Design and Evaluation of Interactive Systems

Evaluating your system (Phase IV)

Anastasia Bezerianos
Wendy E. Mackay

in situ lab, INRIA & Univ Paris-Sud
29 January 2014

Homework due today
29 January 2014

1. Finished your video prototype

Some admin info

1. We meet again on 31 Jan (this Friday) @ 9am in E105
2. Exam (i.e. presentations) on 12 Fev (in 2 weeks) @ 9am in E203
3. (Short) report due on 14 Fev (the following Friday) by email

Remember: Final project presentation (exam 12 Fev)

Oral presentation
15 minutes:
- design problem
- user profile
- final design (concept and details)
- video prototype (maximum 5 minutes)
- justification and reasons for improvements (to discuss now) 5 minutes:
 - class discussion: every group asks at least one question

Also due: video prototype, transparencies, final storyboard, poster
Also due: any left-over exercises from the course
Remember: Final report (due on 14 Feb by email)

Executive summary of your project
10 pages maximum

Potential users:
- who are they? (refer to your data)
- what do they need?

Design concept:
- what is the design concept?
- why is this a good solution? (avoid marketing?)

Next steps (future work)

Phase I Understanding Users

Finding out about users
- Introspection
- Observation
- Interviews
- Questionnaires

Analyze information
- Grounded theory categories

Create resources for design
- Scenario
- User profile & Persona

Phase II Invention

Collect or sample information
- Web search
- Oral Brainstorming
- Video Brainstorming

Analyze information
- Preference votes
- Technology dimensions

Create resources for design
- Key ideas
- Design space (ideas to pursue)

Design: What should it be?

Collect or sample information
- Design brief + results from earlier phases

Analyze information
- Interaction table
- Alternative designs

Create resources for design
- Design scenario
- Storyboard
- Mockup
- Video prototype

Earlier results
Homework of the previous week: Examine video prototypes

In class today: Phase IV: Evaluating the System

Exercises in class: Design Walkthrough
 Design Alternatives
 Experiment design

Informal and quick techniques: Heuristics, Design Walkthroughs

Formal techniques: Usability Studies, Controlled Experiments, Quasi-experiments, Use-case studies, … and many many more
Quick and informal evaluation

Design Walkthrough
A group evaluates a specific aspect, step-by-step:
- source of a program to find the ‘bugs’
- design of a system to understand the structure
- graphic screens to get feedback from users
- text (scientific papers) to verify the structure and comprehensibility
- experiments to verify the details of the method used

Exercise: Design Walkthrough

Purpose: Help identify problems informally and quickly, using some evaluation criteria

Procedure:
- Choose a small group with different roles and expertise
- Establish a duration time, not more than 1 hour
- Choose a presenter that explains the scenario of use, each action at a time
- Choose the level of critique (system, interface, specific component)
- The group identifies as many problems as possible
- Use rules to help find problems (e.g., the usability Heuristics)

Types of possible critiques (+/-) and comments

Specific
- It takes three steps to make a simple search
- Missing functionality
- No help, need to search outside
- Bugs
- The import functionality of X does not work
- Suggestions
- An overview of all data created is needed

General (the least useful type)
- Difficult to use too many icons

some of the usability Heuristics (Norman 1983)

Make things visible
- Know the status of the interface by observing the system
- Know what actions that can be performed

Principle of “mapping”
- To understand the correspondence between Actions and results Controls and their effects

Principle of feedback
- Inform the user to system status (before - feedforward or after feedback)
Exercise 1
29 January 2014

1. Each group will evaluate other groups’ video prototype

2. Two people per group: stay (presenter/guardian & moderator/scribe). The rest move to another group as examiners/participants for another group. (one move to the left, one to the right)

In-class Exercise
Walkthrough
30 min

Evaluation: Formal and targeted

Usability Study or simple experiment
Test several alternatives for the system with users:
- interaction techniques
- pop-up vs. drop down menus
- layouts of screens
- hypertext vs. hierarchy
- help
- tutorials vs FAQ vs search
- design alternatives ...

