Prog.IS - MVC 13/10/16

Week 4:
) i a. Peripherals,
Programming of Interactive Systems Software Architectures
&MVC

Anastasia.Bezerianos@Iri.fr

Anastasia.Bezerianos@lIri.fr

(Nolwenn Maudet)

structure of an interactive system

m
|

What we see
= output

~ visible part
« front end »

peripherals What we act with

= input

b

X
&

What happens

= treatment o
computation ~invisible part

.
= communication « back end »

data (storage and access)

Anastasia Bezerianos 1

Prog.IS - MVC 13/10/16

structure of an interactive system structure of an interactive system

Output Output
“bitmap” screens: cathode ray, LCD, Plasma, OLED.

Size expressed with their diagonal dimension in inches
(1 inch = 2.54 cm, 30 inches~76cm) and the width to height ratio (e.q., 16/9)

Resolution expressed in pixels (e.g., 2560x1600)

Resolution and size gives the density expressed in
“dpi”: dot[pixel] per inch
(typically 100 dpi ~ 40 pixels per cm, i.e. 1 pixel ~ 0.25 mm)

Color Resolution (“depth” RGB[A]):
8 bits (256 colors), 16 bits (65536 colors) or 24[32] bits (16 millions of colors
[+256 levels of “translucence”])

Temporal Resolution expressed in Hz, the number of frames the screen

can display per second (typically 60 Hz) http://youtu.be/u7Gm0OeKxwU
structure of an interactive System text entry

Input . Input (text entry)
= keyboards ? = problem: Optimization of key position
= mice, tablets, joysticks, trackballs ‘;‘
= augmented pens @ = Dvorak layout: 10 to 15% speed QWERTY ‘f I
= speech recognition ‘ é'\' improvement and reduced fatigue £
= motion capture & computer vision # compared to Qwerty T

DVORAK |

= interactive surfaces
= (e.g., mobiles, tangibles)
= hybrid devices (input output)

= force feedback devices
http://youtu.be/REA97hRXOWQ

= Software keyboard:
optimization = pointing

= dpy keyboard with keys that have led

= touch screens (e.g., V|bra.t|on) ' screens (oled) or projection on keyboard
= deformable or actuated displays
http://youtu.be/ouP9xNujkNo

http://youtu.be/fABHEKW2aT4

Anastasia Bezerianos 2

Prog.IS - MVC

text entry

Input (alternative to classical keyboard)
= Chord keyboards:
= few keys (4 or 5)
= use of multiple keys simultaneously
= fast input with one hand

= Mobile phone keyboards:
= multi tap
= input can be slow
= T9 system: one tap per letter can
suggest/add words

3D and tactile peripheral devices

Input
= 3D peripherals

= haptic/tactile feedback: vibrations, surface changes

= vibrations when we pass over some targets, can we reproduce
true textures?

type and control of peripheral devices

Absolute : transmit a position (x, y)
Examples : tablets, touch screens, optical pens

Relative: transmit a displacement (dx, dy)
Examples : mice, joysticks, trackballs

Order 0: input device displacement corresponds to a displacement
of an object
Example : mouse - cursor pair

Order 1: input device controls the speed of an object
Example : joystick - cursor pair

Isotonic devices: control position — Order 0, and use clutching for
long distances
Examples : mice, touchpads

Elastic devices: have a stable state, and «elastic» return to it
Examples : joystick (tilt & speed)

an isotonic and elastice device
RubberEdge (Casiez et al. 2007): reduce clutching by combining
positional and elastic control

(a) Device (b) Display

op

w, ==k
o st
R oo K o

tartin transition target
staing pont <

Center of touchpad: position
Borders of touchpad: an elastic system for controlling speed
displacement

http://youtu.be/kucTPG zTik

Anastasia Bezerianos

13/10/16

Prog.IS - MVC

input/output devices: Control — Display Gain

Resolution : number of pulses that the input device can send for
a given distance.
dpi = dot[pulses] per inch
[1inch = 2.54 cm]

Example mouse: between 300dpi (slow), 600dpi (typical) and 2400dpi (max?),
or respectively one pulse every 0.083, 0.042 and 0.01 mm
Controle-Display Gain :

