
Programming of Interactive 
Systems

Anastasia.Bezerianos@lri.fr

1 week6a-UIandTookits - 20 October 2020



Week 6 : 
a. System structure and Toolkits

Anastasia.Bezerianos@lri.fr 

(part of this class is based on previous classes from Anastasia,  
and of T. Tsandilas, S. Huot, M. Beaudouin-Lafon, N.Roussel, O.Chapuis)
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graphical interfaces

GUIs: input is specified w.r.t. output 
  
Input peripherals specify commands at specific 

locations on the screen (pointing), where 
specific objects are drown by the system.  

Familiar behavior from physical world
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software layers

Windows, Mac OS, Unix, 
Linux, Android, iOS, 
WindowsCE

GDI+, Quartz, GTK+/Xlib, 
OpenGL 

X Windows (+KDE or GNU)

Builders, Java Swing, JavaFX, 
Qt, GTK+, MFC, Cocoa 

Applications/Communication 
(MacApp)Application 

Operating System

Interface Tools & Toolkits

Input/Output

Graphics Library

Windowing System
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software layers

Application 

Operating System

Interface Tools & Toolkits

Input/Output

Graphics Library

Windowing System
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input: where we give commands 

output: where the system shows its state 

input/output peripherals
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interactivity vs. computing

closed systems (computation): 
▪ read input, compute, produce result 
▪ final state (end of computation) 

open systems (interaction): 
▪ events/changes caused by environment 
▪ infinite loop, non-deterministic
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problem

▪ we learn to program algorithms (computational) 

▪ most languages (C/C++, Java, Lisp, Scheme, 
Pascal, Fortran, ...) designed for algorithmic 
computations, not interactive systems
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problem

treating input/output during computation 
(interrupting computation) … 

▪ write instructions (print, put, send,…) to 
send data to output peripherals 

▪ read instructions (read, get, receive,…) to 
read the state or state changes of input 
peripherals 
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problem

to program IS in algorithmic/computational form:  

two buttons B1 and B2
finish <- false
while not finish do

button <- waitClick () 
//interruption, blocked comp.

if button
B1 : print « Hello World »
B2 : finish <- true

end

end 
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Querying           Polling  Events 
  
Query & wait  Active wait  Wait queue 
1 per. at a time  Polling in sequence 
    CPU cost

managing input
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event based (driven) programming

event (waiting) queue

while active
  if queue is not empty
     event <- queue.dequeue()
     source <- findSource(event)
     source.processEvent(event)
  end if
end while

queue.enqueue(event)

Animations : « clock » source of events  
« tick » -> event -> animation progression 

Source : 
Mouse Click  
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while active
  if queue is not empty
     event <- queue.dequeue()
     source <- findSource(event)
     source.processEvent(event)
  end if
end while

processEvent(event)
   target <- FindTarget (event)
   if (target ≠ NULL)

target.processEvent(event)

event based (driven) programming

event (waiting) queue

queue.enqueue(event)

Animations : « clock » source of events  
« tick » -> event -> animation progression 

Source : 
Mouse Click  

Target : 
Button « Cancel »
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event handling

Lower layers fill-up the queue 
Upper layers de-queue and treat events

Application 

Operating System

Interface Tools & Toolkits

Input/Output

Graphics Library

Windowing System
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We focused on a specific Tookit (JavaFX),  
but there are several comment characteristics … 

software layers

Application 

Operating System

Interface Tools & Toolkits

Input/Output

Graphics Library

Windowing System
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interface builders

Examples :  
SceneBuilder (JavaFX),  
MS Visual Studio (C++, C#, etc.), NetBeans (Java), Interface 
Builder (ObjectiveC), Android Layout Editor 
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interface builders

can be used to 
▪ create prototypes (but attention it looks real) 
▪ get the « look » right 
▪ be part of final product 

▪ design is fast 
▪ modest technical training needed 
▪ can write user manuals from it 

But: still need to program (and clean code …)
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interface toolkits

libraries of interactive objects (« widgets », e.g. 
buttons) that we use to construct interfaces 

functions to help programming of GUIs 
and handle input events
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interface toolkits
Toolkit Platform Language

