Programming of Interactive
Systems

Anastasia.Bezerianos@Iri.fr

week6a-UlandTookits - 20 October 2020

Week 6 :
a. System structure and Toolkits

Anastasia.Bezerianos@Iri.fr

(part of this class is based on previous classes from Anastasia,
and of T. Tsandilas, S. Huot, M. Beaudouin-Lafon, N.Roussel, O.Chapuis)

2 week6a-UlandTookits - 20 October 2020

graphical interfaces

GUIs: input is specified w.r.t. output

Input peripherals specify commands at specific
locations on the screen (pointing), where
specific objects are drown by the system.

Familiar behavior from physical world

3 week6a-UlandTookits - 20 October 2020

software layers

Applications/Communication

Application (MacApp)
) Builders, Java Swing, JavaFX,
Interface Tools & Toolkits Qt, GTK+, MFC, Cocoa

Graphics Library GDI+, Quartz, GTK+/Xlib,

OpenGL
Windowing System X Windows (+KDE or GNU)
Input/Output
Operat|ng System Windows, Mac OS, Unix,
Linux, Android, iOS,
WindowsCE

4 week6a-UlandTookits - 20 October 2020

software layers

Application

Interface Tools & Toolkits

Graphics Library

Windowing System

Input/Output

Operating System

5 week6a-UlandTookits - 20 October 2020

input/output peripherals

NP, e | Lo M
AV DN LTI
ML TP WL

: * A /,N‘—/‘\ -*. -
'if.'“?.'f ,;m"’*ﬁ' WA

6 week6a-UlandTookits - 20 October 2020

interactivity vs. computing

closed systems (computation):
= read input, compute, produce result
= final state (end of computation)

open systems (interaction):
= events/changes caused by environment
= infinite loop, non-deterministic

7 week6a-UlandTookits - 20 October 2020

problem

= we learn to program algorithms (computational)

= most languages (C/C++, Java, Lisp, Scheme,
Pascal, Fortran, ...) designed for algorithmic
computations, not interactive systems

week6a-UlandTookits - 20 October 2020

problem

treating input/output during computation
(interrupting computation) ...

= write instructions (print, put, send,..) to
send data to output peripherals

= read instructions (read, get, receive,..) to

read the state or state changes of input
peripherals

9 week6a-UlandTookits - 20 October 2020

problem

to program IS in algorithmic/computational form:

two buttons Bl and B2
finish <- false
while not finish do
button <- waitClick ()
//interruption, blocked comp.

if button
Bl : print « Hello World »
B2 : finish <- true

end

end

10 week6a-UlandTookits - 20 October 2020

managing input

Querying Polling Events
Query & wait Active wait Wait queue
1 per. at a time Polling in sequence

CPU cost

U

11 week6a-UlandTookits - 20 October 2020

event based (driven) programming

while active
if gueue is not empty
Source event <- queue.dequeue()
Mouse Click > source <- findSource(event)
source.processEvent (event)
end if

event (waiting) queue end while

—>

queue.enqueue(event)

Animations : « clock » source of events
« tick » -> event -> animation progression

12 week6a-UlandTookits - 20 October 2020

event based (driven) programming

while active
if gueue is not empty
Source event <- qu?ue.dequeue()
Mouse Click > source <- findSource(event)
source.processEvent (event)

end if
event (waiting) queue end while
—>
qgueue.enqueue(event) processEvent (event)
target <- FindTarget (event)
if (target # NULL)
Target : /////” target.processEvent (event)

Button « Cancel »

Animations : « clock » source of events
« tick » -> event -> animation progression

13 week6a-UlandTookits - 20 October 2020

event handling

Application

Interface Tools & Toolkits

Graphics Library

Windowing System

Input/Output
Operating System

Lower layers fill-up the queue
Upper layers de-queue and treat events

14 week6a-UlandTookits - 20 October 2020

software layers

Application

Graphics Library

Windowing System

Input/Output

Operating System

We focused on a specific Tookit (JavaFX),
but there are several comment characteristics ...

