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ABSTRACT 
Protractor is a novel gesture recognizer that can be easily 
implemented and quickly customized for different users. 
Protractor uses a nearest neighbor approach, which 
recognizes an unknown gesture based on its similarity to 
each of the known gestures, e.g., training samples or 
examples given by a user. In particular, it employs a novel 
method to measure the similarity between gestures, by 
calculating a minimum angular distance between them with 
a closed-form solution. As a result, Protractor is more 
accurate, naturally covers more gesture variation, runs 
significantly faster and uses much less memory than its 
peers. This makes Protractor suitable for mobile computing, 
which is limited in processing power and memory. An 
evaluation on both a previously published gesture data set 
and a newly collected gesture data set indicates that 
Protractor outperforms its peers in many aspects. 
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INTRODUCTION 
An important topic in gesture-based interaction is 
recognizing gestures, i.e., 2D trajectories drawn by users 
with their finger on a touch screen or with a pen, so that a 
computer system can act based on recognition results. 
Although many sophisticated gesture recognition 
algorithms (e.g., [2]) have been developed, simple, 
template-based recognizers [4, 5] often show advantages in 
personalized, gesture-based interaction, e.g., end users 
defining their own gesture shortcuts for invoking 

commands. First I offer my insight into why template-based 
recognizers may be superior for this particular interaction 
context. I then focus on Protractor, a novel template-based 
gesture recognizer. 

Template-based recognizers essentially use a nearest 
neighbor approach [3], in which training samples are stored 
as templates, and at runtime, an unknown gesture is 
compared against these templates. The gesture category (or 
the label) with the most similar template is used as the 
result of recognition, and the similarity implies how 
confident the prediction is. These template-based 
recognizers perform limited featurization, and a stored 
template often preserves the shape and sequence of a 
training gesture sample to a large degree. These recognizers 
are also purely data-driven, and they do not assume a 
distribution model that the target gestures have to fit. As a 
result, they can be easily customized for different domains 
or users, as long as training samples for the domain or user 
are provided.  

In contrast, recognizers that employ a parametric approach 
[3] often operate on a highly featurized representation of 
gestures and assume a parametric model that the target 
gestures have to fit. For example, the Rubine recognizer [2] 
extracts a set of geometric features from a gesture such as 
the size of its bounding box. It uses a linear discriminate 
approach to classify gestures that assumes the featurized 
gestures to be linearly separable. These parametric 
recognizers can perform excellently when the target 
gestures truly fit the assumed model. However, if not, these 
recognizers may perform poorly.  

For personalized, gesture-based interaction, it is hard to 
foresee what gestures an end user would specify and what 
the distribution of these gestures will look like. In addition, 
since an end user is often willing to provide only a small 
number of training samples, e.g., one sample per gesture 
category, it is hard to train a parametric recognizer that 
often has a high degree of freedom with such sparse 
training data. In contrast, template-based recognizers are 
well suited for this situation. 

However, since a template-based recognizer needs to 
compare an unknown gesture with all of stored templates to 
make a prediction, it can be both time and space 
consuming, especially for mobile devices that have limited 
processing power and memory. In the remainder of this 

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. 
CHI 2010, April 10–15, 2010, Atlanta, Georgia, USA. 
Copyright 2010 ACM  978-1-60558-929-9/10/04....$10.00. 
 



 

 

paper, I introduce Protractor1, a novel recognizer for gesture 
recognition that outperforms its peers in many accounts 
including recognition speed, accuracy and gesture variation.  

PROTRACTOR 
Protractor employs a nearest neighbor approach. For each 
gesture (either an unknown gesture or a training sample), 
Protractor preprocesses it into an equal-length vector. Given 
an unknown gesture, Protractor searches for similar gesture 
templates by calculating an optimal angular distance 
between the unknown gesture and each of the stored 
templates. Protractor uses a novel closed-form solution to 
calculate such a distance, which results in significant 
improvements in accuracy and speed. Protractor also 
recognizes gestures that are both invariant and sensitive to 
orientation, as well as gestures with different aspect ratios.  

Preprocessing 
Protractor’s preprocessing is similar to the $1 recognizer’s 
[4], but with several key differences in handling orientation 
sensitivity and scaling. This process is intended to remove 
irrelevant factors, such as different drawing speeds, 
different gesture locations on the screen, and noise in 
gesture orientation. The preprocessing transforms the 2D 
trajectory of a gesture into a uniform vector representation. 

To do so, Protractor first resamples a gesture into a fixed 
number, N, equidistantly-spaced points, using the procedure 
described previously [4], and translate them so that the 
centroid of these points becomes (0, 0). This step removes 
the variations in drawing speeds and locations on the 
screen. 

Next, Protractor reduces noise in gesture orientation. The 
orientation information of a gesture can be useful or 
irrelevant, depending on the application. Protractor gives 
the developer an option to specify whether it should work in 
an orientation-invariant or -sensitive way. When Protractor 
is specified to be orientation invariant, it rotates a 
resampled gesture around its centroid by its indicative 
angle, which is defined as the direction from the centroid to 
the first point of the resampled gesture [4]. This way, all of 
the templates have zero indicative orientation.  

