception studies about the
visualization of correlation do [26,53]. With this type of distributions, it
is common that points do not follow strict patterns of both increasing at
the same time (in case of positive correlation), or one increasing as the
other decreases (in case of negative correlation). This is not a problem
with scatterplots, as the overall distribution of many points helps convey
the overall relationship. However, in our case, the number of points in
time was small, minimum 4 for time intervals and maximum 9 for all
time steps. Thus, even if one point did not follow the pattern, it would
suggest that there was no correlation. We instead generated pairs of
points using a random linear regression model with added Gaussian-
centered noise,1 as the difference between values could be evaluated
more clearly. The obtained points were checked to ensure that they
follow the pattern for the desired time range. To make the generated
distributions closer to actual literacy rate and working hours per week,
we scaled our generated data between values extracted from Rosling’s
GapMinder example. For instance, for the variable assigned to literacy
rate, we scaled between a minimum within [20,30] and a maximum
within [75,85]. For the variable assigned to working hours per week,
the minimum varied within [25,35] and the maximum within [40,50].

For each task, we created a dataset that followed particular spatio-
temporal patterns. The possible correlation patterns were: positive
correlation (r ≥ 0.75) with and without monotonic evolution; negative
correlation (r ≤ −0.75) with and without monotonic evolution; and
no correlation (|r| ≤ 0.2). These patterns were enforced for the space
and time granularities considered in each task (e.g., a time range or all
times).2 We added distractors for the locations and time points that
were not the focus of the task by including 1/3 of data points that did
not follow the assigned pattern.

To increase reliability, our design included three repetitions per
task, that were aggregated in our analysis. To avoid learning for each
repetition, we varied the selected location, region, point in time and
time interval. We generated one dataset per task repetition that, for

1Data was created with Scikit-learn [48], using make regression.
2We note that for tasks that require analysis in one point in time, it was not

relevant to create two variables with monotonic evolution.
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Positive correlation Negative correlation

Without monotonic
evolution

With monotonic
evolution

No correlation

Fig. 3. Schematic illustration of all possible answers for tasks in Fig. 2.
The three trial repetitions included combinations, such that each cor-
relation type (positive, negative, no-correlation) appeared once. When
temporal evolution was applicable, one of the positive/negative correla-
tions was coupled with monotonic evolution, while the other was not.

the spatial and temporal constraints required by the question (time and
space granularity), followed a different correlation pattern. For the
three repetitions, there was always: one trial with no correlation, one
with correlation (positive or negative) but no monotonic evolution, and
one with correlation (positive or negative) and monotonic evolution.
Fig. 3 illustrates the different configurations.

To avoid participants remembering answers across visualizations,
from each generated dataset we derived two additional variations by
shuffling data over states, over years, or both. Thus, for each task repe-
tition displayed in each visualization, the participants would observe a
dataset with the same structure but with different layouts. In total, this
resulted in 80 datasets: 8 tasks × 3 repetitions × 3 datasets (1 original
+ 2 shuffled variations) = 72 for main trials + 8 for training.

4 STUDY DESIGN

The study was designed to evaluate, for each of the tasks, the three
visualizations introduced earlier. Supplemental material containing
dataset generation code, experiment data, analysis scripts and detailed
results are available at http://ilda.saclay.inria.fr/spacetimecorr.

4.1 Experimental Design
We used a within-subjects design where all participants were exposed
to all three visualization techniques. For each technique, a participant
had to perform 8 training trials, and 8 measured tasks × 3 repetitions =
24 main trials. Repetitions considered one of each possible correlation
types: Positive, Negative or No-Correlation. For tasks that involved
analysis over time, answers also included monotonic choices (Fig. 3).

Technique presentation order and dataset variations were counterbal-
anced across participants using Latin squares. Tasks were grouped by
time granularity (one point in time, time interval, all times) and their
order of presentation was counterbalanced as well. For each time gran-
ularity, the order of geographical granularity was randomized. Within
each group of space and time granularity, the three task repetitions were
also randomized. In total, the experiment consisted of 18 participants
× 3 visualizations × 8 tasks × 3 repetitions = 1296 trials.

4.2 Apparatus and Participants
We used a 27” Apple Thunderbolt Display set to its default resolution
(2560×1440 pixels). The web user interface was implemented in
Django and visualizations were generated with D3 [5] and Vega [57].
We made sure that all visualizations were of similar size by keeping
their width consistent (adjusting height to keep the original aspect ratio).
All visualizations fit comfortably on the screen and did not require
scrolling. More specifically, the dimensions were 1350×996 pixels for
GlyphSM and DorlingSM, and 1350×849 pixels for Barchart1M.

We recruited 18 participants before starting the experiment, a number
that allowed us to counterbalance technique presentation order. We
continuously recruited participants until we arrived at this pre-defined
number. Our participant exclusion criteria included: not completing all
conditions, or failing any of the 3 training trials. Given the complexity
of the task, we assumed task learning would transfer across techniques.
Thus, an excluded participant would have to be replaced with another
participant with an equivalent configuration of technique, dataset and
task presentation ordering. We had to replace a single participant who
declared during the second session that she had misunderstood how to
perform the tasks in the first session.

Fig. 4. Web interface used to conduct the experiment. Visualization =
GlyphSM; task performed on a TIME INTERVAL, for ALL LOCATIONS.

From the final 18 participants (10 female and 8 male), none reported
any color deficiency. All had normal or corrected-to-normal vision.
Age ranged from 23 to 40 (M = 27.6, SD = 4.9) and most of them were
students (13/18) from either a PhD or a Masters’ program. Their back-
grounds were mainly HCI, Computer Science and Visualization. They
were all volunteers, and did not receive any monetary compensation.

4.3 Procedure

First pilots of our study showed that conducting the tasks was mentally
demanding. We thus divided the study in three sessions, one per visual-
ization, performed on three different days (that could be consecutive
and at most 9 days apart). Each session consisted of three parts: in-
troduction, training, and main trials. In the first session, participants
signed a consent form, were told that they could withdraw at any time,
and filled out a demographic questionnaire.
1) Introduction and training. The experimenter explained the visual-
ization to be used in the session, along with examples of how correlation
and monotonic evolution looked on it. Further training was conducted,
that consisted in answering eight trials, one per task (described next).
After finishing each trial, the system would indicate if the answer was
correct or not. If participants made no error and declared that they had
no further question, they would start the main trials. Otherwise, the
experimenter would add further training trials.
2) Completion of main trials. Fig. 4 shows a trial screenshot. On the
left are the overall progress, the question asked and possible answers.
On the right is the generated visualization for that condition. Before
each trial a map was shown, highlighting the location(s) that the trial
would be about. Our aim was to reduce potential bias due to prior
knowledge of the United States’ geography, and to ensure there was no
ambiguity about geographical features to consider such as, e.g., which
states constitute a region.

Participants completed 24 main trials per session (visualization). In
this phase, they did not get any feedback about the correctness of their
answers. They were instead asked to report the level of confidence in
the answer they had just given (low, medium, high).

