
EXAM Programming of Interactive Systems
21/12/2012—Duration: 2 hours

Authorized material: any document in paper form.
Read the entire announcement. Be clear, concise and precise.

A. Toolkit (3 points)

Figure 1 shows a dialog window for choosing a color in different ways.
1. Identify the components (widgets) you can see here (you can rely on the

names used in the Java Swing toolkit).
Note: Label the components directly on Figure 1 with a unique letter and a line point-
ing to it, as we did below with the “OK” button (letter A), and reference them with that
letter on your exam sheet. Hand this page in at the end.

2. Identify the event listeners for the components that need one and specify the
most precise event they are listening for (even if you do not know the precise
name of the event listener, explain the type of events it listens for).

3. For each event listener, explain briefly what action they perform (in plain eng-
lish or pseudocode). We suppose that you can access the values of all compo-
nents on this dialog window.

Figure 1—Color chooser

A. Bezerianos & D. Bonnet ! Programming of Interactive Systems (2012)! Page 1/4

A

Do not forget to write the exam sheet ID here (NOT student ID):________________

B. Movement (4 points)

Figure 2 shows a new technique for contextual menus. They are invoked when the
user clicks with the right mouse button. The items of the menu are round targets
(disks) of different sizes surrounding the cursor. To select an item, the user moves
the cursor inside one target and clicks on it with the left mouse button. A click outside
any target dismisses the menu.

Figure 2—Disk-based contextual menu for a text editor.
(a) Menu invoked. (b) Cursor moved to select item “Replace” by clicking on it.

1. Which item is the fastest to select? Which item is the slowest? Explain your an-
swers.

2. What are the advantages and disadvantages of this technique compared to
traditional contextual menus in the form of a list appearing next to the cursor?

3. Imagine that you can define the structure of the menu (position and size of tar-
gets). Design your own structure. Justify your choice based on your personal
needs and what you know about human capabilities.

Figure 3 presents another contextual menu. The items are lines that can be selected
by dragging the cursor across them while holding the right mouse button down. If the
right mouse button is released and no crossing occurred, the menu is dismissed.

Figure 3—Crossing-based contextual menu for a text editor.
(a) Menu invoked. (b) Cursor dragged to trigger command “Replace” by crossing it.

4. What are the advantages and disadvantages of this menu to the one in Fig-
ure 2? Is selection faster or slower?

COPY RESIZE

ZOOM OUT

SAVE
 ASCLOSE

PASTE

CUT

SAVE

FIND

NEW
HELP

REPLACE

ZOOM IN

COPY RESIZE

ZOOM OUT

SAVE
 ASCLOSE

PASTE

CUT

SAVE

FIND

NEW
HELP

REPLACE

ZOOM IN

COPY

RESIZE

ZOOM OUT

SAVE AS

CLOSE

PASTE

CUT

SAVE

FIND
NEW

REPLACE

ZOOM IN

HELP

COPY

RESIZE

ZOOM OUT

SAVE AS

CLOSE

PASTE

CUT

SAVE

FIND
NEW

REPLACE

ZOOM IN

HELP

A. Bezerianos & D. Bonnet ! Programming of Interactive Systems (2012)! Page 2/4

(a) (b)

(a) (b)

C. State machines (4 points)

Figure 4—Example of a state machine describing the dragging of a shape.

In this exercise, we ask you to describe state machines graphically. The actions
should be described in pseudocode. Variables and functions can be introduced as
long as their meaning is clearly defined. Figure 4 shows an example of graphical rep-
resentation of a state machine. Circles represent states and arrows represent tran-
sitions between them. Transitions are fired when an event (in bold) occurs and if an
optional condition, called guard (after the “&”), is fulfilled. Actions can be associated
to transitions (after the “/”) or when entering or leaving a state (black triangles).

You can assume the existence of a list of all objects shapeList[] and the functions:
• boolean inside(x, y, shape) that returns true if point located at (x, y) is

inside object shape.
• boolean crosses(x1, y1, x2, y2, shape) that returns true if the line

segment defined by the points (x1, y1) and (x2, y2) has crossed shape.

1. Propose a state machine describing the interaction with the menu in Figure 2.
2. Propose a state machine describing the interaction with the menu in Figure 3.
3. Imagine you have access to EnterOnShape and LeaveOnShape events for

simple Rectangle shapes, but not Line shapes (Figure 3). Describe a state ma-
chine that detects crossing of Line shapes (Figure 3) using these events in-
stead of the crosses function. Assume you know the two end points that de-
fine all your Line shapes.

D. Design, state machines and evaluation (5 points)

We now want you to design extensions to the techniques seen in exercise B, de-
scribe them using state machines, and evaluate them using different criteria.
Note: A simple key modifier solution will not give you full points.

1. For the menu in Figure 2:
1.1. How would you extend the menu to activate multiple commands during a

single invocation? Describe it textually and/or with sketches.
1.2. Draw the corresponding state machine (you can reference parts from ex-

ercise C).
1.3. Evaluate your design based on any laws of human movement that apply to

it (Fitts, Steering law, etc.) and the usability criterion of “visibility”.

2. Apply questions 1.1, 1.2 and 1.3 to the menu in Figure 3.

Idling Moving
Shape

Press
& Location is inside a shape /

Select shape at current location

Release /
Deselect shape

Move /
Move selected shape

at current location

Make shape
translucent

Make shape
opaque

A. Bezerianos & D. Bonnet ! Programming of Interactive Systems (2012)! Page 3/4

E. Drag-and-drop (4 points)

In this exercise, limit your answers to 5 lines per question.
We have a simple graphical vector application that allows to create, resize and de-
lete shapes. What is missing is the ability to drag shapes inside the document win-
dow (Figure 5) or from one document window to another (Figure 6).

When dragging a shape inside a document window, if the cursor reaches a border of
the window, the viewport should start scrolling in the appropriate direction after a
short delay, even if the cursor stops moving. The ghost of the dragged shape should
follow the cursor.

Figure 5—Drag and drop of a shape inside a document
with automatic scrolling if the cursor dwells for a short delay near the window border.

When dragging a shape between two document windows, the ghost of the dragged
shape should follow the cursor anywhere on the screen, even when outside of the
window.

Figure 6—Drag and drop of a shape from one document to another.

1. How would you ensure programmatically the automatic scrolling interaction?
2. If the shape needs to be dragged to a location on the canvas that needs a lot of

scrolling, this can be time consuming. Thus, allowing to control the scrolling
speed could accelerate the interaction. How would you allow to control the
scrolling speed? How would you implement this?

3. While dragging, it happens that some mouse movement events are lost. Give
an effective way to handle programmatically the dragging of an object with the
mouse cursor by detailing the actions (variables stored and computations in
pseudocode) of the transitions Press, Move and Release (Figure 4).

4. How would you make sure that the shape being dragged follows the cursor
anywhere on the screen (even outside of the document window)?

Canvas 1

Visible area of the canvas (viewport) Hidden area of the canvas

Canvas 1

Picking area that triggers the scrolling of the canvas

Canvas 1 Canvas 2

A. Bezerianos & D. Bonnet ! Programming of Interactive Systems (2012)! Page 4/4