                                                           
1 Pseudocode is available at http://yanglisite.net/protractor. 

However, when Protractor is specified to be orientation 
sensitive, it employs a different procedure to remove 
orientation noise. Protractor aligns the indicative orientation 
of a gesture with the one of eight base orientations that 
requires the least rotation (see Figure 1). The eight 
orientations are considered the major gesture orientations 
[1]. Consequently, Protractor can discern a maximum of 
eight gesture orientations. Since Protractor is data-driven, it 
can become orientation-invariant even if it is specified to be 
orientation-sensitive, e.g., if a user provides gesture 
samples for each direction for the same category,  

Based on the above process, we acquire an equal-length 
vector in the form of (x1, y1, x2, y2, …, xN, yN) for each 
gesture. For each gesture, the preprocessing only needs to 
be done once. In the current design, Protractor uses N = 16, 
which allows enough resolution for later classification. 16 
points amount to a 32-element vector for each gesture, 
which is ¼ of the space required by previous work for 
storing a template [4]. Note that Protractor does not rescale 
resampled points to fit a square as the $1 recognizer does 
[4], which preserves the aspect ratio of a gesture and also 
makes it possible to recognize narrow (or 1-dimensional) 
gestures such as horizontal or vertical lines. Rescaling these 
narrow gestures to a square will seriously distort them and 
amplify the noise in trajectories. 

Classification by Calculating Optimal Angular Distances 
Based on the vector representation of gestures acquired by 
the above process, Protractor then searches for templates 
that are similar to the unknown gesture. To do so, for each 
pairwise comparison between a gesture template t and the 
unknown gesture g, Protractor uses the inverse cosine 
distance between their vectors, vt and vg, as the similarity 
score S of t to g. 

S t,g  1

arccos
vt  vg

vt vg

                           (1) 

The cosine distance essentially finds the angle between two 
vectors in an n-dimensional space. As a result, the gesture 
size, reflected in the magnitude of the vector, becomes 
irrelevant to the distance. So Protractor is inherently scale 
invariant. The cosine distance of two vectors is represented 
by the dot product of the two vectors (see Equation 2) 
divided by the multiplication of their magnitudes (see 
Equation 3). 

vt  vg  xtixgi  ytiygi 
i1

n

                         (2) 

vt vg  xti
2  yti

2 
i1

n

 xgi
2  ygi

2 
i1

n

          (3) 

However, it can be suboptimal to evaluate the similarity of 
two gestures by just looking at the angular distance 
calculated by Equation 1. As discussed in the previous 
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Figure 1. When Protractor is specified to be orientation 
sensitive, it aligns the indicative orientation of a gesture with 

the closest direction of the eight major orientations. 



 

section, Protractor acquires the vector representation of a 
gesture by aligning the gesture’s indicative orientation. 
Since the indicative angle is only an approximate measure 
of a gesture’s orientation, the alignment in the 
preprocessing cannot completely remove the noise in 
gesture orientation. This can lead to an imprecise measure 
of similarity and hence an incorrect prediction. To address 
this issue, at runtime, Protractor rotates a template by an 
extra amount so that it results in a minimum angular 
distance with the unknown gesture and better reflects their 
similarity. Previous work [4] performs similar rotation to 
find a minimum mean Euclidean distance between 
trajectories. However, it used an iterative approach to 
search for such a rotation, which is time-consuming and the 
rotation found can be suboptimal. 

In contrast, Protractor employs a closed-form solution to 
find a rotation that leads to the minimum angular distance. 
As we will see in the experiment section, this closed-form 
solution enables Protractor to outperform previous 
recognizers in both recognition accuracy and speed. Here I 
give the closed-form solution.  

Since we intend to rotate a preprocessed template gesture t 
by a hypothetical amount  so that the resulting angular 
distance is the minimum (i.e., the similarity reaches its 
maximum), we formalize this intuition as: 

optimal  argmin
 

arccos
vt   vg

vt   vg









             (4) 

vt() represents the vector acquired after rotating template t 
by . Note that this is on top of the alignment rotation that 
is performed in the preprocessing. As we intend to 
minimize the cosine distance with respect to , we find 

d arccos
vt   vg

vt   vg











d
 0                         (5) 

Solving Equation (5) gives the following solution: 

optimal  arctan
b

a
                                (6) 

where a is the dot product of vt and vg (see Equation 2) and 
b is given in Equation 7. 

b  xtiygi  ytixgi 
i1

n

                             (7) 

With optimal calculated, we can easily acquire the maximum 
similarity (the inverse minimum cosine distance) between 
the two vectors. We then use this similarity as the score for 
how well gesture template t predicts the unknown gesture g. 
The gesture template that has the highest score becomes the 
top choice in the N-best candidate list. 