Once trials were completed for a visualization, participants filled
out a post-hoc questionnaire about the strategies used to complete
the eight tasks, and how easy it was to complete each one of those
tasks. After finishing the third session, participants filled out a final
questionnaire, in which they were asked to rank the visualizations. A
representative image of each visualization was displayed in the form to
help participants remember them. The entire experiment (3 sessions)
took approximately one hour and a half.

4.4 Measures

For each task, we defined three metrics, two objective, one subjective:
- Task completion time: measured from the moment participants saw
the trial screen until they submitted an answer. We computed the
average over the 3 repetitions.
- Error rate: computed as the number of incorrect answers per task

multiplied by the total number of repetitions.
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- Self-reported confidence: measured on a 3-point Likert scale (high,
medium, low).

For each technique, we recorded:
- Strategies to complete the trials: described as free text.
- Self-reported difficulty to complete each type of task: measured
on a 5-point Likert scale from very easy (5) to very difficult (1).

5 RESULTS

We analyze, report, and interpret all our inferential statistics using
graphically-reported point estimates and interval estimates [11, 13].

We report sample means for Completion Time and Error Rate and
95% confidence intervals (CIs), indicating the range of plausible values
for the population mean. For our inferential analysis we use means
of differences and their 95% confidence intervals (CIs).3 We use BCa
bootstrapping to construct all confidence intervals (10,000 iterations).
Since in our per-task analysis we test specific predictions rather than
a universal null hypothesis, no correction for multiple comparisons
was performed [10, 49]. A p-value approach of our technique can
be obtained following the recommendations from Krzywinski and
Altman [36]. Finally, we also report percentages for self-reported
Confidence results.

We analyzed a total of 1296 trials (18 participants × 72 trials). All
reported analyses were planned before the experiment started.

We first provide an overview across tasks.4 Since our hypotheses
are task dependent, we then perform a detailed per-task analysis.

5.1 Overall results across tasks
Completion Time: Fig. 5 shows completion times of all tasks col-
lectively. Mean times per technique are on the left, mean differences
on the right. Mean times are shorter for GlyphSM (23.7sec) followed
by DorlingSM (26sec) and Barchart1M (30.7sec). There is strong
evidence that Barchart1M is slower than GlyphSM (by 7.0sec on aver-
age) and evidence that it is also slower than DorlingSM, although the
difference is smaller (4.5sec on average).
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Fig. 5. Left: Mean Completion Time in seconds for each visualization, for
all tasks. Right: Pairwise comparisons for each visualization. Error bars
represent 95% Bootstrap confidence intervals.

Error Rate: Fig. 6 shows error rates for all tasks collectively, with
mean error rates per technique on the left and mean differences on
the right. Mean error rates are lower for GlyphSM (7.4%) followed
by DorlingSM (8.1%) and Barchart1M (8.6%). There is no evidence
that error rates were different across techniques. Thus the main differ-
entiation we can make across techniques comes from completion time.

Confidence: Fig. 7 shows the self-reported confidence for each visual-
ization, for all tasks. Confidence is high for all three visualizations in
more than half the trials, although more so for GlyphSM (64% of trials)
than for DorlingSM (57%) and Barchart1M (53%).

5.2 Results per task
Next we report results per task, grouped by temporal granularity for
legibility purposes (analyses were performed per task). The values

3A CI of differences that does not cross 0 provides evidence of differences -
the further away from 0 and the smaller the CI the stronger the evidence.

4We counterbalanced visualization order across participants to mitigate
learning (Sec. 4.1). An unplanned analysis indicates that although partici-
pants improved over sessions (performed best in the 3rd visualization presented
than in the 1st), there was indeed no evidence of asymmetric learning across
Barchart1M and GlyphSM, thus counterbalancing worked for them (there is
some Time improvement for DorlingSM). Analyses/charts are available as
supplementary material.
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Fig. 6. Left: Mean Error Rate in % for each visualization, for all tasks.
Right: Pairwise comparisons for each visualization. Error bars represent
95% Bootstrap confidence intervals.
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Fig. 7. Self-reported confidence across all tasks per visualization.

and CIs for means and differences of means for both Completion Time
and Error Rate can be seen separately for each task in Fig. 8, with
the direction of our hypothesis indicated by a gray background. Self-
reported Confidence per task can be seen collectively in Fig. 9.

5.2.1 SINGLETIME correlation tasks
In tasks involving a single time step we expect small multiples tech-
niques to fare better (H1). Completion times and error rates (means
and CIs) for these tasks are found in the leftmost column of Fig. 8.

Completion Time: is faster with small multiples (GlyphSM ,
DorlingSM ) and slower for Barchart1M for both geographic granu-
larity tasks. Looking at mean differences, there is strong evidence that
Barchart1M is slower than both small multiples techniques, by more
than 27sec for REGION, and by more than 32sec for ALLLO-
CATIONS tasks. Results are inconclusive for the difference between
GlyphSM and DorlingSM in both tasks.

Error Rate: Similar to the results for completion time, for both
REGION and ALLLOCATIONS tasks, GlyphSM had the best per-

formance, followed by DorlingSM and Barchart1M with the highest
error rate. Looking at mean differences, there is strong evidence that
Barchart1M is more error prone than GlyphSM for both types of geo-
graphic granularities. There is weak evidence that Barchart1M is also
more error-prone than DorlingSM for REGION (but no evidence
of a difference for ALLLOCATIONS). Finally, DorlingSM appears
more error-prone than GlyphSM for both tasks (strong evidence of this
difference for REGION, and weak for ALLLOCATIONS).

Confidence: (self-reported by participants) corroborates these find-
ings. For both tasks that considered SINGLE TIME, confidence is high
for small multiples techniques (GlyphSM and DorlingSM) but low for
Barchart1M (see top of Fig. 9).

Summary for SINGLETIME: Overall, the tendencies for the two
tasks that focus on correlations for a SINGLE TIME are similar, irrespec-
tive of whether we consider a geographical region or all locations. We
have evidence that using the small multiples visualizations (GlyphSM,
DorlingSM) takes less time (less than 20sec) and causes less errors
than Barchart1M, supporting H1. There is also evidence of differ-
ences between GlyphSM and DorlingSM when it comes to errors, with
DorlingSM being more error prone, supporting H4.

5.2.2 TIME INTERVAL correlation tasks
In time interval tasks, we expect different performance across geo-
graphic granularities (H2), with a single map (Barchart1M) faring
better for tasks involving one location (H2.1), and small multiples
faring better for tasks involving a region or all locations (H2.2). Com-
pletion times and error rates (means and CIs) are found in the middle
column of Fig. 8.

Completion Time: When considering ONELOCATION, we ob-
serve that completion time is indeed on average lower for Barchart1M
(22.2sec), followed by GlyphSM (25.8sec) and then DorlingSM
(29.3sec). Looking at the mean differences, there is evidence that
Barchart1M is faster than DorlingSM (by 7sec on average). It may
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Fig. 8. Results for Completion Time (sec) and Error Rate (in %) for each task in Fig. 2. In each cell (task), Mean values per visualization are seen
on the left and means of pairwise differences on the right. Error bars represent 95% Bootstrap confidence intervals. Gray rectangles indicate the
direction of our hypotheses. Evidence of differences are marked with a (the further away from 0 and the tighter the CI, the stronger the evidence).

be the case that Barchart1M is also faster than GlyphSM and that
GlyphSM is faster than DorlingSM, but evidence is not conclusive.

