
Programming of Interactive
Systems

Anastasia.Bezerianos@lri.fr

1 week6a-UIandTookits - 20 October 2020

Week 6 : 
a. System structure and Toolkits

Anastasia.Bezerianos@lri.fr

(part of this class is based on previous classes from Anastasia,
and of T. Tsandilas, S. Huot, M. Beaudouin-Lafon, N.Roussel, O.Chapuis)

2 week6a-UIandTookits - 20 October 2020

graphical interfaces

GUIs: input is specified w.r.t. output

Input peripherals specify commands at specific

locations on the screen (pointing), where
specific objects are drown by the system.

Familiar behavior from physical world

3 week6a-UIandTookits - 20 October 2020

software layers

Windows, Mac OS, Unix,
Linux, Android, iOS,
WindowsCE

GDI+, Quartz, GTK+/Xlib,
OpenGL

X Windows (+KDE or GNU)

Builders, Java Swing, JavaFX,
Qt, GTK+, MFC, Cocoa

Applications/Communication
(MacApp)Application

Operating System

Interface Tools & Toolkits

Input/Output

Graphics Library

Windowing System

4 week6a-UIandTookits - 20 October 2020

software layers

Application

Operating System

Interface Tools & Toolkits

Input/Output

Graphics Library

Windowing System

5 week6a-UIandTookits - 20 October 2020

input: where we give commands

output: where the system shows its state

input/output peripherals

6 week6a-UIandTookits - 20 October 2020

interactivity vs. computing

closed systems (computation):
▪ read input, compute, produce result
▪ final state (end of computation)

open systems (interaction):
▪ events/changes caused by environment
▪ infinite loop, non-deterministic

7 week6a-UIandTookits - 20 October 2020

problem

▪ we learn to program algorithms (computational)

▪ most languages (C/C++, Java, Lisp, Scheme,
Pascal, Fortran, ...) designed for algorithmic
computations, not interactive systems

8 week6a-UIandTookits - 20 October 2020

problem

treating input/output during computation
(interrupting computation) …

▪ write instructions (print, put, send,…) to
send data to output peripherals

▪ read instructions (read, get, receive,…) to
read the state or state changes of input
peripherals

9 week6a-UIandTookits - 20 October 2020

problem

to program IS in algorithmic/computational form:

two buttons B1 and B2
finish <- false
while not finish do

button <- waitClick ()
//interruption, blocked comp.

if button
B1 : print « Hello World »
B2 : finish <- true

end

end

10 week6a-UIandTookits - 20 October 2020

Querying Polling Events

Query & wait Active wait Wait queue
1 per. at a time Polling in sequence
 CPU cost

managing input

11 week6a-UIandTookits - 20 October 2020

event based (driven) programming

event (waiting) queue

while active
 if queue is not empty
 event <- queue.dequeue()
 source <- findSource(event)
 source.processEvent(event)
 end if
end while

queue.enqueue(event)

Animations : « clock » source of events
« tick » -> event -> animation progression

Source :
Mouse Click

12 week6a-UIandTookits - 20 October 2020

while active
 if queue is not empty
 event <- queue.dequeue()
 source <- findSource(event)
 source.processEvent(event)
 end if
end while

processEvent(event)
 target <- FindTarget (event)
 if (target ≠ NULL)

target.processEvent(event)

event based (driven) programming

event (waiting) queue

queue.enqueue(event)

Animations : « clock » source of events
« tick » -> event -> animation progression

Source :
Mouse Click

Target :
Button « Cancel »

13 week6a-UIandTookits - 20 October 2020

event handling

Lower layers fill-up the queue
Upper layers de-queue and treat events

Application

Operating System

Interface Tools & Toolkits

Input/Output

Graphics Library

Windowing System

14 week6a-UIandTookits - 20 October 2020

We focused on a specific Tookit (JavaFX),
but there are several comment characteristics …

software layers

Application

Operating System

Interface Tools & Toolkits

Input/Output

Graphics Library

Windowing System

15 week6a-UIandTookits - 20 October 2020

interface builders

Examples :
SceneBuilder (JavaFX),
MS Visual Studio (C++, C#, etc.), NetBeans (Java), Interface
Builder (ObjectiveC), Android Layout Editor

16 week6a-UIandTookits - 20 October 2020

interface builders

can be used to
▪ create prototypes (but attention it looks real)
▪ get the « look » right
▪ be part of final product

▪ design is fast
▪ modest technical training needed
▪ can write user manuals from it

But: still need to program (and clean code …)

17 week6a-UIandTookits - 20 October 2020

interface toolkits

libraries of interactive objects (« widgets », e.g.
buttons) that we use to construct interfaces

functions to help programming of GUIs
and handle input events

18 week6a-UIandTookits - 20 October 2020

interface toolkits
Toolkit Platform Language

Qt multiplatform C++

GTK+ multiplatform C

MFC later WTL Windows C++

WPF (subset of WTL) Windows (any .Net language)

FLTK multiplatform C++

AWT / Swing / JavaFX multiplatform Java

Android Android Java

iOS iOS/ WatchOS Objective C / Swift

Cocoa MacOs Objective C / Swift

Gnustep Linux, Windows Objective C

Motif Linux C

JQuery UI Web javascript

Problem with toolkits? ….

