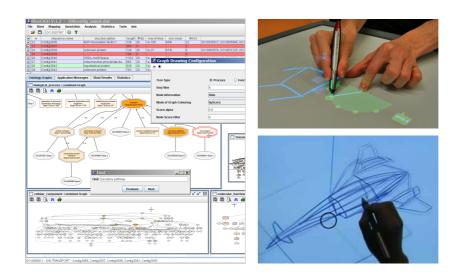
Programming of Interactive Systems (Interfaces et Systèmes Interactifs) ISI-2012, HCID 103


Anastasia.Bezerianos@lri.fr

Week 1: b. Ergonomics & HCI, History, Styles

Anastasia.Bezerianos@lri.fr

(part of this class is based on previous classes from Anastasia, and of T. Tsandilas, S. Huot, M. Beaudouin-Lafon, N.Roussel, O.Chapuis)

interactive systems

ergonomics and hci

Ergonomics and HCI

Ergonomics (human factors):

Ergonomics (or human factors) is the scientific discipline concerned with the understanding of interactions among humans and other elements of a system, and the profession that applies theory, principles, data and methods to design in order to optimize human well-being, security, and overall system performance.

International Ergonomics Association

Ergonomics and HCI

Ergonomics (human factors):

Ergonomics (or human factors) is the scientific discipline concerned with the understanding of interactions among humans and other elements of a system, and the profession that applies theory, principles, data and methods to design in order to optimize human well-being, security and overall system performance.

International Ergonomics Association

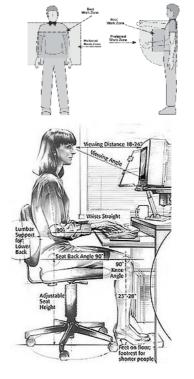
Ergonomics

Physical

Cognitive

Organizational

Environmental


Ergonomics

Physical

Cognitive

Organizational

Environmental

Ergonomics

Physical

Cognitive

Organizational

Environmental

Ergonomics

Physical

Cognitive

Organizational

Environmental

Ergonomics

Physical

Cognitive

Organizational

Environmental

Ergonomics

influences

- mechanical engineering and physics
- psychology
- physiology and kinesiology

. .

combined with observations and studies

Traditionally goal is to give **precise guidelines**

Ergonomics = Ergos + Nomos

Greeks and Egyptians
Frederick W. Taylor (1900) on coal shoveling
Frank B. Gilbreth (1911) on bricklaying

2nd world war – birth of «human factors»

military influence (even today)

Space and Information Age → HCI

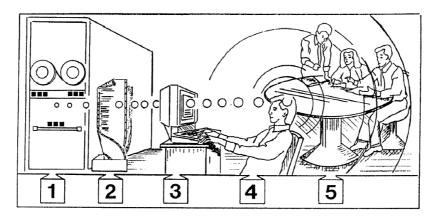
Ergonomics and HCI

HCI:

"HCI is a discipline concerned with the design, evaluation and implementation of interactive computing systems for human use and with the study of major phenomena surrounding them."

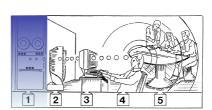
(an) ACM definition

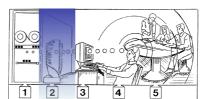
hci you know



a brief history of hci

the history of interfaces

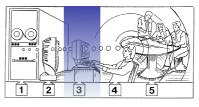

Grudin (1990) The computer reaches out: The historical continuity of interface design


Phase 1 (Interface as hardware)

- 1950s
- Engineers / programmers
- Electrical engineering

Phase 2 (Interface as software)

- 1960s-1970s
- Programmers
- · Punched cards, batch processing
- Users (indirect)
- Computer Science



the history of interfaces

Phase 3 (interfaces as terminals)

- 1970s-1990s
- End users (time-sharing)
- Human factors, cognitive psychology, graphic design
- Time sharing creates the illusion of a personal machine
- User can afford to think "at the terminal"
- Focus on user behaviour and productivity
- Computer mediated human-human interaction (CSCW)
 - Messages / Shared file systems

Phase 4 (Interface as dialogue)

- 1980s-
- Personal computers
- Many end users
- More cognitive psychology, graphic design

Phase 5 (Interface as work setting)

- 1990s-
- Widespread use of networks
- Groups of end users, communities Social psychology, anthropology, organizational studies

the history of interfaces

Phase 6 (?)