The completion time for REGION is close for all three techniques
(GlyphSM 28.4sec, DorlingSM 30.2sec, and Barchart1M 31.7sec) and
we do not have evidence of differences looking at the mean differences.
The same pattern is found in ALLLOCATIONS as GlyphSM (22.8sec)
is faster than the other techniques, followed by DorlingSM (27.1sec)
and Barchart1M (35.6sec). Looking at the mean differences, we
have evidence that Barchart1M is slower than both GlyphSM and
DorlingSM (by 12.7sec and 8sec on average). We do not have evidence
of a difference between GlyphSM and DorlingSM.

Error Rate: For these tasks, we observe that the lowest error rate de-
pends on the geographical granularity considered. Barchart1M is bet-
ter for ONELOCATION (7.4%), GlyphSM for REGION (5.6%) and
DorlingSM for ALLLOCATIONS (3.7%). Looking at mean differ-
ences for ALLLOCATIONS there is indeed evidence that DorlingSM
is more error prone than GlyphSM (by 3.7% on average) for REGION,
but no evidence of other differences.

Confidence: The second row of Fig. 9 shows the self-reported
confidence for TIME INTERVAL. We observe that confidence
for ONELOCATION is high in more than half of the trials for
Barchart1M and GlyphSM (over 60%), but lower for DorlingSM
(45%). For tasks in REGION and ALLLOCATIONS, we observe
that it is higher for both GlyphSM and DorlingSM (over 60%) and
lower for Barchart1M (54% and 50% respectively).

Summary for TIMEINTERVAL: The tendencies for the three tasks
that focus on correlations for a time interval change significantly de-
pending on the spatial granularity. For a single location, Barchart1M
is faster than the small multiple techniques (GlyphSM,DorlingSM),
supporting H2.1. This behavior is reversed when considering all lo-
cations on the map. Barchart1M becomes the slowest visualization,
supporting the part of H2.2 related to all locations. In both tasks, we
found no evidence of difference in error rates. The situation is less clear
when multiple locations in a region have to be considered. We found no
evidence of differences for any of the measures, contrary to the predic-
tion of H2.2 related to geographical regions. We observe no difference
between GlyphSM and DorlingSM. H4 is thus not supported.

5.2.3 ALL TIME

In tasks involving all time steps we expect a single map (i.e.,
Barchart1M) to fare better (H3). Completion times and error rates
(means and CIs) for these tasks are in the rightmost column of Fig. 8.

Completion Time: is lower with Barchart1M than with both
small-multiples visualizations. Looking at the mean differences,
there is strong evidence that Barchart1M is faster than GlyphSM
and DorlingSM for both ONELOCATION and REGION tasks.
For ALLLOCATIONS task, there is also strong evidence that
Barchart1M is faster than GlyphSM (by 4.9sec on average) but ev-
idence is not conclusive regarding Barchart1M being faster than
DorlingSM. There is no evidence of a difference between GlyphSM
and DorlingSM for any geographical granularity.

Error Rate: is lowest in Barchart1M for ONELOCATION and
REGION tasks. For ALLLOCATIONS, the error rate is 0% for both

Barchart1M and DorlingSM (and thus, no CI is computed). There
is evidence that Barchart1M is less prone to errors than GlyphSM for

REGION, but this evidence is weak for ALLLOCATIONS (and we
see no evidence of a difference for ONELOCATION). There is also
weak evidence that DorlingSM is also less error prone than GlyphSM
(by 3.7%) for ALLLOCATIONS.

Confidence: is high in over 60% of trials for most visualizations and
geographic granularities, with high-confidence trials for DorlingSM
being a bit lower (around 50% of trials) for the ONELOCATION and

REGION.

Summary for ALLTIME: The tendencies for the three tasks that
focus on correlations over all time steps are fairly similar, with
Barchart1M being generally faster than small multiples (GlyphSM,
DorlingSM), thus supporting H3. Again, we do not find evidence of a
difference between GlyphSM and DorlingSM. H4 is not supported.

6 PER-TASK DISCUSSION AND DESIGN RECOMMENDATIONS

We observed that, overall, small multiples were faster across tasks, but
their error rates were not different from those of a map with bar charts.
Nevertheless, as hypothesized, looking at the individual tasks we see
that the performance changes depending on the task at hand. Next,
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Fig. 9. Reported self-confidence per task (in %).

we summarize and discuss our findings, and distill them into design
recommendations (summarized in Fig. 10).

SINGLETIME: The correlation of thematic variables on geographic
maps has been studied before for a single point in time [15, 18]. We
add to these findings, by identifying that the tendencies for correlation
tasks on a single point in time are similar, irrespective of whether we
consider a geographical region or all locations. Using the small multiple
visualizations (GlyphSM, DorlingSM), participants were almost twice
as fast as when using a single map with bar charts (Barchart1M), as
they only needed to focus on a single cell of the small multiples, since
that cell juxtaposes all spatial information for that point in time. The
tasks are slower with a single map with bar charts (Barchart1M), since
participants needed to visually search for the specific time step across
multiple bar charts and synthesize their findings. Error rates for these
tasks follow similar trends. Our findings thus confirm H1.

When it comes to small multiples, there is a tendency for the propor-
tional symbol map (GlyphSM) to be less error prone than the Dorling
cartogram (DorlingSM), supporting H4. This is likely the case because
the position of symbols shifts between multiples in the cartogram case,
making it hard to re-identify them. This tendency was also observed
when comparing proportional symbol maps with non-contiguous car-
tograms in the work of Gao et al. [18]. However, in their case, it was
for the overall performance over multiple tasks, not just for correlation
identification, and the differences observed were not significant.

These tendencies were consistent with the self-perceived difficulty
of conducting these tasks in the exit questionnaire. It was stated often
that it is hard to make analyses for one time step with bar charts.

R1: For identifying correlations at a specific point in time, small-
multiples visualizations are better.

TIMEINTERVAL: When participants have to identify correlation
tendencies and evolution over a time interval, the situation is less
clear. The tendencies change significantly depending on the geographic
granularity (consistent with H2). When considering a single loca-
tion, a single map with bar charts (Barchart1M) is faster than the
small-multiples techniques (GlyphSM, DorlingSM), as all temporal
information is grouped closely together and participants just needed
to identify the temporal interval on a single bar chart. Whereas for
small multiples, after identifying the relevant time cells, participants
needed to then identify, in each cell, the specific location and collate
their findings. This is consistent with H2.1.

The findings are reversed when considering all locations, consistent
with H2.2. Here, a map with bar charts is slower, because it is the
visualization where information is scattered and needs to be collated
from across different areas. Participants first had to go through all (or
almost all) bar charts to identify the specific interval, and collate the

information to identify tendencies. Whereas for small multiples, they
only needed to focus on a few time steps and look for overall patterns.

