

Protractor: A Fast and Accurate Gesture Recognizer
Yang Li

Google Research
1600 Amphitheatre Parkway
Mountain View, CA 94043

yangli@acm.org

ABSTRACT
Protractor is a novel gesture recognizer that can be easily
implemented and quickly customized for different users.
Protractor uses a nearest neighbor approach, which
recognizes an unknown gesture based on its similarity to
each of the known gestures, e.g., training samples or
examples given by a user. In particular, it employs a novel
method to measure the similarity between gestures, by
calculating a minimum angular distance between them with
a closed-form solution. As a result, Protractor is more
accurate, naturally covers more gesture variation, runs
significantly faster and uses much less memory than its
peers. This makes Protractor suitable for mobile computing,
which is limited in processing power and memory. An
evaluation on both a previously published gesture data set
and a newly collected gesture data set indicates that
Protractor outperforms its peers in many aspects.

Author Keywords
Gesture-based interaction, gesture recognition, template-
based approach, nearest neighbor approach.

ACM Classification Keywords
H5.2. [Information interfaces and presentation]: User
interfaces. I5.2. [Pattern recognition]: Design methodology
– Classifier design and evaluation.

General Terms
Algorithms, performance.

INTRODUCTION
An important topic in gesture-based interaction is
recognizing gestures, i.e., 2D trajectories drawn by users
with their finger on a touch screen or with a pen, so that a
computer system can act based on recognition results.
Although many sophisticated gesture recognition
algorithms (e.g., [2]) have been developed, simple,
template-based recognizers [4, 5] often show advantages in
personalized, gesture-based interaction, e.g., end users
defining their own gesture shortcuts for invoking

commands. First I offer my insight into why template-based
recognizers may be superior for this particular interaction
context. I then focus on Protractor, a novel template-based
gesture recognizer.

Template-based recognizers essentially use a nearest
neighbor approach [3], in which training samples are stored
as templates, and at runtime, an unknown gesture is
compared against these templates. The gesture category (or
the label) with the most similar template is used as the
result of recognition, and the similarity implies how
confident the prediction is. These template-based
recognizers perform limited featurization, and a stored
template often preserves the shape and sequence of a
training gesture sample to a large degree. These recognizers
are also purely data-driven, and they do not assume a
distribution model that the target gestures have to fit. As a
result, they can be easily customized for different domains
or users, as long as training samples for the domain or user
are provided.

In contrast, recognizers that employ a parametric approach
[3] often operate on a highly featurized representation of
gestures and assume a parametric model that the target
gestures have to fit. For example, the Rubine recognizer [2]
extracts a set of geometric features from a gesture such as
the size of its bounding box. It uses a linear discriminate
approach to classify gestures that assumes the featurized
gestures to be linearly separable. These parametric
recognizers can perform excellently when the target
gestures truly fit the assumed model. However, if not, these
recognizers may perform poorly.

For personalized, gesture-based interaction, it is hard to
foresee what gestures an end user would specify and what
the distribution of these gestures will look like. In addition,
since an end user is often willing to provide only a small
number of training samples, e.g., one sample per gesture
category, it is hard to train a parametric recognizer that
often has a high degree of freedom with such sparse
training data. In contrast, template-based recognizers are
well suited for this situation.

However, since a template-based recognizer needs to
compare an unknown gesture with all of stored templates to
make a prediction, it can be both time and space
consuming, especially for mobile devices that have limited
processing power and memory. In the remainder of this

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2010, April 10–15, 2010, Atlanta, Georgia, USA.
Copyright 2010 ACM 978-1-60558-929-9/10/04....$10.00.

paper, I introduce Protractor1, a novel recognizer for gesture
recognition that outperforms its peers in many accounts
including recognition speed, accuracy and gesture variation.