- 2000s-
- Mobile computing
- · Mobile users, ad-hoc communities
- Pervasive / ubiquitous computing
- · Domestic computing
- Social computing
- Anthropology, arts and drama

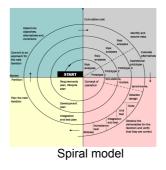
influences

Computer science

- Software engineering
- Technological advances user interfaces

Human factors & psychology

- · Computer programming and usage
- Work environments


Cognitive science

• Models, theories, frameworks

the history of interfaces

software engineering

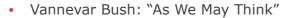
- Software crisis → software engineering
- specifications
- Waterfall » and « Spiral » dev. models
- iterative development
- prototyping

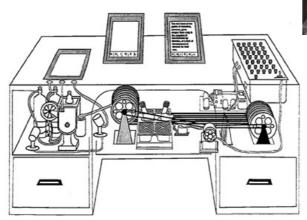
technological progress

- Speed increase
 Motivated more applications
- Cost decrease
 Made interfaces accessible to different people
- New technologies
 Different interaction needs

the history of interfaces

human factors / ergonomics


- Guides for improving interface design
- Guides for evaluation of interfaces
- First psychological studies in HCI
 - Programming psychology (Software psychology '60s)
 - Behavior of programmers (Weinberg 1971)
 - Comparison of batch processing and time-sharing
 - Response time and productivity
 - Individual differences (Sackman 1970)
 - Design principles de (Hansen 1971)


cognitive sciences

- Multidisciplinary approach
 - linguistics, anthropology, philosophy, psychology and computer science
- Study of
 - perception, cognitive processes
- Guidance
 - Provide guidance at early stages of the software development process

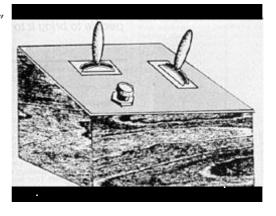
« as we may think »

MEMEX and Hypertext (1945)

batch interfaces

(1945 - 1968)

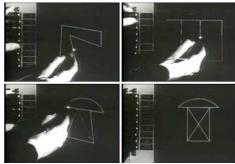
punched card


game interfaces

Spacewar!

- MIT Steve "Slug" Russel (1961)
- DEC PD1

"mini-computer"


Sketchpad – Ivan Sutherland (1963)

- PhD thesis in MIT
 - 1st graphical interface

http://www.youtube.com/watch?v=mOZqRJzE8xg

- graphical screen
- pointing devices (optical pen) and buttons
- design, zoom, copy-paste, icons, geometric constraints

NLS/Augment - Douglas Engelbart (1968)

- Stanford Research Institute
 - the idea to augment human intellect and use a network (oNLine System)
 - invention of mouse, keyboard & function buttons
 - hypertext links (Vannevar Bush (1945)
 - collaborative work, video-conference, document sharing



http://sloan.stanford.edu/mousesite/1968Demo.html

textual interfaces

(1969 - 1983)

command line, menus and input screens

First text editor
WordStar (MicroPro, 1979)
Original Apple II

First spreadsheet: Visicalc Dan Bricklin (1979)

Apple][(1977)

Xerox PARC (70s)

- PARC: Palo Alto Research Center created in 1970
 - PARC grouped divers tallents, interested in photocopying but also desktop computers
 - 3 researchers/engineers won a Turing award
- OO Programming (Smalltalk)
- Ethernet
- Portable computers
- Laser printers
- WIMP: Windows, Icons, Menus & Pointers

Xerox Star (1981)

http://interaction.lille.inria.fr/~roussel/digital-library/media/1982-Star-CHI85.mov

Xerox Star (1981)

market failure

- design influenced by software needs (based on task analysis, scenarios, 600-700 heurs of video)
- native function on a network
- GUI based on office/desk metaphor
- use of icons and windows and the idea of WYSIWYG
- system focusing on documents (users do not know the applications)

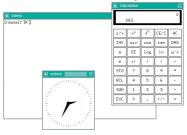
Xerox Star (1981)

- market failure
- too innovative, powerful, different
- target market missed (e.g: no spreadsheets)
- expensive (\$16,500)
- closed architecture (impossible to develop applications outside Xerox)
- political reluctance to expand market beyond printers
- ... but it greatly influenced current systems

Apple Macintosh (1984)

\$2,495

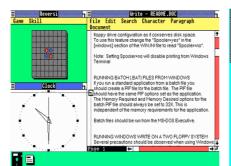
Apple Macintosh (1984)


commercial success, more mature and a more open public

- aggressive price (\$2,500) accessible to larger public
- menu bar, modal dialog boxes and visible applications inherited from l'Apple][
- \$2,495
- The first basis of the state of
- UI toolkit to help external developers
- detailed style guides to help consistence between apps
- three key applications: Finder, MacPaint, MacWrite

http://interaction.lille.inria.fr/~roussel/digital-library/media/1984-Macintosh.mov

X Windows (1984)


 Athena project of MIT: connect 4000 UNIX machines, from different sponsors (DEC, IBM, Motorola, etc.)



