Fondements de l'interaction Homme-Machine

Travaux Dirigés

http://wiki.lri.fr/hcimasters/fondamentals_of_hci_tutor.wiki

Caroline.Appert@lri.fr Anastasia.Bezerianos@lri.fr

What will we do?

Retro-engineer a research article

- Choose and carefully read I (or 2) article(s)
- Implement the interaction techniques described in it (2 at least)
- Replicate (or design a variant of) the experiment described in it

Olivier Chapuis, Jean-Baptiste Labrune, and Emmanuel Pietriga. 2009. DynaSpot: speed-dependent area cursor. In Proceedings of the 27th international conference on Human factors in computing systems (CHI '09). ACM, New York, NY, USA, 1391-1400.

 Introduces a new technique, DynaSpot, to facilitate target acquisition in a 2D space.
 DynaSpot is an area cursor whose size depends on the cursor speed

Olivier Chapuis, Jean-Baptiste Labrune, and Emmanuel Pietriga. 2009. DynaSpot: speed-dependent area cursor. In Proceedings of the 27th international conference on Human factors in computing systems (CHI '09). ACM, New York, NY, USA, 1391-1400.

 Compares DynaSpot with Bubble Cursor on a 2D pointing task where more or less distractors are along the cursor trajectory

DynaSpot

Speed-Dependent Area Cursor

Wednesday, 28 September 2011

WORK TO DO

- Implement DynaSpot and Bubble Cursor
- Replicate the experiment DynaSpotVS.
 Bubble Cursor

Caroline Appert and Jean-Daniel Fekete. 2006. OrthoZoom scroller: ID multi-scale navigation. In Proceedings of the SIGCHI conference on Human Factors in computing systems (CHI '06), Rebecca Grinter, Thomas Rodden, Paul Aoki, Ed Cutrell, Robin Jeffries, and Gary Olson (Eds.). ACM, New York, NY, USA, 21-30.

 Introduces a new technique, OrhoZoom, to facilitate target acquisition in a ID space.
 OrhoZoom allows the user to adjust the zoom factor through displacements

Caroline Appert and Jean-Daniel Fekete. 2006. OrthoZoom scroller: ID multi-scale navigation. In Proceedings of the SIGCHI conference on Human Factors in computing systems (CHI '06), Rebecca Grinter, Thomas Rodden, Paul Aoki, Ed Cutrell, Robin Jeffries, and Gary Olson (Eds.). ACM, New York, NY, USA, 21-30.

 Compares OrhoZoom with Speed Dependent Automatic Zooming on scrolling task in which target location is known.

OrthoZoom

1D Multi-Scale Navigation

🐮 data/shaks/shaks.shtmi.idc12	-0*
OrthoZonm SDAZ	
and our waves heets	1 .
LEONATO	2020*
We'll have dancing afterward	1910
BENEDICK	
First, of my word, therefore play, music. Prince,	
thou art sad, get thee a wife, get thee a wife	
there is no staff more reverend than one tipped with horn	
Enter a Messenger	
Messenger	
My lord, your brother John is ta'en in flight,	
And brought with armed men back to Messina	
BENEDICK	
Think not on him till to-morrow.	
I'll devise thee brave punishments for him.	
Stnke up, pipers	
Dance	
Exeunt	
The Tragedy of Othello, the Moor of Ven	ice
Dramatis Personae	
DUKE OF VENICE	
BRABANTIO, a senator	
Other Senators.	
GRATIANO, brother to Brabantio	
LODOVICO, kinsman to Brabantio	
OTHELLO, a noble Moor in the service of the Venetian state	
CASSIO, his lieutenant	
IAGO, his ancient	
RODERIGO, a Venetian gentleman.	
MONTANO, Othello's predecessor in the government of Cyprus	
Clown, servant to Othello.	······································
DESDEMONA, daughter to Brabantio and wife to Othello	
EMILIA, wife to Jago	Zoom 1
RIANCA mistress to Cassio	

WORK TO DO

- Implement OrthoZoom and Speed Dependant Automatic Zooming
- Replicate the OrthoZoomVS.SDAZ experiment

Shengdong Zhao and Ravin Balakrishnan. 2004. Simple vs. compound mark hierarchical marking menus. In Proceedings of the 17th annual ACM symposium on User interface software and technology (UIST '04).

 Introduces a new way of navigating in hierarchical marking menus. Uses simple marks instead of a compound mark.

Shengdong Zhao and Ravin Balakrishnan. 2004. Simple vs. compound mark hierarchical marking menus. In Proceedings of the 17th annual ACM symposium on User interface software and technology (UIST '04).

 Compares simple marks with compound marks for an item selection task (expert)

 What follows is an excerpt from Shengdong Zhao's talk at UIST

dgp Dynamic Graphics Project University of Toronto www.dgp.toronto.edu

dgp Dynamic Graphics Project University of Toronto www.dgp.toronto.edu

Dynamic Graphics Project University of Toronto www.dgp.toronto.edu

Dynamic Graphics Project University of Toronto www.dgp.toronto.edu Place your pen in the circle to start:

WORK TO DO

- Implement Simple and Compound marks navigation techniques for marking menus
- Replicate the Simple VS. Compound experiment

Johnny Accot and Shumin Zhai. 2002. More than dotting the i's --- foundations for crossing-based interfaces. In Proceedings of the SIGCHI conference on Human factors in computing systems: Changing our world, changing ourselves (CHI '02). ACM, New York, NY, USA, 73-80.

 Proposes to activate interactive graphical components by crossing them

Johnny Accot and Shumin Zhai. 2002. More than dotting the i's --- foundations for crossing-based interfaces. In Proceedings of the SIGCHI conference on Human factors in computing systems: Changing our world, changing ourselves (CHI '02). ACM, New York, NY, USA, 73-80.

 Compares crossing activation with pointing activation. Proposes a law to model crossing tasks.

CrossY A crossing based drawing application

Georg Apitz, François Guimbretière UMD/HCIL

WORK TO DO

- Pick I or 2 cross-based widgets in the CrossY interface and implement them.
- Replicate the Crossing VS. Pointing experiment

Project#5: Gesture Recognition

Yang Li. 2010. Protractor: a fast and accurate gesture recognizer. In Proceedings of the 28th international conference on Human factors in computing systems (CHI '10). ACM, New York, NY, USA, 2169-2172.

 Introduces a new gesture recognizer, Protractor. It computes the angular distance between an input gesture and a set of template gestures so as to output the closest template gesture.

Project#5: Gesture Recognition

Yang Li. 2010. Protractor: a fast and accurate gesture recognizer. In Proceedings of the 28th international conference on Human factors in computing systems (CHI '10). ACM, New York, NY, USA, 2169-2172.

 Compares recognition rate of Protractor with recognition rate of \$1 recognizer.

Project#5: Gesture Recognition

WORK TO DO

- Implement the \$1 and Protractor gesture recognizers and design 2 gesture vocabularies {vocabulary₁, vocabulary₂}
- Collect gestures so as to compute recognition rates under 6 conditions: {\$1, Protractor} x {ink, no ink} x {vocabulary₁, vocabulary₂}