Distance traversed by pointer on display
Distance traversed by input device

CDGain =

Examples: 1 inch mouse = 600 dpi

Tablet with same size as display, and direct/absolute: CDGain = 1 iﬁeo,of&e:pf’;;gx”z'
Screen 100 dpi, mouse 600 dpi and one pulse per pixel: CDGain=6-= g inces on screen

input/output devices: acceleration

Problem: if CDGain is too large, accuracy is hard. If it is too small
we need to clutch our mouse to travel large distances

Acceleration: dynamic adjustment of CDGain as a function of
mouse speed. The faster we move, the bigger the CDGain

Pointer Pointer Pointer
mouse mouse mouse
¢, Constant CDGain X Windows: MacOS X and Windows:
2 values for CDGain Progressive chance of CDGain

software architecture, MVC

Anastasia Bezerianos

structure of an interactive system

What we see
= output

m
|

*.‘x‘_\
What we act with Q ZI?;?):i‘ Zig X
= input N2
€ -
odl
What happens -
= treatment] o
= computation __ invisible part
= communication « back end »

= data (storage and access)

13/10/16

Prog.IS - MVC 13/10/16

example 1

example 2

- data model (albums, artists,
categories, etc.)
- communication with iTunes

- geometric models

- calculations (transformations,
rendering, etc.)

- store and access designs

server

- manage queries
- manage sales

- security

»
#»
#
#

< s

back end
back end

front end

front end

example 3 link between the two parts

... programming using an organization model

organize, structure an interactive application

Name Email
(JUATITA LANBERT _|mbeasiey@everymailoz

= o by separating:
[AUSSAWISE ____itheyweb@eyecOde.net ____|205 ALICE RD.CAMILLA, 14855
d i inis
-

ctedlots@bizmailorg
otwom@evenmatl us

Gurong@notmatingt

rennrama e RS @ - tabular structure .
ERA_skeddreams @btzmail com STEWART 21650 - storage and data access

Data and their treatment: the Model

o

back end

7 = Data representation: the View

-
f“ p = Application behavior to input: the Controller
ront en

Anastasia Bezerianos

Prog.I1S - MVC

Model <Model-View—Controller» (MVC)

MVC is :
programming language)
set of software packages)

Introduced in 1979 by Trygve Reenskaug

= A design pattern (standardized design solution independent of

= A software architecture (a way to structure an application or a

Strongly linked to OO programming (Smalltalk)

MVC : ideal interactions between components

Model

- application functionality
- data access and management

View Controller
- presentation of data and - manage user input
functionality to the user - update application behavior
user

MVC : interactions between components

Model

- application functionality
- data access and management

View Controller
- presentation of data and - manage user input
functionality to the user - update application behavior

Anastasia Bezerianos

MVC : interactions between components

Model

- application functionality
- data access and management

View Controller
- presentation of data and - manage user input
functionality to the user - update application behavior
user input

13/10/16

Prog.I1S - MVC

MVC : interactions between components

Model

- application functionality
- data access and management

MVC : interactions between components

Model

- application functionality
- data access and management

View
- presentation of data and
functionality to the user -

/ of input

user input

notification

Controller

- manage user input
- update application behavior

View
- presentation of data and
functionality to the user

/ of input

user input

notification

notification
of state change

Controller

- manage user input
- update application behavior

MVC : interactions between components

Model

- application functionality
- data access and management

((E internal operations

View

- presentation of data and
functionality to the user
notification
/ of input

user input

notification
of state change

Controller

- manage user input
- update application behavior

Anastasia Bezerianos

MVC : interactions between components

Model

- application functionality

((E internal operations

- data access and management

. ™\ selecta View
View

notification
of state change

-
Controller

- presentation of data and
functionality to the user

- manage user input

_/ notification

/ of input

user input

- update application behavior

13/10/16

Prog.I1S - MVC

MVC : interactions between components

Model @ internal operations

- application functionality
- data access and management

request state

notification
of state change

"\ selectaView

View Controller
- presentation of data and - manage user input
functionality to the user - update application behavior

_/ notification

/ of input

user input

MVC : interactions between components

Model @ internal operations

- application functionality
- data access and management

request state

MVC : interactions between components

Model @ internal operations

- application functionality
- data access and management

request state

notification
notification of state change
of changes
"\ selectaView
View Controller
- presentation of data and - manage user input
functionality to the user - update application behavior

_/ notification

/ @ of input

user input

refresh

Anastasia Bezerianos

notification
notification of state change
of changes
"\ selectaView
View Controller
- presentation of data and - manage user input
functionality to the user - update application behavior
_/ notification
/ of input
user input
MVC: referencing between components
Model
. N g
View Model Controller
View Model
Controler
.