15 week6a-UlandTookits - 20 October 2020

interface builders

NetBeans 5.5

File Edit VYiew MNavigate Source Refactor Build Run C¥S Tools Window Help
™[= o) oN ol = = 4 =
CCE@ BN L2RAEODPD
‘Projects 4@ x [friles 'fkuntime @ Antenna.java X \ @ Anagrams.java X { @ About.java % \ @ Find.java X @ ContactEditor.java % (=) :Palette »x
&g AnagramGame Source ‘Design ‘ REES EHErL| < ¢ | =/ Swing A
[=-{0@ Source Packages weet JLabel [JButton
(=) com.toy.anagrams.lib (= JToggleButton @~ JCheckBox
#-[@) wordLibrary.java Position/Direction R . o
&-@ com.toy.anagrams.ui » Direction [<]: | 140,000 i
-3 About.java TR - £ JComboBox = auist
-5 Anagrams.java Heioht [m]:}} 110.000 = = TMextField 7] Textarea
@ TESt Packages] Height is Lower Edge (Mot Center) [] JPanel] JTabbedPane
B4 Libraries
& 12 Test Lbraries system G J5crollBar [J] 35croliPane
=& GUIFormExamples i€ JMenuBar =] JPopupMenu
- Channels: ‘2 Watts: ‘ 12.000 | [Adjust l
=@ Source Packages «r JSlider == JProgressBar
2 @ Eiavxpltes) Antenna Type: ‘Kathvein 742151 N I 3splitPane = JFormattedTextField
ntenna.java
- Electrical Downtilt From [°]: | 0,000 To: | 10,000 Adjust == JPasswordField @ ISpinner
@ ContactEditor.java
w5 Find.java Polarization: l" 5o 3 | 15eparator MextPane
#-{8 Libraries [=] JEditorPane ITree
Frequency From [MHz]: | 943.000 To: [951,000 | [adiust |
5] rable [2 IToolBar
= =] [l i A
inspector ax :jCheckBox1 [ICheckBox] - Properties X
B Form Antenna -
@[] other Components | Properties | Events Code
= [IFrame] ‘Eil:ropevties - . ~
. action nul
&0 :Sf"‘eL“b[J]F;"[’f]h . background O 626,28 O
. !'Labelz JLaheI buttonGroup <nones v | |
’_ abe! _[abel] componentPopupMenu <none: v @
= jTextField1 [ITextField] font Tahoma 11 Plain @
= jTextField2 [ITextField] foreground W [0,0,0] @
@~ jCheckBox1 [ICheckBox] mnemonic [®)
@[] jPanel2 [IPanel] selected O ©
[jButton3 [JButton] text Height is Lower Edge (@
[jButton4 [JButton] toolTipText null [m]
(=/Other Properties
UIClassID [m]
actionCommand Height is Lower Edge (...[.)
alignmentx 0.0 @
i ns (a1l

Examples :
SceneBuilder (JavaFX),
MS Visual Studio (C++, C#, etc.), NetBeans (Java), Interface
Builder (ObjectiveC), Android Layout Editor

16 week6a-UlandTookits - 20 October 2020

interface builders

can be used to

= create prototypes (but attention it looks real)
= get the « look » right
= be part of final product

= design is fast
= modest technical training needed
= can write user manuals from it

But: still need to program (and clean code ...)

17 week6a-UlandTookits - 20 October 2020

interface toolkits

libraries of interactive objects (« widgets », e.q.
buttons) that we use to construct interfaces

functions to help programming of GUIs
and handle input events

18 week6a-UlandTookits - 20 October 2020

interface toolkits

Toolkit

Qt

GTK+

MFC later WTL

WPF (subset of WTL)
FLTK

AWT / Swing / JavaFX
Android

i0S

Cocoa

Gnustep

Motif

JQuery UI

Problem with toolkits?

multiplatform
multiplatform
Windows
Windows
multiplatform
multiplatform
Android

i0S/ WatchOS
MacOs

Linux, Windows
Linux

Web

19

Platform _____|Language

C++

C

C++

(any .Net language)
C++

Java

Java

Objective C / Swift
Objective C / Swift
Objective C

C

javascript

week6a-UlandTookits - 20 October 2020

treating events

20 week6a-UlandTookits - 20 October 2020

« widgets » (window gadget)

button menu window pallet

® Pages File dit Insert Format Arrange View Window Share Help

®N0oO WUntitled (Word Processing)
== = ", = = n = o)
Untitled 2 (P v QJ EJ v v %lﬁ [Tex
Ev 15‘ = E‘v - ' @ View Full Screen Outline Sections Text Box Shapes T D i@ : T [}’ & B ul][] O @L

View Full Screen Outline Pages Text®e§ Shapes Table Chal) (1 </ | | Helvetica +] [Regular 212 l'lﬁ ; é ta b
I Text List | Tabs | More

_— = =] iv:[) 4 6 8
v v = = Opacity: PR I |- PR P P
o — C | |4l_J |il18 | L Uy
ages PR PO PO PR I PN T TP P O P

0 0cm @ 0cm @ 0cm f?
B First Line Left Right
. Tab Settings e I a b e |

:] This is an example..| Default Tabs 127cm 3]

{ Decimal Tab Character]

8—: teXt Z O n e Tab Stops Alignment -
] — -« «<—radio button
] Center
T Right

T Decima

2

I - Leader

4 None v -

i 6000 e / | ISt
= iy IE3.
] Collection Family Typeface A I | b
s_— All Fonts Gill Sans Regular 12 S C ro a r
1 English Gill Sans MT Light)
N Favorites Gill Sans Ultra Bold Light Oblique 10