One of the most interesting findings from this study is the inconclu-
sive evidence for tasks where a geographic region has to be considered
across a time interval (this part of H2.2 is not confirmed). The lack
of observed differences may be due to low statistical power. But we
believe it is more likely due to this task being more balanced in the
amount of information that needs to be collated across different areas
for the different techniques. Here, for a single map with bar charts, par-
ticipants still had to identify the specific bars across multiple bar charts
– but not all of them. When using small multiples, they could focus on
a few time steps, but still had to identify the desired geographic area in
each one of them. There is likely a tradeoff when it comes to tasks that
involve spatial regions and time intervals. When considering subsets of
time, it looks like the less spatial locations have to be considered, the
better a single map is. Inversely, the more spatial locations, the better
small multiples become. More generally, it is likely that a single map
with bar charts likely works best for simple geography and complex
temporal patterns, and small multiples when geography is complex
but the temporal variability is simple. Future work needs to determine
exactly when to transition between visualizations. We are not aware
of any previous work that has considered correlation tasks that require
gathering information across subsets of space and time.

R2: For identifying correlations and temporal evolution over a
subset of time steps and a subset of locations, there is no clear winner.
If there are only a few locations, consider using a single map with bar
charts. If there are many locations, prefer small multiples.

ALL TIME: The tendencies for the three tasks that focus on corre-
lations for all time steps are again consistent, with Barchart1M being
faster, in accordance with H3. Even though participants had to collate
both spatial and temporal information, a single map with bar charts was
faster. This representation makes it easy to see trends over time (corre-
lation and monotonic evolution) that are juxtaposed in the individual
bar charts. Collating this information seems to be fast irrespective of
how many geographic regions are taken into account. Small multiples
seem slower, likely because determining temporal trends necessitates
comparing several locations across cells before identifying a trend.

The self-perceived difficulty to conduct the task for all time steps
was also consistent with objective measures. A single map with bar
charts was perceived, overall, as easier to use than both small-multiples
visualizations, and several participants commented that it was easy to
observe evolution over time on the single map with bar charts.

R3: For identifying correlations and temporal evolution over all
time steps, irrespective of the number of locations, a single map with
bar charts is better.

Small multiples: We found evidence that the two small-multiple
techniques (GlyphSM, DorlingSM) were different mainly when consid-
ering a single point in time (partially confirming H4), with DorlingSM
being slower and more error prone. Participants’ comments indicate
that they had difficulty matching a location, or sets of locations, across
small multiples with DorlingSM, since positions of locations shifted.
Nevertheless, this cost is not seen in tasks considering more than one
time step. This may be due to low statistical power, or because this cost
is small when it comes to more challenging tasks (time intervals or all
time steps) that require collating information across small multiples.

R4: For small multiples, there is some evidence that proportional
symbol maps are better than Dorling, especially for a single time point.

7 GENERAL DISCUSSION

Our findings generally followed our original hypothesis. We thus
believe that our reasoning, that difficulty in each technique depends
on whether the information to be collated is juxtaposed or distant, is
sound; and that our results reflect true tendencies.

The one exception relates to correlation tasks on subranges in time
and space. We had originally thought that small-multiple variations
would prevail in this situation, but we were unable to detect a trend.
We believe that our setup of this task may reflect a similar difficulty
in collating temporal information (for small multiples) and spatial
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Fig. 10. Summary of our recommendations for the different tasks. For
tasks on subranges of space and time (middle cell) there is no clear
winner, but the table structure suggests small multiples work best for in-
creased spatial complexity, and a single map with bar charts for increased
temporal complexity (although the transition point is not known).

information (for the single map with bar charts). Looking at Fig. 10,
we observe that this middle cell is a transition cell between tasks better
suited to small multiples and tasks better suited to single maps. For
example, if we look at the middle column (Time interval), it seems
that one (and likely a few) geographic locations are best seen on single
maps, but as more locations are added small multiples become more
competitive. Or if we look at the middle row (Locations in a region)
it seems that one (and likely a few) time steps may be better viewed
with small multiples, but as time increases a single map with bar charts
becomes better. It is interesting to consider what are the tipping points
of these shifts (number of time steps, number of geographic locations),
in order to determine when to transition between visualizations.

For all visualizations, collating information across different areas
(bars from different bar charts for the single map, and locations across
cells for the small multiples) is challenging. In our study, we focus
on static visualizations, but the addition of highlighting would likely
reduce the differences we found, by making it easier to collate informa-
tion (e.g., highlight Washington in all small multiples, or 2011 in all
bar charts). Nevertheless, we believe the high-level effects would still
hold (to a lesser extent) as they are due to the fact that information is
dispersed across the visualization. If filtering is considered, we believe
behavior will likely revert to the results at the corners of Fig. 10. For
example, filtering on time interval 2009-2011 would either remove or
fade other years out, making this a task similar to ones over all time
steps. Similarly, if the East US is the focus, the system would remove
or fade other locations out, making this a task similar to those involving
all locations. More importantly, the actions performed to select or filter
time steps or geographical locations could themselves be used as an
indication of what is the user’s focus, and used to transition to the best
visualization for the task.

7.1 Limitations and Future Work

Interaction was deliberately not considered in this first study, as we
primarily aimed at evaluating the specific influence of space and time
at different granularities on users’ ability to identify correlations with
different visualizations. Thus, we wanted to avoid adding further factors
to an already complex experimental design. Our discussion section
above provides initial thoughts about how interaction could affect our
results, but further work is needed to verify them, and to consider the
use of interaction as a means to transition between visualizations.

The number of steps used to detect correlation in our tasks is lim-
ited (nine time steps per location), which required us to use datasets
with a strong relationship between two variables. Data extracted from
measures of real world phenomena is unlikely to present such strong
patterns, making it harder to detect potential correlations. This could
alter our results, although we believe the general trends would persist.

Another limitation is that we only used a single map of the US,
which necessarily captures only a subset of geographical configurations.
It is possible that countries with more diverse shapes (e.g. Chile, Italy
or United Kingdom) would lead to different results, as the identification
of individual locations or regions might be different. We attempted to
mitigate any bias in identifying the locations of interest by displaying,
prior to each trial, the geographic region of interest. Nevertheless,
further experimentation is needed. Moreover, diversity of irregularity of
locations can impact spatial autocorrelation in geospatial visualizations

that use irregular geometries to represent thematic variables, such as
choropleths [4, 42, 67]. While it is possible that effects might differ
somewhat in other types of maps, we feel that the general trends should
hold: our techniques use regular shapes to represent thematic variables,
and thus the size and number of items compared likely weigh more
in the complexity of the task (e.g., occlusion or clutter of elements
might impact the interpretation of patterns). To this end, in our trials
we varied the size of locations and their density. Finally, although the
analysis of data using a map of a known country could have led to bias
given preconceptions about the geographical distribution, we believe
this to be unlikely given the extensive training, and the number of map
features and time steps involved.5 In summary, while we believe that
overall trends would persist across different maps, future work needs
to consider more diverse geographic maps.

For the small multiples tested, we expected that Dorling cartograms
(i.e., visualizations that use visual channels of the maps features them-
selves to encode thematic variables) would perform worst than propor-
tional symbol maps, as was the case in previous work [18, 30]. In our
context this was observed mainly when considering tasks at a single
point in time. It is very likely this effect will be more pronounced in
other spatial tasks that involve more continuous geographic changes and
correlations that vary spatially (e.g., identifying transmission patterns).