19 week6a-UIandTookits - 20 October 2020

treating events

20 week6a-UIandTookits - 20 October 2020

« widgets » (window gadget)
menu window palletbutton

text zone

list

slider

tab

radio button

scroll bar

label

21 week6a-UIandTookits - 20 October 2020

facets of a widget

presentation
▪ appearance

behavior
▪ reaction to user actions

interface with the application:
 notification of state changes

Button:
 border with text inside
 « pressing » or « releasing » animation when clicked
 call function when the button is clicked

22 week6a-UIandTookits - 20 October 2020

facets of a widget

presentation
▪ appearance

behavior
▪ reaction to user actions

interface with the application:
 notification of state changes
▪ active/linked/wrapped variables (Tcl/Tk)
▪ event dispatching (Qt)
▪ callback functions (Swing/JavaFX)

23 week6a-UIandTookits - 20 October 2020

1. variable wrappers (active variables)
two-way link between a state variable of a widget and
another application variable

(in Tcl/Tk referred to as tracing, related to binding in JavaFX)

problems
▪ limited to simple types
▪ return link can be costly if automatic
▪ errors when links are updated by programmers

main (){

 int i = 0;

 …

 /* widget */

 nc = CreateSlider (…);

 /* active var */

 SetIntegerActiveVariable (nc, &i);

 …

}

24 week6a-UIandTookits - 20 October 2020

2. event dispatching

widgets act as input peripherals and send
events when their state changes

a "while" loop reads and treats events

associate an object to a widget, and its
methods to changes in the widget state

(Unity, Qt, …)

25 week6a-UIandTookits - 20 October 2020

2. event dispatching

▪ event sending and treatment

▪ better encapsulation (inside widget class)

▪ but when similar behaviors exist …

26 week6a-UIandTookits - 20 October 2020

3. callback functions
Registration at widget creation

Call at widget activation

27 week6a-UIandTookits - 20 October 2020

3. callback functions
Problem: spaghetti of callbacks

Sharing a state between multiple callbacks by:
▪ global variables: widgets check them

• too many in real applications

▪ widget trees: callback functions are called with a reference
to the widget that called it (visible in the same tree)

• Fragile if we change the structure of the UI, does not deal with
other data not associated to widgets (e.g. filename)

▪ token passing: data passed with the callback function call

28 week6a-UIandTookits - 20 October 2020

3. callback functions

token

Events generated here, treated by calling appropriate callback

Callbacks registered once

/* callback function */
void DoSave (Widget w, void* data) {

/* retrieve file name */
 filename = (char**) data;
/* call an application function */
SaveTo (filename);
/* close the dialog */
CloseWindow (getParent(getParent(w)));

}

/* main program */
main () {

/* variable with file name */
char* filename = “”;
…
/* create a widget and assosiate a callback */
ok = CreateButton (....);
RegisterCallback (ok, DoSave, (void*) &filename);
…
/* event manager loop */
MainLoop ();

}

29 week6a-UIandTookits - 20 October 2020

event listeners (Java)

Listeners/Handlers
are a variation of callbacks in Java:

methods of type addListener or setOn… that
do not specify a callback function but an
object, the listener/handler

when a widget changes state, it triggers a
predefined method of the listener object
(e.g. actionPerformed() or handle())

30 week6a-UIandTookits - 20 October 2020

input treatment

interface with the application:
 notification of state changes
▪ active/linked/wrapped variables
▪ event dispatching
▪ callback functions / handlers

Callbacks/listeners still produce the
most reusable (but potentially most
complex) code

31 week6a-UIandTookits - 20 October 2020

interface toolkits

event-action model
▪ can lead to errors (e.g., forgotten events)
▪ difficult to extend (e.g., add hover events)
▪ complex code

 => Finite State Machine and Hierarchical SM

hard to do things the toolkit was not designed for
 e.g. multi-device input, multi-screen applications,
 advanced interaction techniques (CrossY)

32 week6a-UIandTookits - 20 October 2020

