Programming of
Interactive
Systems

Anastasia.Bezerianos @Iri.fr

Based on Slides from Caroline Appert

Week 6:
b. State machines

Anastasia.Bezerianos @Iri.fr

Inspired by Slides from Caroline Appert

week6b-StateMachines.key - 20 October 2020

Finite State Machines

States represent the state of your system:
current window, active widgets, switching window...

Transitions are triggered by events:
User events (mouse click, key press, ...)
System events (timeout, incoming packet, ...)
Custom events (gesture recognition, ...)

3 week6b-StateMachines.key - 20 October 2020

Finite State Machines

Finite state machines (FSM)

Can help you think of the system behavior and
possible states before coding

Work at different levels (remember interaction
storyboards?)

4 week6b-StateMachines.key - 20 October 2020

Describing detailed interactions

Finite state machines (FSM):

States represent interaction states:
|dling, dragging, drawing, ...

Transitions are triggered by events:
User events (mouse click, key press, ...)
System events (timeout, incoming packet, ...)
Custom events (gesture recognition, ...)

5 week6b-StateMachines.key - 20 October 2020

Example

Dragging a shape:

Mouse Down /
Select shape at current location

Mouse Move /

l\gﬁ\ém‘g Move selected shape
P at current location
Mouse Up/
Deselect shape
6

week6b-StateMachines.key - 20 October 2020

Example

Implementing this with callbacks/listeners:

Shape dragged = null;
new MouseAdapter() {
public void mousePressed(MouseEvent e) {
// dragged is initialized, could call a function MouseDownState

}

public void mouseReleased(MouseEvent e) {

// dragged is set back to null, could call a function IdleState
}
}

new MouseMotionAdapter() {
public void mouseDragged (MouseEvent e) {
// dragged is translated, could call a function MovingShapeState

Mouse Down /
Select shape at current location

Movin Mouse Move/
Sha 3 Move selected shape
P at current location

Mouse Up 7
Deselect shape

7 week6b-StateMachines.key - 20 October 2020

Example

This is okay for simple state machines.

Mouse Down /
Select shape at current location

Movin Mouse Move /
Sha s Move selected shape
P at current location

Mouse Up/
Deselect shape

8 week6b-StateMachines.key - 20 October 2020

Example

This is okay for simple state machines.

Let's consider the ability to select and drag
an object:

Mouse Down /
Store current location in P1 Mouse Move &
and select shape at P1 distance(P1, current) >=D

Selecting
Shape

Mouse Up/
Show shape selection

Mouse Move /
Move selected shape
to current location

Mouse Up/ 9
Deselect shape

9 week6b-StateMachines.key - 20 October 2020

Example

Implementing the FSM with callbacks:

Shape dragged = null;

boolean dragging = false; € State Varlables

new MouseAdapter() {
public void mousePressed(MouseEvent e) {
// dragged is initialized

}

public void mouseReleased(MouseEvent e) {
// dragged is set back to null
// shape is selected if not dragged

} Separate listeners
}

new MouseMotionAdapter() {
public void mouseDragged(MouseEvent e) {
if (!dragging) {
// check if dragging occurs

} else { Mouse Down /
Store current location in P1 Mouse Move &
// drag shape and select shape at P1 distance(P1, current) >= D

Mouse Move
Move selected shape
to current location

Selecting
Shape
Mouse Up /

Show shape selection

Mouse Up
Deselect shape

10

10 week6b-StateMachines.key - 20 October 2020

Enter / Leave

In general, the user should know in which
state the system is. To that end, actions can
be triggered when entering or leaving a
state to express this change.

Example:

When being dragged, the shape becomes translucent:

PressOn(Shape)/ Make shape
Select shape at current location translucent

Move /
Move selected shape
at current location

Release / Make shape B

Deselect shape opaque

11 week6b-StateMachines.key - 20 October 2020

Enter/Leave

Implementing this with callbacks/listeners:

Shape dragged = null;

new MouseAdapter() {

public void mousePressed(MouseEvent e) {
// dragged is initialized, could do this in a separate function
dragged = findShapeAt(e.getPoint());
dragged.setTransparent(true);

}

public void mouseReleased(MouseEvent e) {
// dragged is set back to null, could do this in a separate function
dragged = null;
dragged.setTransparent (true);

}

} . PressOn(Shape) / Make shape
new MouseMotionAdapter() { Select shape at current location translucent

public void mouseDragged(MouseEvent e) {

// dragged is translated
}
}

12 week6b-StateMachines.key - 20 October 2020

Move /
Move selected shape
at current location

12

Release/ Make shape
Deselect shape opaque

Guard

Transitions can be moderated by a guard
(use & symbol in transition).

If the boolean it returns is true, the transition
will happen.

