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Week 6 :
a. System structure and Toolkits

Anastasia.Bezerianos@Iri.fr

(part of this class is based on previous classes from Anastasia,
and of T. Tsandilas, S. Huot, M. Beaudouin-Lafon, N.Roussel, O.Chapuis)
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graphical interfaces

GUIs: input is specified w.r.t. output

Input peripherals specify commands at specific
locations on the screen (pointing), where
specific objects are drown by the system.

Familiar behavior from physical world
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software layers

Applications/Communication

Application (MacApp)
) Builders, Java Swing, JavaFX,
Interface Tools & Toolkits Qt, GTK+, MFC, Cocoa

Graphics Library GDI+, Quartz, GTK+/Xlib,

OpenGL
Windowing System X Windows (+KDE or GNU)
Input/Output
Operat|ng System Windows, Mac OS, Unix,
Linux, Android, iOS,
WindowsCE
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software layers

Application

Interface Tools & Toolkits

Graphics Library

Windowing System

Input/Output

Operating System
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input/output peripherals
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interactivity vs. computing

closed systems (computation):
= read input, compute, produce result
= final state (end of computation)

open systems (interaction):
= events/changes caused by environment
= infinite loop, non-deterministic
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problem

= we learn to program algorithms (computational)

= most languages (C/C++, Java, Lisp, Scheme,
Pascal, Fortran, ...) designed for algorithmic
computations, not interactive systems
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problem

treating input/output during computation
(interrupting computation) ...

= write instructions (print, put, send,..) to
send data to output peripherals

= read instructions (read, get, receive,..) to

read the state or state changes of input
peripherals
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problem

to program IS in algorithmic/computational form:

two buttons Bl and B2
finish <- false
while not finish do
button <- waitClick ()
//interruption, blocked comp.

if button
Bl : print « Hello World »
B2 : finish <- true

end

end
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managing input

Querying Polling Events
Query & wait Active wait Wait queue
1 per. at a time Polling in sequence

CPU cost

U
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event based (driven) programming

while active
if gueue is not empty
Source event <- queue.dequeue()
Mouse Click > source <- findSource(event)
source.processEvent (event)
end if

event (waiting) queue end while

—>

queue.enqueue(event)

Animations : « clock » source of events
« tick » -> event -> animation progression
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event based (driven) programming

while active
if gueue is not empty
Source event <- qu?ue.dequeue()
Mouse Click > source <- findSource(event)
source.processEvent (event)

end if
event (waiting) queue end while
—>
qgueue.enqueue(event) processEvent (event)
target <- FindTarget (event)
if (target # NULL)
Target : /////” target.processEvent (event)

Button « Cancel »

Animations : « clock » source of events
« tick » -> event -> animation progression
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event handling

Application

Interface Tools & Toolkits

Graphics Library

Windowing System

Input/Output
Operating System

Lower layers fill-up the queue
Upper layers de-queue and treat events
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software layers

Application

Graphics Library

Windowing System

Input/Output

Operating System

We focused on a specific Tookit (JavaFX),
but there are several comment characteristics ...
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interface builders

NetBeans 5.5
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Examples :
SceneBuilder (JavaFX),
MS Visual Studio (C++, C#, etc.), NetBeans (Java), Interface
Builder (ObjectiveC), Android Layout Editor
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interface builders

can be used to

= create prototypes (but attention it looks real)
= get the « look » right
= be part of final product

= design is fast
= modest technical training needed
= can write user manuals from it

But: still need to program (and clean code ...)
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interface toolkits

libraries of interactive objects (« widgets », e.q.
buttons) that we use to construct interfaces

functions to help programming of GUIs
and handle input events
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interface toolkits

Toolkit

Qt

GTK+

MFC later WTL

WPF (subset of WTL)
FLTK

AWT / Swing / JavaFX
Android

i0S

Cocoa

Gnustep

Motif

JQuery UI

Problem with toolkits? ....