] Recently Used GCloucester MT Extr m Obligue 11

i_‘ Chinese Coudy Old Style Bold 12
. Classic Haettenschweiler Bold Oblique 13 N
] Compatible Windov Handwriting - Dak«¢ 14 z S I I d e r

5 1 Fixed Width 4 Harrington 2) {

8] Fun v Helvetica v 18 v

1 = 1 -

21 week6a-UlandTookits - 20 October 2020

facets of a widget

presentation
= appearance

behavior
= reaction to user actions

interface with the application:
notification of state changes

Button:
border with text inside
« pressing » or « releasing » animation when clicked
call function when the button is clicked

22

week6a-UlandTookits - 20 October 2020

facets of a widget

presentation
= appearance

behavior
= reaction to user actions

interface with the application:
notification of state changes

= active/linked/wrapped variables (Tcl/Tk)
= event dispatching (Qt)
= callback functions (Swing/JavaFX)

23

week6a-UlandTookits - 20 October 2020

1. variable wrappers (active variables)

two-way link between a state variable of a widget and
another application variable

(in Tcl/Tk referred to as tracing, related to binding in JavaFX)

main (){
int i = 0;
e 0 |
_ /* widget */
;;;ﬁ?ﬁqF? »_26 | nc = CreateSlider (..);
i =12 _ /* active var */

%Tﬂ$%;77J< 12 ! SetIntegerActiveVariable (nc, &i);

problems

= [imited to simple types }

= return link can be costly if automatic
= errors when links are updated by programmers

24 week6a-UlandTookits - 20 October 2020

2. event dispatching

widgets act as input peripherals and send
events when their state changes

a "while" loop reads and treats events

associate an object to a widget, and its
methods to changes in the widget state

E saveDialog

0Ky » saveDialog.Clicked(event)

(Unity, Qt, ...)

25 week6a-UlandTookits - 20 October 2020

2. event dispatching

saveDialog { string filename }

Save File
File [myFile : saveDialog.EditField(event)
{ this.filename := ... }
cancel (70K} saveDialog.OK(event)

{ DoSave (this.filename) }

= event sending and treatment
= petter encapsulation (inside widget class)

= but when similar behaviors exist ...

26 week6a-UlandTookits - 20 October 2020

3. callback functions

Registration at widget creation

L

DoSave (...){ ...}

Call at widget activation

oKy

Save File
File [myFile —
cancel (ORI

» DoSave (...){ ...}

global string filename;
DoSetFile () {filename = ...}

DoSave () { SaveTo(filename) }

27

week6a-UlandTookits - 20 October 2020

3. callback functions

Problem: spaghetti of callbacks

Sharing a state between multiple callbacks by:

= global variables: widgets check them
e too many in real applications

= widget trees: callback functions are called with a reference

to the widget that called it (visible in the same tree)
e Fragile if we change the structure of the UI, does not deal with
other data not associated to widgets (e.g. filename)

= token passing: data passed with the callback function call

28 week6a-UlandTookits - 20 October 2020

3. callback functions

/* callback function */
void DoSave (Widget w, void* data) {

/* retrieve file name */

filename = (char**) data;

/* call an application function */

SaveTo (filename);

/* close the dialog */

CloseWindow (getParent(getParent(w)));
}

/* main program */
main () {

/* variable with file name */ Callbacks registered once

char* filename = “";

/* create a widget and assosiate a callback */

ok = CreateButton (e....);

RegisterCallback (ok, DoSave, (void*) &filename);

/* event manager loop */
MainLoop ();

}

token

Events generated here, treated by calling appropriate callback

29

week6a-UlandTookits - 20 October 2020

event listeners (Java)

Listeners/Handlers
are a variation of callbacks in Java:

methods of type addListener or setOn.. that
do not specify a callback function but an
object, the listener/handler

when a widget changes state, it triggers a

predefined method of the listener object
(e.g. actionPerformed() or handle())

30 week6a-UlandTookits - 20 October 2020

input treatment

interface with the application:
notification of state changes

= active/linked/wrapped variables
= event dispatching
= callback functions / handlers

Callbacks/listeners still produce the

most reusable (but potentially most
complex) code

31 week6a-UlandTookits - 20 October 2020

interface toolkits

event-action model
= can lead to errors (e.g., forgotten events)
= difficult to extend (e.g., add hover events)

= complex code
=> Finite State Machine and Hierarchical SM

hard to do things the toolkit was not designed for

e.g. multi-device input, multi-screen applications,
advanced interaction techniques (CrossY)

32 week6a-UlandTookits - 20 October 2020