We recruited users who were already knowledgeable about visualiza-
tion, and gave them additional training. Opportunities for such training
may not be available to the general public. While we believe general
trends will still apply, it is possible that non-trained users would have
lower accuracy rates or would not dedicate as much time as our partici-
pants to perform the tasks. Additionally, they might be more familiar
with one of the three tested techniques, which would bias results in
its favor. Future work should investigate the learning curve of each
technique and analyze how well they fare when used by novices with
a more diverse background and lack of training. A next step in that
direction would be to conduct a crowdsourced study.

Finally, we decided to combine two different association tasks in
one (i.e., the type of correlation and its evolution), as we felt they were
tightly coupled when performed in the context of geo-temporal analysis.
Due to this combination, our analysis does not provide finer details
on the difficulty of each subtask. Future work could study each one
separately to gain more insights about how correlation and trends are
detected individually. For example, we expect that complex temporal
tasks, such as detecting and characterizing monotonic evolution, is
easier on single maps with bar charts (as each one directly encodes
this evolution); whereas complex geographical tasks, such as detecting
transmission patterns, may be easier with small multiples.

8 CONCLUSIONS

We presented a study on identifying correlation in spatio-temporal vi-
sualizations. We considered eight tasks that associate two variables
over different granularity levels for both time and space. The compared
visualizations combine different strategies to represent thematic vari-
ables: juxtaposing either time or space (a single map with bar charts vs.
small-multiple maps); encoding variables either using symbols overlaid
on top of map features, or using visual channels of the map features
themselves (proportional symbol maps vs. cartograms). We provide a
set of design recommendations depending on the task at hand. In our
context, the technique using the map features’ own visual channels to
encode thematic variables (cartograms) performed worst only when a
single point in time was considered. Our results further indicate that for
tasks that consider the evolution over all time steps, a visualization that
represents data on a single map (juxtaposing time) is more effective and
easier to interpret than small multiples. Small multiples (juxtaposing
space) are better suited for tasks that require the comparison of vari-
ables for one point in time over several geographical locations. When
dealing with time intervals and spatial regions, our results suggest that
there is a continuum of performance between visual representations
(juxtapose time vs. space), raising questions for future research.

5We did not find any warning signs of such pitfalls (e.g., participants taking
very little time to finish the tasks and making numerous errors).
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Les données numériques que notre société génère augmentent chaque année. Les initiatives de la science
et du gouvernement favorisent le partage de ces données, qui atteignent facilement des pétaoctets chaque
année. Par exemple, le Large Hadron Collider a généré plus de 200 pétaoctets de données. En outre, nous
avons de plus en plus accès à des données collectées à titre personnel, par exemple grâce aux API des
téléphones portables et des montre connectées. Ces technologies nous donnent aujourd’hui accès à une
quantité de données sans précédent.

Néanmoins, la compréhension des données reste difficile, car leur volume dépasse de loin ce qu’une
personne peut raisonnablement consommer et comprendre. Les mesures statistiques sont pas suffisantes,
car par exemple des données très différents peuvent avoir les mêmes statistiques, comme le démon-
trent le Quartet d’Anscome et les travaux plus récents de Matejka et Fitzmaurice. Et les approches
d’apprentissage automatique peuvent apprendre de fausses corrélations et nécessitent toujours une ap-
prentissage (supervisée ou non); elles ne sont donc pas fiables lorsque les motifs d’intérêt ne sont pas
fréquents dans l’ensemble de données. Ainsi, les approches de "sensemaking" basées sur l’inspection
visuelle et l’interaction restent une alternative importante.

La visualisation de l’information combine l’interaction homme-machine, la conception visuelle et la
théorie de la perception, afin de proposer des représentations visuelles des données qui amplifient la cog-
nition et aident à la compréhension des données. Venant d’un formation sur l’interaction homme-machine
(IHM), cette définition de la visualisation interactive a résonné en moi, car elle invoque la définition
plus générale d’une interface homme-machine. Une interface est traditionnellement considérée comme le
moyen pour les humains et les machines de communiquer. Lorsque j’ai commencé mes recherches sur la
visualisation pendant mon post-doc en 2008, j’ai établi un parallèle avec cette définition. Je vois la visu-
alisation d’informations comme un moyen par lequel les êtres humains peuvent communiquer avec leurs
données et les machines qui les stockent et les traitent. Donc si on considère la visualisation comme un
canal de communication, avec les humains d’un côté et les machines de l’autre, plus la bande passante est
élevée, plus la visualisation est efficace. On est aujourd’hui confronté aux limites de ce canal étant donné
la quantité de données à notre disposition. Présenter visuellement de grandes quantités d’informations
reste un défi, les travaux précédents montrant qu’un million d’éléments affichés sur un écran traditionnel
est proche de la limite pratique.

Dans mon manuscrit je présente comment les recherches dans le domain de la visualisation proposent
des nouvelles façons d’amplifier cette bande de communication entre les machines et les êtres humains,
des deux côtés du canal de communication (humain et machine). Par exemples des travaux regardent le
côté des êtres humaines, étudient les limites des êtres humains (sujet central des études sur la perception
visuelle); ou bien examinent l’impact de différentes plateformes de visualisation comme les tables ou les
écrans muraux, les téléphones portables et les montres intelligentes, ou même les visualisations tangibles.
Il est également possible d’augmenter la puissance du côté humaine en permettant à plusieurs utilisateurs
de collaborer et de partager leur expertise. De l’autre côté du canal, les nouvelles technologies d’affichage
peuvent afficher une plus grande quantité de données. Par exemple, les grands écrans ou les écrans
multiples ont un nombre de pixels plus important que les écrans traditionnels. Et les appareils mobiles ou
de réalité augmentée peuvent. La combinaison de la visualisation avec des méthodes automatisées peut
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également aider à orienter les algorithmes d’exploration de données vers des modèles visuels intéressants,
en faisant un meilleur usage des ressources informatiques. Beaucoup des travaux se situent entre les deux
côtés, et considèrent à la fois des contraintes humaines et des contraintes de calcul ou de rendu. De
nouvelles représentations visuelles et interactions appropriés peuvent distiller les aspects importants des
données, rendant moins des pixels mais plus d’informations saillantes pour le spectateur, amplifiant à la
fois la largeur de bande machine et humaine.

Parmi ces stratégies, mes propres recherches augmentent ce bande de communication de deux façons :

. S’éloigner des ordinateurs de bureau traditionnels pour s’orienter vers des grandes dispositifs collabo-
ratifs (comme les murs d’images) qui peuvent à la fois restituer de plus grandes quantités de données
et accueillir plusieurs utilisateurs ;

. Trouver des représentations visuelles appropriées et leurs limites, afin de montrer les informations
importantes qui peuvent être comprises et exploitées.

Méthodologie de recherche et inspiration J’ai commencé ma carrière de chercheur en interaction homme-
machine dans une institution et un laboratoire où l’IHM était un domaine bien établi. Cela m’a donné
l’occasion d’accéder à plusieurs cours qui couvraient les méthodes de conception, d’évaluation et d’analyse
de l’IHM. Les origines interdisciplinaires de l’IHM font que le domaine comprend une pléthore de
méthodologies qui viennent de la psychologie expérimentale et les facteurs humains (recherche plus quan-
titative, avec des évaluations contrôlées aux utilisateurs), de la sociologie et l’anthropologie (souvent de
la recherche qualitative, comme des observations, des entretiens, des enquêtes contextuelles, essayant
généralement de comprendre les besoins des utilisateurs), de la conception et le génie logiciel (se concen-
trant sur le processus de conception, comme la co-conception et le prototypage itératif), etc.