Only unlocked shapes can be moved:

PressOn(Shape) [Make shape

Select shape at current location ___. translucent

&shapeis 7 LGS TN
unlocked? Move /
sﬁ:ng Move selected shape
P at current location
13
Release / " Make shape

Deselect shape opaque

13 week6b-StateMachines.key - 20 October 2020

Guard

Implementing this with callbacks/listeners:

Shape dragged = null;
new MouseAdapter() {
public void mousePressed(MouseEvent e) {
// dragged is initialized, could do this in separate function
dragged = PressOn(e.getPoint());
if (dragged.unlocked)
dragged.setTransparent(true);
else
dragged = null;
}
public void mouseReleased(MouseEvent e) {
// dragged is set back to null, could do this in a separate function
dragged = null;
dragged.setTransparent(true);
}
}
new MouseMotionAdapter() {
PressOn(Shape)/ Make shape

Shape is -
unlocked?

Move /

‘{\/I ve selected shape
current location

Release " Make shape
Deselect shape ananiie

14 week6b-StateMachines.key - 20 October 2020

Calling Order

When a transition from a state A to a state B
occurs, the following order should be followed:

Transition.guard()
StateA.leave()
Transition.action()

StateB.enter()
oo’
C =20

15 week6b-StateMachines.key - 20 October 2020

15

Transitions

Transitions define two event properties:
the type (press, release, move, etc.)
the optional target (element type, group, widget, etc.).

A transition can have no specific target,
meaning it occurs solely based on the nature
of the event.
Key events and custom events are often target-less.
Move events should be target-less (you should know the
target already from a previous event)

16

16 week6b-StateMachines.key - 20 October 2020

Example Transitions

Target-less To check for

Click on shape or

Press widget

Release :

Drag ClickOnShape

Move PressOnShape

- Enter ReleaseOnShape

- Leave oragonShape
MoveOnShape

KeyPress EnterOnShape

KeyRelease LeaveOnShape

KeyType

TimeOQut T

Shape events relate to specific shapes/items 17

17 week6b-StateMachines.key - 20 October 2020

State Machines can

help break down complex tasks:
looking at entire program, or widgets as state machines

organize code based on states:

easier to debug

help communicate behavior to others

graphically before writing code

Often we draw state machines when expecting
complex interactions and state transitions

18

18 week6b-StateMachines.key - 20 October 2020

State Machines

Several Ul programming libraries have

Finite State Machine extensions

e.g., SwingStates for Java Swing
or statecharts in javascript

19

19 week6b-StateMachines.key - 20 October 2020

example problem

20

20 week6b-StateMachines.key - 20 October 2020

example problem

State machine reminder:

State (circle) = interaction state NOT location of the application
Transition (arc/link) = input events (Up, Down, Move, Drag, ...)

State machine
actions associated with transitions (after the “/” symbol)

guard conditions (boolean checks) associated with transitions
(after the “&” symbol)

Down / Record (/ ___ Drag&dlst (P1, current) >= eps
/ “Up / Click (P1 ™~~~ (O
P (P1) \/)
_/ - '\3 _‘/'

Up / Done (P1, current) 21
Drag /

Draw (P1, current)

21 week6b-StateMachines.key - 20 October 2020

example problem

Create a state machine for a technique:

Area cursor: area around cursor, can click on
targets when inside (in first image a click selects
nothing, in the others it selects the left target)

Op O

22

22 week6b-StateMachines.key - 20 October 2020

example problem

Can use:

List = IntersectTargets (mousePos, WIDTH)
Target = ClosestTarget (mousePos, List)

23

23 week6b-StateMachines.key - 20 October 2020

example solution

Low level user event
guard (find the closest object from the list of

all objects that are intersected by
area cursor of size WIDTH)

MousePress & (ClosestTarget (mousePos, IntersectTargets (mousePos, WIDTH)) ! null) /

t = ClosestTarget (mousePos, IntersectTargets (mousePos, WIDTH))
LaunchTargetClickedAction(t) // do stuff when target clicked \

action during the transition,
get the closest object and
do stuff when it is clicked

24

24 week6b-StateMachines.key - 20 October 2020

example solution 2

(that highlights closest target)

MousePress & (ClosestTarget (mousePos, IntersectTargets (mousePos, WIDTH)) ! null) /
t = ClosestTarget (mousePos, IntersectTargets (mousePos, WIDTH))
RemoveHighlightFromEveryTarget()

Hightlight(t)

LaunchTargetClickedAction(t) // do stuff when target clicked

/\ MouseMove & (ClosestTarget (mousePos, IntersectTargets
(mousePos, WIDTH)) ! null') /

t = ClosestTarget (mousePos, IntersectTargets (mousePos, WIDTH))

idle MouseMove > update RemoveHighlightFromEveryTarget()
Hightlight(t)
MouseRelease MouseMove
RemoveHighlightFromEveryTarget() RemoveHighlightFromEveryTarget()

Note:
RemoveHighlightFromEveryTarget() resets the colour of every target item
Highlight (t) highlights the item that can be selected by the area cursor, e.g. changing it’s border to be thicggr

25 week6b-StateMachines.key - 20 October 2020