Qt multiplatform C++

GTK+ multiplatform C

MFC later WTL Windows C++

WPF (subset of WTL) Windows (any .Net language)

FLTK multiplatform C++

AWT / Swing / JavaFX multiplatform Java

Android Android Java

iOS iOS/ WatchOS Objective C / Swift

Cocoa MacOs Objective C / Swift

Gnustep Linux, Windows Objective C

Motif Linux C

JQuery UI Web javascript

Problem with toolkits? ….
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treating events
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« widgets » (window gadget)
menu window palletbutton

text zone

list

slider

tab

radio button

scroll bar

label
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facets of a widget

presentation 
▪ appearance 

behavior 
▪ reaction to user actions 

interface with the application:  
 notification of state changes 

Button:  
 border with text inside 
 « pressing » or «  releasing » animation when clicked 
 call function when the button is clicked
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facets of a widget

presentation 
▪ appearance 

behavior 
▪ reaction to user actions 

interface with the application:  
 notification of state changes 
▪  active/linked/wrapped variables (Tcl/Tk) 
▪  event dispatching (Qt) 
▪  callback functions (Swing/JavaFX)
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1. variable wrappers (active variables)
two-way link between a state variable of a widget and 
another application variable  

(in Tcl/Tk referred to as tracing, related to binding in JavaFX) 

problems 
▪ limited to simple types 
▪ return link can be costly if automatic 
▪ errors when links are updated by programmers

main (){

   int i = 0;

   …

   /* widget */

   nc = CreateSlider (…);

   /* active var */

   SetIntegerActiveVariable (nc, &i);

   …

}
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2. event dispatching

widgets act as input peripherals and send 
events when their state changes 

a "while" loop reads and treats events 

associate an object to a widget, and its 
methods to changes in the widget state 

(Unity, Qt, …)
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2. event dispatching

  

▪ event sending and treatment  

▪ better encapsulation (inside widget class) 

▪ but when similar behaviors exist … 
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3. callback functions
Registration at widget creation 

Call at widget activation 
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3. callback functions
Problem: spaghetti of callbacks 

Sharing a state between multiple callbacks by: 
▪ global variables: widgets check them 

• too many in real applications 

▪ widget trees: callback functions are called with a reference 
to the widget that called it (visible in the same tree) 

• Fragile if we change the structure of the UI, does not deal with 
other data not associated to widgets (e.g. filename) 

▪ token passing: data passed with the callback function call
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3. callback functions

token

Events generated here, treated by calling appropriate callback 

Callbacks registered once

/* callback function */ 
void DoSave (Widget w, void* data) {

/* retrieve file name */
 filename = (char**) data; 
/* call an application function */ 
SaveTo (filename); 
/* close the dialog */ 
CloseWindow (getParent(getParent(w)));

}

/* main program */ 
main () {

/* variable with file name */ 
char* filename = “”; 
… 
/* create a widget and assosiate a callback */ 
ok = CreateButton (....);
RegisterCallback (ok, DoSave, (void*) &filename); 
…
/* event manager loop */ 
MainLoop ();

}
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event listeners (Java)

Listeners/Handlers  
are a variation of callbacks in Java: 

methods of type addListener or setOn… that 
do not specify a callback function but an 
object, the listener/handler 

when a widget changes state, it triggers a 
predefined method of the listener object 
(e.g. actionPerformed() or handle())
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input treatment

interface with the application:  
 notification of state changes 
▪  active/linked/wrapped variables 
▪  event dispatching 
▪  callback functions / handlers 

Callbacks/listeners still produce the  
most reusable (but potentially most 
complex) code
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interface toolkits

event-action model  
▪ can lead to errors (e.g., forgotten events)  
▪ difficult to extend (e.g., add hover events)   
▪ complex code 

 => Finite State Machine and Hierarchical SM     

hard to do things the toolkit was not designed for 
 e.g. multi-device input, multi-screen applications,  
  advanced interaction techniques (CrossY) 
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