Ainsi, comme la plupart des chercheurs formés en IHM, je suis consciente et ouverte à de plusieurs
méthodologies pour répondre aux questions de recherche et analyser mes résultats. J’ai apporté ces
méthodes à ma recherche en visualisation, en choisissant mon approche méthodologique en fonction
de l’objectif du travail (mentionné dans chaque section et résumé à la fin de chaque chapitre dans le
manuscrit). Mes traveaux utilisent donc plusieurs types des méthodes comme des expériences qualitatives
contrôlées lorsqu’on essaie d’isoler différents facteurs, de la conception participative et aux observations
qualitatives lors de l’introduction d’un nouveau système d’analyse visuelle, etc. Lorsque j’ai commencé
de travailler dans le domain de la visualisation en 2008 (sur l’amélioration de la lisibilité des réseaux
sociaux), le domaine avait juste commencé à réfléchir profondément aux méthodes d’évaluation (par ex-
emple le workshop BELIV venait d’apparaître dans la conférence AVI et CHI). Cette réflexion active sur
les méthodes d’évaluation des systèmes de visualisation, et ma conviction que je pouvais y contribuer, ont
été l’une des raisons principales pour lesquelles j’ai me suis orientée vers la recherche en visualisation.

La plupart des recherches en visualisation mentionnées dans mon manuscrit (par moi ou par autres
chercheurs) varient en termes de méthodologie de recherche, c’est-à-dire les étapes qu’on suit et les
preuves qu’on fournit. Celles-ci sont généralement dictées par les objectifs de chaque recherche. Néan-
moins, je dirais que nos objectifs de recherche, tels qu’ils sont énoncés dans nos résultats de recherche
respectifs (publications, rapports, systèmes) ne sont pas toujours à l’origine de nos travaux. Plus générale-
ment, il n’est pas toujours évident d’où viennent les idées / inspiration de recherche. Dans chaque
chapitres de ce manuscrit, je décris le but de ma recherche, mon méthodologie, mais j’ajoute aussi une
réflexion sur l’inspiration de ce travail. Mon but est de commencer un dialogue sur la manière de mieux
capturer, documenter, et communiquer l’inspiration, evolution et itération des nos recherches.
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4.6 Surfaces collaboratifs

Grâce à leur grande taille et de leur haute résolution, les grands dispositifs collaboratifs tels que les murs
et les tables interactifs, peuvent repousser les limites de rendu des écrans de bureau. Ils peuvent aussi
naturellement permettre à plusieurs utilisateurs de collaborer et d’explorer des données simultanément.
La migration des visualisations interactives vers ces surfaces collaboratifs soulève des questions difficiles.
Par exemple, quelles sont les visualisations appropriées pour de tels environnements, comment aider les
utilisateurs à explorer et à interagir avec ces données, et plus généralement comment aider la collaboration
autour des ces surfaces, en particulier les murs d’images.

Interaction. Une partie de mon travail explore les défis de l’interaction et de la visualisation, en ex-
aminant d’abord comment interagir dans un environnement où les souris et les claviers ne sont pas
nécessairement appropriés car les utilisateurs souvent se déplace devant le mur. Mon travail sur Smarties
[CBF14], réalisé en collaboration avec O. Chapuis et S. Franzeskakis, porte sur le prototypage d’un sup-
port d’interaction. Il s’agit d’un toolkit permettant de développer facilement une interface mobile pour
des applications murales, permettant aux concepteurs de personnaliser la surface tactile et les widgets
des appareils mobiles synchronisés. En tant que boîte à outils, l’utilité de Smarties a été démontrée à
l’aide d’exemples de cas d’utilisation et d’applications. Mon travail sur SketchSliders [TBJ15], en col-
laboration avec T. Tsandilas et T. Jacob, permet aux utilisateurs d’esquisser leurs propres interfaces pour
analyser leur données. Cette approche offre une flexibilité aux utilisateurs finaux, qui peuvent esquisser
à la volée les composants interactifs dont ils ont besoin pendant leur exploration, en créant des interfaces
personnalisées et adaptées. La méthodologie derrière la conception des SketchSliders était différente que
celle de Smarties. Nous avons commencé par comprendre dans quelles situations les utilisateurs seraient
intéressés par l’esquisse de leur interface, en utilisant une configuration de type "Wizard of Oz", où les
participants esquissaient l’interaction qu’ils souhaitaient et où un expérimentateur l’appliquait aux don-
nées. Cela nous a permis de recueillir un ensemble concret de dessins, qui ont ensuite été ajoutés à notre
prototype. Étant donné la nature créative des croquis, les expériences contrôlées ne sont pas appropriées
pour la validation de nos prototypes. Nous avons plutôt mené des séances d’analyse ouvertes avec des
experts en visualisation, afin d’observer comment ils utilisent les SketchSliders dans la pratique. Le travail
de SketchSliders a reçu une mention honorable à CHI 2015.

Perception. Une autre question qui se pose quand on utilise les murs d’images est la façon dont la grande
surface des affichages muraux peut affecter comment nous voyons et comprenons les visualisations. Dans
notre travail sur les études de la perception visuelle avec P. Isenberg, nous examinons [BI12] trois variables
visuelles (longueur, surface, angle) qui sont considérées comme des éléments constitutifs de visualisations
complexes. Et nous montrons que notre perception de ces variables change en fonction de notre emplace-
ment devant le mur d’écran. Cela soulève des questions sur la façon dont nous devons coder et visualiser
les visualisations sur ses dispositifs, et souligne l’importance du mouvement physique, car il peut aider
à corriger cette distorsion. La méthodologie suivie dans notre travail est similaire à d’autres expériences
de perception, qui préconise une expérience contrôlée, avec des conditions bien équilibrées et des diffi-
cultés variables. Dans Hybrid Image Visualizations [IDW+13], avec des collègues de l’équipe AVIZ nous
montrons comment tirer parti des différences de perception en fonction de la distance. Nous montrons
comment combiner deux visualisations qui sont filtrées à l’aide de filtres des différentes fréquences, de
sorte que l’une devienne visible lorsqu’elle est vue de loin et l’autre lorsqu’elle est vue de près. Cette
combinaison augmente la quantité d’informations qui peut être rendues sur le mur d’images. Notre prin-
cipale contribution ici a été l’explication de la théorie derrière l’approche, et les outils pour créer de telles
visualisations. Comme pour Smarties, notre méthodologie a consisté à fournir de nombreux exemples
divers, à explorer les limites de l’approche, plutôt que de mener une étude sur les utilisateurs.
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Collaboration. Dans le cadre de la thèse de A. Prouzeau (co-encadré avec O. Chapuis), nous examinons
s’il existe des différences quantitatives entre la collaboration en utilisant un mur d’images et des ordina-
teurs de bureau coordonnés. Étant donné la nature quantitative de notre question de recherche, notre
méthodologie consiste en une expérience contrôlée [PBC17b]. Pour une simple tâche de coordination,
nous avons montré que le mur d’images était plus lent, mais qu’il permettait d’obtenir des résultats de
qualité plus constante. En tant que chercheurs nous cherchons toujours pour des preuves mesurables de
le bénéfice de l’utilisation de ces surfaces collaboratifs.