- client/server model:
 - division of what/how to facilitate portability
 - transparent use of network that permits remote displays

MS Windows (1985)

Moved to overlapping windows

Microsoft Windows 1

Microsoft Windows 2 (1987)

Desktop interface (1984 -)

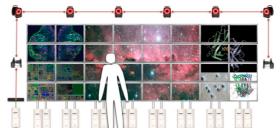
 more power and new uses (network), but little change in interaction:

WIMP (Window, Icon, Menu & Pointing)

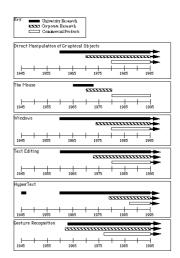
.... that does not mean its a bad thing!

http://www.scottberkun.com/blog/2010/the-future-of-ui-will-be-boring/

HCI


does not follow Moor's law

Original Macintosh		iMac 21"
Jan 1984 - \$2500	x0.6	Sep 2013 - \$1500
CPU 68000 - 0.7 MIPS	x140000	CPU i5 - 100.000 MIPS
RAM 128kB	x36000	RAM 8GB
Floppy 400kB	x2000000	Hard disk 1 TB
9" b&w 512x342	x2 / x10	21" colors, 1920x1080
keyboard, mouse	idem	keyboard, mouse
WIMP desktop	idem	WIMP desktop


that being said ... WILD in LRI

- screen wall:
 - 5.5m x 1.8m
 - 20480 x 6400 = 131 million pixels
 - 32 screens of 30", in a 8x4 configuration
 - driven by a cluster of 18 PC,
 - linked by a high speed network
- 3D motion capture system that tracks users in real time
- Multi-touch interactive tables

HCI and research

 most innovations come from research labs (academic or industrial)

more details

 http://www.cs.cmu.edu/~amulet/papers/ uihistory.tr.html

interaction styles & paradigms

interaction paradigms

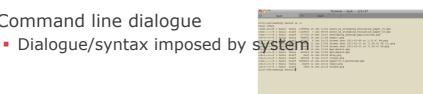
Computer as a tool ← our focus

- 1st person interfaces
- goal: augment user

Computer as a partner

- 2nd person interfaces
- goal: delegate tasks

Computer as a medium


- 3rd person interfaces
- goal: human communication (e.g. CSCW)

interaction styles

- Conversational
- Direct manipulation
- Gestural
- Crossing

conversational interfaces

- Command line dialogue

✓ Easy to program, robust, little computational resources needed

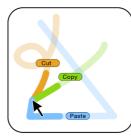
but...

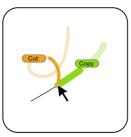
• Difficult to learn, counter-intuitive

gestural interaction

• 2D gestures: commands in touch & pen interfaces http://interaction.lille.inria.fr/~roussel/digital-library/media/2004-gr-mm.mov

• 3D gestures: hand and body gesture recognition http://interaction.lille.inria.fr/~roussel/digital-library/media/2002-minority-report/2002-minority-report-clip.mov


minority-report-clip.mov http://vimeo.com/2229299



command activation with gestures

Gestural input and learning

OctoPocus (Bau, 2008) http://vimeo.com/2116172

crossing and steering

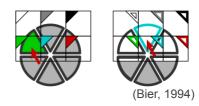
beyond "clicking"

- Crossing: trigger actions when crossing

 http://interaction.lille.inria.fr/~roussel/digital-library/media/2004-CrossY.mov/
 http://www.lri.fr/~dragice/foldndrop/
- Steering: commands that depend on trajectory example: hierarchical menus http://www.youtube.com/watch?v=WPbiPn1b1zQ

bi-manual interaction

Cinematic chain model (Guiard 1987):

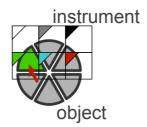

- action of dominant hand is w.r.t. to context from nondominant hand
- dominant hand for precise movements, non-dominant frame of reference
- actions of non-dominant hand precede those of dominant

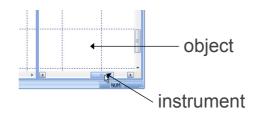
Examples:

- Toolglass: "Tool" manipulated by non-dominant and actions on the "Tool" and application with dominant
- Pan and zoom: pan with dominant hand and zoom with non-dominant

« toolglasses »

Pallets of filters overlaid on objects of interest


http://www.youtube.com/watch?v=BwlAcczLUUA


- Bi-manual interaction
 - left hand positions the filters (toolglasses)
 - right hand selects filters on an object

instrumental interaction

(Beaudouin-Lafon, 2000)