PROTRACTOR
Protractor employs a nearest neighbor approach. For each
gesture (either an unknown gesture or a training sample),
Protractor preprocesses it into an equal-length vector. Given
an unknown gesture, Protractor searches for similar gesture
templates by calculating an optimal angular distance
between the unknown gesture and each of the stored
templates. Protractor uses a novel closed-form solution to
calculate such a distance, which results in significant
improvements in accuracy and speed. Protractor also
recognizes gestures that are both invariant and sensitive to
orientation, as well as gestures with different aspect ratios.

Preprocessing
Protractor’s preprocessing is similar to the $1 recognizer’s
[4], but with several key differences in handling orientation
sensitivity and scaling. This process is intended to remove
irrelevant factors, such as different drawing speeds,
different gesture locations on the screen, and noise in
gesture orientation. The preprocessing transforms the 2D
trajectory of a gesture into a uniform vector representation.

To do so, Protractor first resamples a gesture into a fixed
number, N, equidistantly-spaced points, using the procedure
described previously [4], and translate them so that the
centroid of these points becomes (0, 0). This step removes
the variations in drawing speeds and locations on the
screen.

Next, Protractor reduces noise in gesture orientation. The
orientation information of a gesture can be useful or
irrelevant, depending on the application. Protractor gives
the developer an option to specify whether it should work in
an orientation-invariant or -sensitive way. When Protractor
is specified to be orientation invariant, it rotates a
resampled gesture around its centroid by its indicative
angle, which is defined as the direction from the centroid to
the first point of the resampled gesture [4]. This way, all of
the templates have zero indicative orientation.

1 Pseudocode is available at http://yanglisite.net/protractor.

However, when Protractor is specified to be orientation
sensitive, it employs a different procedure to remove
orientation noise. Protractor aligns the indicative orientation
of a gesture with the one of eight base orientations that
requires the least rotation (see Figure 1). The eight
orientations are considered the major gesture orientations
[1]. Consequently, Protractor can discern a maximum of
eight gesture orientations. Since Protractor is data-driven, it
can become orientation-invariant even if it is specified to be
orientation-sensitive, e.g., if a user provides gesture
samples for each direction for the same category,

Based on the above process, we acquire an equal-length
vector in the form of (x1, y1, x2, y2, …, xN, yN) for each
gesture. For each gesture, the preprocessing only needs to
be done once. In the current design, Protractor uses N = 16,
which allows enough resolution for later classification. 16
points amount to a 32-element vector for each gesture,
which is ¼ of the space required by previous work for
storing a template [4]. Note that Protractor does not rescale
resampled points to fit a square as the $1 recognizer does
[4], which preserves the aspect ratio of a gesture and also
makes it possible to recognize narrow (or 1-dimensional)
gestures such as horizontal or vertical lines. Rescaling these
narrow gestures to a square will seriously distort them and
amplify the noise in trajectories.

Classification by Calculating Optimal Angular Distances
Based on the vector representation of gestures acquired by
the above process, Protractor then searches for templates
that are similar to the unknown gesture. To do so, for each
pairwise comparison between a gesture template t and the
unknown gesture g, Protractor uses the inverse cosine
distance between their vectors, vt and vg, as the similarity
score S of t to g.

S t,g  1

arccos
vt  vg

vt vg

 (1)

The cosine distance essentially finds the angle between two
vectors in an n-dimensional space. As a result, the gesture
size, reflected in the magnitude of the vector, becomes
irrelevant to the distance. So Protractor is inherently scale
invariant. The cosine distance of two vectors is represented
by the dot product of the two vectors (see Equation 2)
divided by the multiplication of their magnitudes (see
Equation 3).

vt  vg  xtixgi  ytiygi 
i1

n

 (2)

vt vg  xti
2  yti

2 
i1

n

 xgi
2  ygi

2 
i1

n

 (3)

However, it can be suboptimal to evaluate the similarity of
two gestures by just looking at the angular distance
calculated by Equation 1. As discussed in the previous

before alighnment after alighnment

Figure 1. When Protractor is specified to be orientation
sensitive, it aligns the indicative orientation of a gesture with

the closest direction of the eight major orientations.