Usability Study

Purpose: To determine the best design choices by watching users try your prototype

Procedure:
- Describe the design objective
- Identify several alternatives
- Choose the dependent & independent variables
- Make a prediction and specify null hypothesis
- Prepare the environment for each test condition (imp. method)
- Use at least 3 subjects (5 better)
- Analyze the results: Are the differences significant?
Usability Study

Quality components (dependent variables/measures) usually tested in Usability Studies:

- Learnability
- Efficiency
- Memorability
- Errors
- Satisfaction

Many useful usability links at the useit.com website (e.g. http://www.useit.com/alertbox/20030825.html)

Always with real users

Problems
- How to define a step to evaluate? (one functionality vs the system)
- And if the user can not do a task?
- What if the system is not properly installed?
- What is the importance of prior user knowledge?
- Does it work differently in different contexts?

Other problems in Usability testing

How many testers are needed?

detectability $d = \text{Probability that a test will identify a problem}$

Example of results: Time

++ usually accompanied by a report of the identified problems
Design a simple experiment (1)

1. Specify the **functionality** offered to users
 What does the system do?
2. Specify **alternative** interaction techniques
 How does the user accomplish it?
3. Specify the **hypothesis**
 What do we compare and what do we predict?
4. Specify the **independent variables**
 What changes?
5. Specify the **dependent variables**
 What are we measuring?

Example of a hypothesis

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Compare linear to pie menus

Hypothesis: pie menus are faster

Null hypothesis (that we try to disprove):
There is no difference in user performance in terms of
time and error rate for the selection of an item in a linear
and in a pie menu, regardless of previous user experience of
using a mouse or other types of menus.

Specify the **independent variables**

The Independent variables (= factors) are
those we want to verify or that we want to control,
independently of each other
The combinations of variables define the **conditions**

Independent Variables:
- 2 Types of menus : linear, pie
- 5 Number of menu items : 3, 6, 9, 12, 15
- 3 levels of experience : expert, novice, intermediate

=> $2 \times 5 \times 3 = 30$ unique conditions

Note: we can treat the user experience as a factor
Specify the dependent variables

The Dependent variables (= measures) are those we measure: they depend on the behavior of the subject and (hopefully) the independent variables.

To make a reliable statistical analysis we must have adequate measures (user data) for each condition.

Typical dependent variables in HCI:
- Time to select an item
- Number of errors
- Others?

Operationalize the behavior

Define the specific menu selection task.
Ensure that the conditions are as similar as possible:
- Same labels for menu items
- Same menu position (center of screen)
- Highlight the item to select (to avoid searching)

Run the experiment

Prediction:
- Always write your subjective predictions before you discover the results
- Another example of looking for surprises

Control any factors that might bias the results:
- All subjects receive the same instructions
- All subjects perform tasks under the same conditions
- All instructions are simple and clear
- Informal contact kept to a minimum

Run the experiment

Ask subjects to sign an informed consent

Identify subjects and ensure their anonymity
- Assign a number to each subject
- Choose conditions based on that number

Collect experimental data
- Make sure they are reliable and valid (no system crashes)
- Minimize treatment when collecting collect raw data, you can sort them out later
Prediction ≠ Null Hypothesis

For our experiment:
 I think that whatever the expertise and size of the menu, the circular menu will be faster than the linear menu

Other predictions:
 For linear menus, performance decreases more items
 For pie menus, performance decreases with more items

Collect data (log)

Save a file that is easy to analyze by man and machine

Start My S1 E CL 3-12-15-9-6 November 21, 2005 3:45:54 p.m.
Condition S1 E C 3 My November 21, 2005 3:46:35 p.m.
Subject expertise item type size hit / miss tps (ms)
Condition S1 E 12 C 3 November 21, 2005 Mon 3:54:22 p.m.
Trial S1 E C 3 2 Hit 1254
Trial S1 E C 3 1 Miss 885
...
End S1 E 12 C 3 November 21, 2005 Mon 4:23:55 p.m.

Exercise: Alternatives

Purpose:
 To consider more design options

Procedure:
 Choose a specific function from your functional table
 Imagine three alternative interactions (which we will operationalize to test in an experiment)

What are the advantages and disadvantages of each alternative?
 (Helps you to form predictions later on)

In-class Exercise

Define Alternatives
30 min
Exercise: Experiment and Hypothesis testing

Purpose:
To determine the best design choices between alternatives

Procedure
Describe your hypothesis and the null hypothesis
Identify the independent and dependent variables
Operationalize the behavior (interactions)
Prepare the environment for each test condition
Use at least 3 subjects
Analyze the results: are the differences significant?

In-class Exercise
Hypothesis testing
30 min