- Model (or style) of interaction, extension of direct manipulation (later)
- « Instrument »: intermediary between user and object of interest that it manipulates

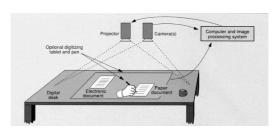
virtual reality

user immersion (sensor + motor) input? usually body tracking or speech

e.g. a head mounted display and a cave

augmented and mixed reality

Augmenting physical objects


Tangible interfaces:

Use physical objects as an interface Examples: Paper on a screen, physical widgets on an interactive table, use of a PDA as a lens

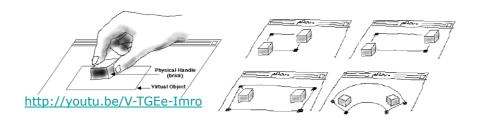
mixed and augmented reality

augmented desk

DigitalDesk (Wellner, 1993) http://youtu.be/S8lCetZ_57g

tangible interaction

Interaction with virtual *information* by manipulating physical objects

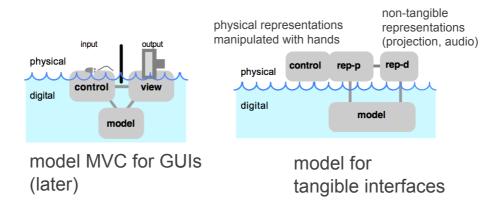


graspable interfaces (Fitzmaurice, 1995)

- physical objects: control virtual objects
- direct mapping between the properties of the physical and the virtual object
- physical constraints guide interaction

augmented paper

physical « Toolglass » (Mackay, 2002)



Projection on paper with pocket-projectors (Song, 2010)

Paper and touch table (Brandl, 2008)

tangible interaction model

multi-touch interaction

In real life we use two hands and ten fingers

Multi-touch interaction

- allows parallel actions
- reduces task complexity
- reduces action time
- close (?) to real life interaction

direct manipulation

Ben Shneiderman (1983)

- 1. Persistent representation of objects of interest
- 2. Use of physical actions instead of complex syntax
- Operations are quick, incremental, reversible, and their effect on objects is immediately visible (feedback)
- 4. Incremental learning, to permit use of the interface with little prior knowledge

direct manipulation: an example

WIMP:

Window, Icons, Menus and Pointing

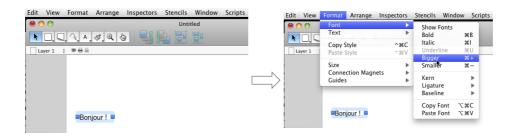
- Presentation
 - Windows, icons and other graphical objects
- Interaction
 - Menus, dialog boxes, text input fields, etc
- Input
 - pointing, selection, paths
- Perception-action loop
 - feedback

direct manipulation: examples

Editing documents WYSIWYG: What You See Is What You Get

Eg.: text editors (e.g., Word, OpenOffice), bitmap/vector graphics (e.g., Photoshop, Illustrator).

Counter-example: Latex ...

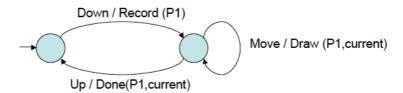

Icon interaction:

- Generic interface
- Use of metaphors
- drag-and-drop

http://www.youtube.com/watch?v=M0ODskdEPnQ

direct manipulation?

direct manipulation problems


- Identifying objects of interest
 - example: styles in Word
- Immediate feedback difficult when there is a delay between action and result
- Direct or indirect manipulation?
 - menus, dialog boxes, scroll-bars, etc.

GUI interaction characteristics

- direct manipulation
- interaction with state machines
- elementary tasks (Foley & van Dam)
- interaction modes

describing interactions: state machines (more later)

- Finite Automata
 State = interaction state
 Transition = input events
- State Machine actions associated to transitions conditions associated to transitions
- Example:

elementary tasks

- Entry
- Selection
- Triggering
- Scrolling

Q+ user interfa

- Specification of arguments/properties
- Transformations

interaction modes

- Mode = state of the interface where input is interpreted differently than other modes
- Problem: mode switching

```
Examples
```

"vi":

Press "Esc" to go from command mode to edit

"emacs":

Uses modifiers (e.g. Control and Meta) for command

input tool palette:

select a tool to activate it

interaction modes

- temporal
 - same action at different points in time has different effect
 - Problem : identify when to change the mode
 - Quasi-modes: temporal modes linked to a continuous physical action (e.g. press Shift)
 - Tools : temporal modes associated with a tool « in hand»
- spatial
 - same action at different locations has different effect
 - Problem: identify the available spatial modes
- An interface is a collection of modes