section, Protractor acquires the vector representation of a
gesture by aligning the gesture’s indicative orientation.
Since the indicative angle is only an approximate measure
of a gesture’s orientation, the alignment in the
preprocessing cannot completely remove the noise in
gesture orientation. This can lead to an imprecise measure
of similarity and hence an incorrect prediction. To address
this issue, at runtime, Protractor rotates a template by an
extra amount so that it results in a minimum angular
distance with the unknown gesture and better reflects their
similarity. Previous work [4] performs similar rotation to
find a minimum mean Euclidean distance between
trajectories. However, it used an iterative approach to
search for such a rotation, which is time-consuming and the
rotation found can be suboptimal.

In contrast, Protractor employs a closed-form solution to
find a rotation that leads to the minimum angular distance.
As we will see in the experiment section, this closed-form
solution enables Protractor to outperform previous
recognizers in both recognition accuracy and speed. Here I
give the closed-form solution.

Since we intend to rotate a preprocessed template gesture t
by a hypothetical amount  so that the resulting angular
distance is the minimum (i.e., the similarity reaches its
maximum), we formalize this intuition as:

optimal  argmin
 

arccos
vt   vg

vt   vg









 (4)

vt() represents the vector acquired after rotating template t
by . Note that this is on top of the alignment rotation that
is performed in the preprocessing. As we intend to
minimize the cosine distance with respect to , we find

d arccos
vt   vg

vt   vg











d
 0 (5)

Solving Equation (5) gives the following solution:

optimal  arctan
b

a
 (6)

where a is the dot product of vt and vg (see Equation 2) and
b is given in Equation 7.

b  xtiygi  ytixgi 
i1

n

 (7)

With optimal calculated, we can easily acquire the maximum
similarity (the inverse minimum cosine distance) between
the two vectors. We then use this similarity as the score for
how well gesture template t predicts the unknown gesture g.
The gesture template that has the highest score becomes the
top choice in the N-best candidate list.

PERFORMANCE EVALUATIONS
To understand how well Protractor performs, I compared it
with its closest peer, the $1 recognizer [4], by repeating the
same experiment on the same data set where the $1
recognizer showed advantages over both the Rubine [2] and
the DTW recognizers [5]. The data set includes 4800
samples for 16 gesture symbols collected from 10
participants (e.g., a star) [4]. The experiment was conducted
on a Dell Precision T3400 with a 2.4GHz Intel Quad
CoreTM2 CPU and 4 GB memory running Ubuntu Linux.

Overall, Protractor and the $1 recognizer generated a
similar error rate curve in response to different training
sample sizes (see Figure 2). Although the overall Poisson
regression model for predicting errors was statistically
significant (p<.0001), the major contributor to this
significance is the training sample size and there was no
significant difference between the recognizers (p=.602).

However, Protractor is significantly faster than the $1
recognizer (see Figure 3). Although the time needed for
recognizing a gesture increases linearly for both recognizers
as the number of training samples grows, the $1 recognizer
increases at a much rapid rate. For example, when 9
training samples are used for each of the 16 symbols, the $1
recognizer took over 3 ms to recognize a gesture, while it
took Protractor less than ½ ms to do so.

Number of training samples per gesture category

Figure 2. The error rates of both the $1 recognizer and
Protractor decrease as more training samples are used.

Number of training samples per gesture category

Figure 3. The milliseconds needed for recognizing a gesture
grows as the number of training samples increases. Protractor

runs significantly faster than the $1 recognizer.