13/10/16

Prog.IS - MVC

MVC : the model

The model:

= Represents data

= Gives access to data

= Gives access to data management functionality

= Exposes the application functionality

Functional layer of the application

MVC : the view

The view:

= Shows the (or one) representation of the data in
the model

= Ensures consistency between data representation
and their state in the model (application)

Output of the application

MVC : the controller

The controller:

= Represents the application behavior w.r.t. user
actions

= Translates user actions to actions on the model

= Calls the appropriate view w.r.t. the user actions and
the model updates

Effect and treatment of input

Anastasia Bezerianos

advanteges of MVC

Clean application structure
Adapted to concepts of O-O programming

Independence of
data - representation - behavior

Modular and reusable

13/10/16

Prog.IS - MVC

disadvantages of MVC

Implementation complex for large applications

Too many calls between components
= « Spaghetti » code

Controller and View are often tightly linked to
Model (and often to each other)

|:> need to adapt implementation

naming conventions

MVC and Java Swing

Model-View-Controller separation not strict

Even for simple widgets

= Model : abstract behavior of widget

= View & Controller : Look & Feel + Listener
Examples : JButton, JLabel, JPanel, etc.

Most often we do not touch the model of widgets
= Swing uses a model by default for each widget

Packages:
Controllers package application.controllers;
View package application.views;
Model package application.models;
Classes:
Controllers ControllerNameClass.java
View ViewNameClass.java
Model ModelNameClass . java
Swing : types of models
Look & Feel

= Interfaces : ButtonModel, ListSelectionModel

= Default Classes :
DefaultButtonModel, DefaultListSelectionModel

Data
= Interfaces : ListModel, TableModel, TreeModel
= Default Classes :
DefaultListModel, DefaultTableModel, DefaultTreeModel

Look & Feel + Data

= For some widgets
= Examples : BoundedRangeModel for JSlider

Anastasia Bezerianos

13/10/16

10

Prog.IS - MVC

example

600 i
Kathy Smith Snowboarding H false

bonn _________ [FT Rowing 3 ltrue |

Sue Black Knitting 2 false

Jane White Speed reading 20 true

Joe Brown Pool 10 false

. Table Model
Table Object | 2> . {Z> | TableData
Object

Jjavax.swing.JTable javax.swing.table. TableModel

example

The data

Object[][] data = {
{"Kathy", "Smith","Snowboarding", new Integer(5), new Boolen(false)},
{"John", "Doe", "Rowing", new Integer(3), new Boolean(true)},
{"Ssue", "Black","Knitting", new Integer(2), new Boolean(false)},
{"Jane", "White","Speed reading", new Integer(20), new

Boolean(true)},
{"Joe", "Brown","Pool", new Integer(10), new Boolean(false)}

example

The model

class MyTableModel extends AbstractTableModel {
private String[] columnNames = ..
private Object[][] data = ..

public int getColumnCount() {
return columnNames.length;

}

public int getRowCount() {
return data.length;

}
public String getColumnName(int col) {

return columnNames[col];

public Object getValueAt(int row, int col) {
return data[row][col];

Anastasia Bezerianos

example

The view

TableModel dataModel = new MyTableModel();

JTable table = new JTable(dataModel);
JScrollPane scrollpane = new JScrollPane(table);

13/10/16

11

Prog.I1S - MVC

example: revisit our thermometer (java)

App simulating a thermometer, where users can
control the temperature

App:
shows current temperature measured (°C,°K,°F)
has a controller for changing temperature
has a controller for changing measuring unit

MVC and Java Swing

An example ...

MVC and Java Swing

Problems in terms of the MVC model?
How close is the actual implementation?
Did we even follow the non-ideal diagram?
Are the widgets part of the View or the Controller?

Could the View be part of ...

Anastasia Bezerianos

13/10/16

12