Nous étudions ensuite l’impact de la technique de sélection sur la coordination, toujours pendant
la collaboration autour des murs d’images. Nous regardons en particulier les graphes, une structure
très pertinente pour des domaines comme la biologie, le trafic, etc. Nous avons constaté qu’avec une
technique de sélection basique, qui a une faible empreinte visuelle, les participants avaient la tendance
à diviser une tâche non divisible, ce qui se traduit à une précision base [PBC17a]. Alors qu’avec une
technique de sélection basée sur la propagation, qui a une plus grande empreinte visuelle, les participants
étaient plus précis. Dans ce travail, nous utilisons une méthodologie mixte, en commençant par une
expérience contrôlée pour comparer les deux techniques, dans le cadre d’une tâche spécifique (trouver le
chemin le plus court). Comme la propagation est une technique nouvelle dans des contextes collaboratifs,
nous voulions aussi voir comment les participants s’en approprieraient dans d’autres scénarios d’analyse.
Nous avons donc ensuite mené une étude plus ouverte où ils ont effectué d’autres tâches de topologie
sans entraînement.

Enfin, nous considérons la collaboration dans un contexte d’utilisation spécifique, les centres de com-
mande et de contrôle. L’accent de ce travail est mis sur un groupe d’utilisateurs spécifique et leurs besoins,
donc nous avons a suivi une méthodologie de conception centrée-utilisateur. Au lieu de commencer avec
une solution spécifique en tête, nous avons observé et interviewé les utilisateurs. Cela nous a amené à une
question secondaire (concevoir et tester différentes visualisations pour la prévision du trafic [PBC16a]) et
un prototype avec des techniques de awareness pour aider les opérateurs à se coordonner et à passer du
travail individuel au travail collaboratif [PBC18].

Dans l’ensemble, les travaux présentés dans ce chapitre ont renforcé que les murs d’images peuvent
augmenter la bande de communication entre les humains et leurs données. En ce qui concerne la puis-
sance de calcul humaine, ils peuvent rassembler des collègues ayant des compétences diverses et mener
une coordination élevée (par rapport à d’autres dispositifs de collaboration tels que des ordinateurs de
bureau connectés). Du côté machine, leur haute densité de pixels peut aussi accueillir plus d’informations
que les écrans traditionnels. En outre, ils permettent également de visualiser les informations avec des
granularités différentes en fonction de la distance de vue, et peuvent même combiner deux visualisations
différentes qui sont chacune vues à des distances spécifiques.

4.7 Représentations appropriées

La conception de visualisations interactives n’est pas facile. En tant que leur concepteurs, nous devons
nous assurer que les représentations ou systèmes que nous proposons fonctionnent bien avec des don-
nées réelles, et peuvent aider avec les tâches des utilisateurs. Et tandis que l’utilité des systèmes conçus
autour des besoins réels des utilisateurs est claire pour les utilisateurs eux-mêmes, elle ne nous aide pas
nécessairement à comprendre les phénomènes autour (les mécanismes de perception visuelle et de com-
préhension des informations présentées). La recherche en visualisation aborde à répondre au question
"quelles sont les visualisations interactives appropriées", mais par différentes perspectives / pointes de
vue. Par exemple, on peut d’abord considérer l’utilisateur final et ses besoins. Ou on peut commencer
par les propriétés des données et les tâches qu’on vait effectuer. On peut également être motivé par les al-
gorithmes de requêtage ou d’autres technologies disponibles. Ou on peut rechercher une compréhension
plus profonde des propriétés fondamentales et de l’impact des représentations visuelles, afin de fournir
des guides de conception.
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Ce chapitre présente un panorama mon travail sur la création de représentations visuelles appropriées,
qui proviennent de différentes perspectives.

Utilisateur. Je décrit d’abord les travaux qui ont tenté de répondre aux besoins d’utilisateurs spécifiques,
en commençant par les analystes de Business Intelligence [EB11, EB12, EAB13], travaux effectués pendant
le doctorat de M. Elias que j’ai co-encadré avec M.-A. Aufaure. Le chapitre décrit aussi notre travail avec
les généalogistes [BDF+10] (en collaboration avec P. Dragicevic, J.-D. Fekete, J. Bae, B. Watson), et les
neuroscientifiques [GTPB19] qui fait partie du travail de A. Gogolou que j’ai co-encadré avec T. Palpanas
et T. Tsandilas. Notre travail avec des analystes de Business Intelligence sur la narration (storytelling)
[EAB13] a reçu le prix Brian Shackel dans INTERACT 2013. Ici, nous avons suivi une méthodologie de
conception centrée-utilisateur: en commençant par comprendre le contexte et les défis auxquels les ex-
perts du domaine sont confrontés (avec des interviews et des workshops), nous avons ensuit poursuit des
sessions de conception pour des solutions possibles, et finalement on a eu des commentaires et des retours
de nos experts sur les conceptions finales. Les besoins de ces utilisateurs ont motivé des solutions inno-
vantes, telles que des annotations contextuelles pour les tableaux de bord, qui attachent des annotations
aux points de données ou aux requêtes (indépendamment du graphique et de l’agrégation) [EB12].

Question. La deuxième partie du chapitre décrit mes recherches passées qui partent de questions fon-
damentales et théoriques, y compris notre recherche sur l’existence de biais cognitifs lors de la prise
de décisions à l’aide de visualisations. Je décris ces travaux autour de questions fondamentales sur la
façon dont les êtres humaines prennent des décisions à l’aide de visualisations, qui font parti du doctorat
d’E. Dimara que j’ai co-supervisé avec P. Dragicevic [DBD17a, DBBF19, DBD17b, DBD18], y compris
une taxonomie des biais cognitifs [DFP+20] (avec E. Dimara, P. Dragicevic, S. Franconerri, C. Plaisant,
G. Bailly). Je résume également les recherches sur la perception pour des représentations visuelles spé-
cifiques, telles que les glyphes [FIB+14, FIBK17] (avec J. Fuchs, P. Isenberg, D. Keim et E. Bertini) et les
linecharts [IBDF11] (avec P. Isenberg, P. Dragicevic, et J.-D. Fekete). Notre travail sur le biais cognitif
"attraction effet" a reçu une mention honorable dans IEEE VIS 2018 [DBD17a].

Outil. La troisième partie du chapitre résume comment nous avons adapté un outil de visualisation
existant, ScatterDice [EDF08], à utiliser dans différents contextes. D’abord on a introduit la variation
GraphDice pour visualiser les graphes multidimensionnelles (au lieu des scatterplots) et on a examiné le
potentiel de l’outil pour des données et des tâches spécifiques à l’analyse des réseaux sociaux [BCD+10].
De même, EvoGraphDice a commencé avec l’idée de combiner l’outil GraphDice avec l’apprentissage
automatique (des algorithmes évolutifs interactifs) pour faciliter l’exploration de données de très haute
dimension, offrant des vues intéressantes. Ce travail a également commencé par un outil, mais a mené
une grande séquence de travaux sur l’application de l’utilisation d’un outil qui combine le calcul humain
et algorithmique à différents contextes et domaines [BTBL13], ainsi que des questions sur l’évaluation de
ces types des systèmes [BBL18].