To better understand the impact of the time performance of
these recognizers on mobile devices, I repeated the above
experiment on a T-Mobile G1 phone running Android.
When 9 training samples were used for each of the 16
gesture symbols, it took the $1 recognizer 1405 ms (std =
60 ms) to recognize a gesture, while it only took Protractor
24 ms (std = 7 ms) to do so. The time cost of the $1
recognizer grew rapidly as the number of training samples
increased (mean = 155 ms/16 samples, std = 2ms). As part
of a process of continuous learning, a template-based
recognizer needs to constantly add new training samples
generated by user corrections. However, the rapidly
growing latency of the $1 recognizer makes it intractable to
do so. In contrast, the time cost of Protractor grew at a
much slower pace (mean = 2 ms/16 samples, std = 1 ms).

To understand how both recognizers perform on a different
data set, I tested them on a larger gesture set that includes
10,888 single-stroke gesture samples for 26 Latin alphabet
letters. They were collected from 100 users on their own
touch screen mobile phones. Similar to the previous
experiments, I randomly split the data of each user for
training and testing based on different training sizes. Since
each alphabet had at most 5 samples from each user, we
could only test training sizes from 1 to 4. Overall, both
recognizers performed less accurate on this data set than
they did on the previous 16-symbol data set (see Figure 4).
The loss in accuracy was primarily because the new data set
is more complex as it includes 26 gesture categories,
compared to 16 symbols of the previous data set. This
gesture data was also collected in a more realistic situation
than the laboratory environment that was used previously
[4]. However, we see more rapid improvement of both
recognizers as the training size increases (see Figure 4). In
particular, Protractor performed significantly more accurate
than the $1 recognizer on this data set (p < .0001).

Number of training samples per gesture category

Figure 4. The error rates of both recognizers on an alphabet
gesture set collected from 100 mobile phone users.

DISCUSSIONS
As Protractor can recognize variation in gesture orientation
and aspect ratio, there is also a risk that it might pick up
noise in these variations. However, based on the above
experiments, Protractor is as accurate as the $1 recognizer
on the smaller data set (4800 samples / 16 categories / 10
users) and is significantly more accurate on the larger data
set (10,888 samples / 26 categories / 100 users).

In addition to specifying whether Protractor should be
orientation sensitive, a developer can also specify how
sensitive it should be to orientation, e.g., whether two or
four directions are allowed, which will bound the solution
of Equation 6. At eight directions, Protractor started to pick
up some noise in orientation, which led to a significant
increase in error rates (see Figure 5).

Number of training samples per gesture category

Figure 5. The error rates of Protractor for different
orientation sensitivities based on the tests with the 16-symbol

data set.

As a nearest neighbor recognizer needs to load all of the
training samples into memory before it can make a
prediction, the amount of space needed is a critical factor,
especially on mobile devices. Protractor uses ¼ of the space
that is required by the $1 recognizer. With the closed-form
solution, Protractor can also search through stored
templates over 70 times faster than $1 on a T-Mobile G1.

CONCLUSION
I designed Protractor, a template-based, single-stroke
gesture recognizer that employs a novel closed-form
solution for calculating the similarity between gestures. I
evaluated Protractor on different data sets and platforms
and found that it outperformed its peer in many aspects,
including recognition accuracy, time and space cost, and
gesture variation. In addition, I also discussed my insight
into why template-based recognizers in general have gained
popularity in personalized, gesture-based interaction, other
than their obvious simplicity.

REFERENCES
1. Kurtenbach, G. and Buxton, W. The limits of expert

performance using hierarchical marking menus. CHI'93.
1993. p. 35-42.

2. Rubine, D., Specifying gestures by example. ACM
SIGGRAPH Computer Graphics, 1991. 25(4): p. 329-337.

3. Russell, S. and Norvig, P., Artificial Intelligence: A
Modern Approach. 2 ed. 2002. Prentice Hall.

4. Wobbrock, J.O., Wilson, A. and Li, Y., Gestures without
libraries, toolkits or training: a $1 recognizer for user
interface prototypes, UIST'07. 2007. p. 159-168.

5. Zhai, S. and Kristensson, P.-O. Shorthand writing on stylus
keyboard. CHI'03. 2003. p. 97-104.