PERFORMANCE EVALUATIONS 
To understand how well Protractor performs, I compared it 
with its closest peer, the $1 recognizer [4], by repeating the 
same experiment on the same data set where the $1 
recognizer showed advantages over both the Rubine [2] and 
the DTW recognizers [5]. The data set includes 4800 
samples for 16 gesture symbols collected from 10 
participants (e.g., a star) [4]. The experiment was conducted 
on a Dell Precision T3400 with a 2.4GHz Intel Quad 
CoreTM2 CPU and 4 GB memory running Ubuntu Linux. 

Overall, Protractor and the $1 recognizer generated a 
similar error rate curve in response to different training 
sample sizes (see Figure 2). Although the overall Poisson 
regression model for predicting errors was statistically 
significant (p<.0001), the major contributor to this 
significance is the training sample size and there was no 
significant difference between the recognizers (p=.602). 

However, Protractor is significantly faster than the $1 
recognizer (see Figure 3). Although the time needed for 
recognizing a gesture increases linearly for both recognizers 
as the number of training samples grows, the $1 recognizer 
increases at a much rapid rate. For example, when 9 
training samples are used for each of the 16 symbols, the $1 
recognizer took over 3 ms to recognize a gesture, while it 
took Protractor less than ½ ms to do so.  

 
Number of training samples per gesture category

Figure 2. The error rates of both the $1 recognizer and 
Protractor decrease as more training samples are used. 
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Figure 3. The milliseconds needed for recognizing a gesture 
grows as the number of training samples increases. Protractor 

runs significantly faster than the $1 recognizer. 



 

 

To better understand the impact of the time performance of 
these recognizers on mobile devices, I repeated the above 
experiment on a T-Mobile G1 phone running Android. 
When 9 training samples were used for each of the 16 
gesture symbols, it took the $1 recognizer 1405 ms (std = 
60 ms) to recognize a gesture, while it only took Protractor 
24 ms (std = 7 ms) to do so. The time cost of the $1 
recognizer grew rapidly as the number of training samples 
increased (mean = 155 ms/16 samples, std = 2ms). As part 
of a process of continuous learning, a template-based 
recognizer needs to constantly add new training samples 
generated by user corrections. However, the rapidly 
growing latency of the $1 recognizer makes it intractable to 
do so. In contrast, the time cost of Protractor grew at a 
much slower pace (mean = 2 ms/16 samples, std = 1 ms). 

To understand how both recognizers perform on a different 
data set, I tested them on a larger gesture set that includes 
10,888 single-stroke gesture samples for 26 Latin alphabet 
letters. They were collected from 100 users on their own 
touch screen mobile phones. Similar to the previous 
experiments, I randomly split the data of each user for 
training and testing based on different training sizes. Since 
each alphabet had at most 5 samples from each user, we 
could only test training sizes from 1 to 4. Overall, both 
recognizers performed less accurate on this data set than 
they did on the previous 16-symbol data set (see Figure 4). 
The loss in accuracy was primarily because the new data set 
is more complex as it includes 26 gesture categories, 
compared to 16 symbols of the previous data set. This 
gesture data was also collected in a more realistic situation 
than the laboratory environment that was used previously 
[4]. However, we see more rapid improvement of both 
recognizers as the training size increases (see Figure 4). In 
particular, Protractor performed significantly more accurate 
than the $1 recognizer on this data set (p < .0001). 

 
Number of training samples per gesture category 

Figure 4. The error rates of both recognizers on an alphabet 
gesture set collected from 100 mobile phone users.  

DISCUSSIONS 
As Protractor can recognize variation in gesture orientation 
and aspect ratio, there is also a risk that it might pick up 
noise in these variations. However, based on the above 
experiments, Protractor is as accurate as the $1 recognizer 
on the smaller data set (4800 samples / 16 categories / 10 
users) and is significantly more accurate on the larger data 
set (10,888 samples / 26 categories / 100 users). 

In addition to specifying whether Protractor should be 
orientation sensitive, a developer can also specify how 
sensitive it should be to orientation, e.g., whether two or 
four directions are allowed, which will bound the solution 
of Equation 6. At eight directions, Protractor started to pick 
up some noise in orientation, which led to a significant 
increase in error rates (see Figure 5). 

 
Number of training samples per gesture category 

Figure 5. The error rates of Protractor for different 
orientation sensitivities based on the tests with the 16-symbol 

data set.  

As a nearest neighbor recognizer needs to load all of the 
training samples into memory before it can make a 
prediction, the amount of space needed is a critical factor, 
especially on mobile devices. Protractor uses ¼ of the space 
that is required by the $1 recognizer. With the closed-form 
solution, Protractor can also search through stored 
templates over 70 times faster than $1 on a T-Mobile G1. 

CONCLUSION 
I designed Protractor, a template-based, single-stroke 
gesture recognizer that employs a novel closed-form 
solution for calculating the similarity between gestures. I 
evaluated Protractor on different data sets and platforms 
and found that it outperformed its peer in many aspects, 
including recognition accuracy, time and space cost, and 
gesture variation. In addition, I also discussed my insight 
into why template-based recognizers in general have gained 
popularity in personalized, gesture-based interaction, other 
than their obvious simplicity. 
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