
Prog IS - Toolkits 18/10/16

A. Bezerianos 1

Programming of Interactive
Systems

Anastasia.Bezerianos@lri.fr

(Nolwenn.Maudet@lri.fr)

Week 6 :
a. System structure and Toolkits

Anastasia.Bezerianos@lri.fr

(part of this class is based on previous classes from Anastasia,
and of T. Tsandilas, S. Huot, M. Beaudouin-Lafon, N.Roussel, O.Chapuis)

interactive systems graphical interfaces

GUIs: input is specified w.r.t. output

Input peripherals specify commands at specific
locations on the screen (pointing), where
specific objects are drown by the system.
Familiar behavior from physical world

Prog IS - Toolkits 18/10/16

A. Bezerianos 2

software layers

Windows, Mac OS, Unix, Linux,
Android, iOS, WindowsCE

GDI+, Quartz, GTK+/Xlib, OpenGL

X Windows (+KDE or GNU)

Builders,
Java Swing, Qt, GTK+, MFC, Cocoa

Applications/Communication (MacApp) Application

Operating System

Interface Tools & Toolkits

Input/Output

Graphics Library

Windowing System

software layers

Application

Operating System

Interface Tools & Toolkits

Input/Output

Graphics Library

Windowing System

input: where we give commands

output: where the system shows its state

input/output peripherals interactivity vs. computing

closed systems (computation):
!  read input, compute, produce result
!  final state (end of computation)

open systems (interaction):
!  events/changes caused by environment
!  infinite loop, non-deterministic

Prog IS - Toolkits 18/10/16

A. Bezerianos 3

problem

! we learn to program algorithms (computational)

! most languages (C/C++, Java, Lisp, Scheme,
Pascal, Fortran, ...) designed for algorithmic
computations, not interactive systems

problem

treating input/output during computation
(interrupting computation) …

! write instructions (print, put, send,…) to
send data to output peripherals

!  read instructions (read, get, receive,…) to
read the state or state changes of input
peripherals

problem

to program IS in algorithmic/computational form:

two buttons B1 and B2
finish <- false
while not finish do

button <- waitClick () //interruption, blocked comp.
if button

B1 : print « Hello World »
B2 : finish <- true

end

end

Querying Polling Events

Query & wait Active wait Wait queue
1 per. at a time Polling in sequence
 CPU cost

managing input

Prog IS - Toolkits 18/10/16

A. Bezerianos 4

event based (driven) programming

event (waiting) queue

while active
 if queue is not empty
 event <- queue.dequeue()
 source <- findSource(event)
 source.processEvent(event)
 end if
end while

queue.enqueue(event)

Animations : « clock » source of events
« tick » -> event -> animation progression

Source :
Mouse Click

while active
 if queue is not empty
 event <- queue.dequeue()
 source <- findSource(event)
 source.processEvent(event)
 end if
end while

processEvent(event)
 target <- FindTarget (event)
 if (target ≠ NULL)

target.processEvent(event)

event based (driven) programming

event (waiting) queue

queue.enqueue(event)

Animations : « clock » source of events
« tick » -> event -> animation progression

Source :
Mouse Click

Target :
Button « Cancel »

event handling

Lower layers fill-up the queue
Upper layers de-queue and treat events

Application

Operating System

Interface Tools & Toolkits

Input/Output

Graphics Library

Windowing System

Today we will focus on a specific Tookit …

software layers

Application

Operating System

Interface Tools & Toolkits

Input/Output

Graphics Library

Windowing System

Prog IS - Toolkits 18/10/16

A. Bezerianos 5

interface builders

Examples : MS Visual Studio (C++, C#, etc.), NetBeans (Java),
 Interface Builder (ObjectiveC), Android Layout Editor

interface builders

can be used to
!  create prototypes (but attention it looks real)
!  get the « look » right
!  be part of final product

!  design is fast
!  modest technical training needed
!  can write user manuals from it

But: still need to program (and clean code …)

interface toolkits

libraries of interactive objects (« widgets », e.g.
buttons) that we use to construct interfaces

functions to help programming of GUIs

usually also handle input events (later)

interface toolkits
Toolkit Platform Language
Qt multiplatform C++
GTK+ multiplatform C
MFC later WTL Windows C++
WPF (subset of WTL) Windows (any .Net language)
FLTK multiplatform C++
AWT / Swing multiplatform Java
Android Android Java
iOS iOS/ WatchOS Objective C / Swift
Cocoa MacOs Objective C / Swift
Gnustep Linux, Windows Objective C
Motif Linux C
JQuery UI Web javascript

Problem with toolkits? ….