Données/Tâche. La dernière partie examine des exemples de mon travail sur des données et tâches
spécifiques. En particulier, avec mes collègues, nous avons étudié des données géo-temporelles et des
nouveaux tâches. Dans une première étude, nous avons examiné comment visualiser la corrélation entre
deux variables thématiques (par exemple, l’espérance de vie et le taux de fertilité) à travers l’espace et
le temps [PPB20]. Dans la seconde, nous avons examiné les caractéristiques uniques des mouvements
de propagation (par exemple, un virus) et comparé différentes visualisations dans la façon dont elles les
transmettent [PBP20]. Tous les deux ont fourni des guides pour les différentes tâches et visualizations
possibles.
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4.8 Perspectives

Au-delà des environnements collaboratifs traditionnels (murs, tables) qui font parti de mon travail, nous
voyons un nombre croissant de casques de réalité augmentée (RA). Elles pourraient accroître les capacités
des dispositifs collaboratifs, en affichant des informations dans l’environnement. Les plateformes de
collaboration traditionnelles (murs, tables) et les casques RA, varient considérablement en termes de coût,
de taille, de résolution et de modes d’interaction. Au future je vais étudier quelle technologie est la plus
appropriée pour des tâches données et les besoins des utilisateurs. Plus particulièrement, je étudierai
quand les grandes dispositifs telles que les murs sont nécessaires pour l’analyse collaborative, quand des
casques de réalité augmenté sont suffisantes, et si un mélange de ces technologies est intéressant dans des
situations collaboratives.

Je voudrais également explorer la relation entre l’interaction et la perception visuelle. Lorsque les
utilisateurs manipulent activement les informations, cela peut affecter leur compréhension. Avec mes col-
lègues, nous avons déjà vu par exemple que le choix des techniques d’interaction peut affecter la coordina-
tion et la qualité des tâches simples sur des graphes. Des travaux récents autour de la notion d’interaction
dans la visualisation, soulignent que même si les avantages de l’interaction sont généralement reconnus,
elle est rarement au centre de nos études de recherche en visualisation. Plus généralement, l’espace de la
conception d’interfaces pour les outils d’analyse visuelle reste assez inexploré. Récemment de nouveaux
paradigmes d’interaction sont étudiés dans le domain de la visualisation. Parmi eux est la manipulation
directe pour modifier les encodages visuels dans une visualisation (une approche adoptée de manière non
systématique par plusieurs systèmes). Notre travail sur les SketchSliders est complémentaire, au lieu de
personnaliser les encodages visuels, nous considérons la personnalisation et création des outils dont les
analystes auront besoin dans leur exploration. Cette approche mérite d’être étudiée plus. Nos participants
ont souvent eu le sentiment que les décisions qu’ils ont prises concernant la création de leurs outils les ont
aidés à structurer leur analyse. En plus l’ajustement et la copie de ces outils leur ont permis de garder une
trace des explorations alternatives. Ils ont commenté que leurs choix d’outils et les annotations capturent
des aspects subtils de l’exploration qui est important de saisir et de stocker. L’étude des implications de
la création d’outils à la volée pour l’analyse visuelle est une direction sur laquelle j’aimerais continuer à
travailler.

Lorsqu’il s’agit de questions plus fondamentales, il reste encore beaucoup de questions sur la façon
dont nous prenons des décisions à l’aide de systèmes de visualisation. Notre article sur la taxonomie des
biais cognitifs a identifié de nombreux problèmes ouverts à étudier, comme : la façon dont notre mémoire
des visualisations peut être biaisée, comment l’utilisation de l’automatisation (ex l’apprentissage automa-
tique) en conjonction avec la visualisation peut affecter nos décisions, si on peut utiliser les visualisations
pour atténuer ces biais (comme nous l’avons fait avec l’attraction effect), etc. Des travaux récents dans la
communauté de la visualisation ont commencé à considérer les biais possibles lors de la compréhension et
de l’analyse des données. Plus important encore, cela soulève des questions fondamentales sur la manière
dont nous menons nos propres recherches. Par exemple, on sait qu’il existe un biais de confirmation dans
la recherche. Mais est-il possible que d’autres biais affectent nos résultats et nos conclusions? Par ex-
emple, lorsque nous présentons aux utilisateurs trois systèmes ou techniques à classer, introduisons-nous
des effets d’attraction ou des biais de compromis, amenant les participants à favoriser certains systèmes
et techniques? J’aimerais poursuivre les travaux sur ce sujet et, au-delà des biais spécifiques, tenter de
mener une méta-analyse des travaux dans notre domaine qui ont pu être affectés par de tels biais.

Dans me perspectives est d’explorer deux questions de haut niveau sur la façon dont nous menons
des recherches en visualisation interactive. Le premier est, comme mentionné ci-dessus, l’étude des bi-
ais possibles qui nous affectent en tant que chercheurs en interaction et visualisation. Le deuxième est
d’essayer d’analyser l’inspiration derrière notre travail en tant que communauté et d’explorer s’il existe
des moyens de le capturer et de le partager avec les autres. Bien que plusieurs articles de recherche re-
connaissent clairement leur inspiration, cela n’est pas toujours systématiquement fait lors de la rédaction
d’un article de recherche, car l’espace peut être limité, ou parce qu’en tant que chercheurs, nous devons
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présenter une histoire cohérente de notre travail. De plus, nos articles capturent rarement l’itération de
nos idées et techniques. Les domaines intéressés par la conception de solutions aux problèmes pernicieux
(wicked problems) [KR70] ont développé des méthodologies pour saisir leur processus de rationalisation
de la conception [Lee97] (c.à.d. leurs raisons, justifications, alternatives envisagées et compromis éval-
ués). Dans une moindre mesure, IHM a une tradition de suivre le processus de conception itérative et
les articles du domaine parlent souvent des itérations précédentes et des résultats pilotes. Par contre,
ces informations sont perdues dans une grande partie des articles en visualisation. Mais ces détailles
pourraient être importantes pour d’autres chercheurs dans le domaine (renseigner ou réutiliser). La crise
de la réplication de la recherche a suscité des efforts dans notre communauté de recherche (entre autres
domaines) pour adopter des pratiques scientifiques ouvertes qui peuvent faciliter la réplication et la repro-
duction des études (pré-enregistrement des études, partager du code, des scripts de données et d’analyse
et des résultats). Il est peut-être le moment de déterminer si nous devons également partager plus sys-
tématiquement nos inspirations et nos étapes et résultats de conception. Au cours des années suivantes,
je prévois étudier comment différents membres de notre communauté de recherche voient et suivent les
informations liées à l’inspiration et à l’itération de leur travail, s’ils peuvent voir la valeur d’en partager
et communiquer aux autres, ainsi que chercher les méthodologies provenant d’autres domaines que nous
pourrions adopter(comme la logique de conception) et comment les adapter en face des pratiques et des
contraintes de notre domaine.

Last updated: July 7, 2020
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