multiplatform
multiplatform
Windows
Windows
multiplatform
multiplatform
Android

i0S/ WatchOS
MacOs

Linux, Windows
Linux

Web

19

Platform _____|Language

C++

C

C++

(any .Net language)
C++

Java

Java

Objective C / Swift
Objective C / Swift
Objective C

C

javascript
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treating events
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« widgets » (window gadget)

button menu window pallet
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facets of a widget

presentation
= appearance

behavior
= reaction to user actions

interface with the application:
notification of state changes

Button:
border with text inside
« pressing » or « releasing » animation when clicked
call function when the button is clicked

22
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facets of a widget

presentation
= appearance

behavior
= reaction to user actions

interface with the application:
notification of state changes

= active/linked/wrapped variables (Tcl/Tk)
= event dispatching (Qt)
= callback functions (Swing/JavaFX)

23
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1. variable wrappers (active variables)

two-way link between a state variable of a widget and
another application variable

(in Tcl/Tk referred to as tracing, related to binding in JavaFX)

main (){
int i = 0;
e 0 |
_ /* widget */
;;;ﬁ?ﬁqF? »_26 | nc = CreateSlider (..);
i =12 _ /* active var */

%Tﬂ$%;77J< 12 ! SetIntegerActiveVariable (nc, &i);

problems

= [imited to simple types }

= return link can be costly if automatic
= errors when links are updated by programmers
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2. event dispatching

widgets act as input peripherals and send
events when their state changes

a "while" loop reads and treats events

associate an object to a widget, and its
methods to changes in the widget state

E saveDialog

0Ky » saveDialog.Clicked(event)

(Unity, Qt, ...)
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2. event dispatching

saveDialog { string filename }

Save File
File  [myFile : saveDialog.EditField(event)
{ this.filename := ... }
cancel (70K} saveDialog.OK(event)

{ DoSave (this.filename) }

= event sending and treatment
= petter encapsulation (inside widget class)

= but when similar behaviors exist ...
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3. callback functions

Registration at widget creation

L

DoSave (...){ ...}

Call at widget activation

oKy

Save File
File  [myFile —
cancel (ORI

» DoSave (...){ ...}

global string filename;
DoSetFile () {filename = ...}

DoSave () { SaveTo(filename) }

27
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3. callback functions

Problem: spaghetti of callbacks

Sharing a state between multiple callbacks by:

= global variables: widgets check them
e too many in real applications

= widget trees: callback functions are called with a reference

to the widget that called it (visible in the same tree)
e Fragile if we change the structure of the UI, does not deal with
other data not associated to widgets (e.g. filename)

= token passing: data passed with the callback function call
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3. callback functions

/* callback function */
void DoSave (Widget w, void* data) {

/* retrieve file name */

filename = (char**) data;

/* call an application function */

SaveTo (filename);

/* close the dialog */

CloseWindow (getParent(getParent(w)));
}

/* main program */
main () {

/* variable with file name */ Callbacks registered once

char* filename = “";

/* create a widget and assosiate a callback */

ok = CreateButton (e....);

RegisterCallback (ok, DoSave, (void*) &filename);

/* event manager loop */
MainLoop ();

}

token

Events generated here, treated by calling appropriate callback

29
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event listeners (Java)

Listeners/Handlers
are a variation of callbacks in Java:

methods of type addListener or setOn.. that
do not specify a callback function but an
object, the listener/handler

when a widget changes state, it triggers a

predefined method of the listener object
(e.g. actionPerformed() or handle())
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input treatment

interface with the application:
notification of state changes

= active/linked/wrapped variables
= event dispatching
= callback functions / handlers

Callbacks/listeners still produce the

most reusable (but potentially most
complex) code
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interface toolkits

event-action model
= can lead to errors (e.g., forgotten events)
= difficult to extend (e.g., add hover events)

= complex code
=> Finite State Machine and Hierarchical SM

hard to do things the toolkit was not designed for

e.g. multi-device input, multi-screen applications,
advanced interaction techniques (CrossY)
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