Prog IS - Toolkits 18/10/16

A. Bezerianos 6

treating events

« widgets » (window gadget)
menu window pallet button

text zone

list

slider

tab

radio button

scroll bar

label

facettes of a widget
presentation
!  appearance

behavior
!  reaction to user actions

interface with the application:
 notification of state changes

Button:
 border with text inside
 « pressing » or « releasing » animation when clicked
 call function when the button is clicked

facettes of a widget
presentation
!  appearance

behavior
!  reaction to user actions

interface with the application:
 notification of state changes

!  active/linked/wrapped variables (Tcl/Tk)
!  event dispatching (Qt)
!  callback functions (Swing)

Prog IS - Toolkits 18/10/16

A. Bezerianos 7

variable wrappers (active variables)
two-way link between a state variable of a
widget and another application variable
(in Tcl/Tk referred to as tracing)

problems
!  limited to simple types
!  return link can be costly if automatic
!  errors when links are updated by programmers

main (){

 int i = 0;

 …

 /* widget */

 nc = CreateSlider (…);

 /* active var */

 SetIntegerActiveVariable (nc, &i);

 …

}

event dispatching

widgets act as input peripherals and send
events when their state changes

a while loop reads and treats events

associate an object to a widget, and its
methods to changes in the widget state

event dispatching

!  divide event sending and treatment

!  better encapsulation (inside widget class)

!  but when similar behaviors exist …

callback functions
Registration at widget creation

Call at widget activation

Prog IS - Toolkits 18/10/16

A. Bezerianos 8

callback functions
Problem: spaghetti of callbacks

Sharing a state between multiple callbacks by:
!  global variables: widgets check them

•  too many in real applications

callback functions
Problem: spaghetti of callbacks

Sharing a state between multiple callbacks by:
!  global variables: widgets check them

•  too many in real applications

!  widget trees: callback functions are called with a reference
to the widget that called it (visible in the same tree)

•  Fragile if we change the structure of the UI, does not deal with
other data not associated to widgets (e.g. filename)

callback functions
Problem: spaghetti of callbacks

Sharing a state between multiple callbacks by:
!  global variables: widgets check them

•  too many in real applications

!  widget trees: callback functions are called with a reference
to the widget that called it (visible in the same tree)

•  Fragile if we change the structure of the UI, does not deal with
other data not associated to widgets (e.g. filename)

!  token passing: data passed with the callback function call

callback functions
/* callback function */
void DoSave (Widget w, void* data) {

/* retrieve file name */
 filename = (char**) data;
/* call an application function */
SaveTo (filename);
/* close the dialog */
CloseWindow (getParent(getParent(w)));

}

Prog IS - Toolkits 18/10/16

A. Bezerianos 9

callback functions
/* callback function */
void DoSave (Widget w, void* data) {

/* retrieve file name */
 filename = (char**) data;
/* call an application function */
SaveTo (filename);
/* close the dialog */
CloseWindow (getParent(getParent(w)));

}

/* main program */
main () {

/* variable with file name */
char* filename = “”;
…
/* create a widget and assosiate a callback */
ok = CreateButton (....);
RegisterCallback (ok, DoSave, (void*) &filename);
…
/* event manager loop */
MainLoop ();

}
token

Events generated here, treated by calling apporpriate callback

Callbacks registered once

event listeners (Java)

Listeners are a variation of callbacks in Java:

methods of type AddListener that do not
specify a callback function but an object,
the listener

when a widget changes state, it triggers a
predefined method of the listener object
(e.g. actionPerformed)

interface toolkits

event-action model
!  can lead to errors (e.g. forgotten events)
!  difficult to extend (e.g. add hover events)
!  complex code

 => Finite State Machine and Hierarchical SM
 (soon !)

hard to do things the toolkit was not designed for
 e.g. multi-device input, multi-screen applications,
 advanced interaction techniques (CrossY)

