
Mixed Reality and Tangible Interfaces Master Interaction – Virtual Reality 2019/2020

1

Augmented reality for Unity: the Vuforia package

J. Vezien

Nov. 2019

0) Introductory word

Vuforia is a package distributed by the Qualcomm company, which provides an easy way to develop

AR applications, especially in Unity.

Vuforia is free for non-commercial use, but requires Internet access for proper functioning. First you

will have to register on the Vuforia developer site:

https://developer.vuforia.com/

Once you have registered, you have access to an online account, where you can store and manage a

number of resources. You will need:

- A development key: this is a string that you will copy-paste in Unity to make Vuforia work.

Development keys are free, but deployment keys (to distribute the app) are not.

- Target databases: Vuforia being marker-based, you will manage customized sets for your

Unity apps.

We will use both objects below.

1) Install Unity

Starting with Unity.2017.2 , Vuforia is supported natively. No install needed ! Please use this version

or later ones. At installation time, Unity asks for modules to be optionally installed. Install the

“Vuforia Augmented Reality Support” module to grant access to all Vuforia functionalities.

To help Vuforia learning, a number of sample unity assets exist. The best way to start is with the

Vuforia Core Samples (available in the Unity asset store), which contains a sample for all main Vuforia

objects.

2) Target types

The best way to start experimenting with targets is to browse the documentation on the developer

site (Developer Library). Available are:

a) Image targets: common flat targets made out of one 2D image (from existing image file or

captured with camera). Contrary to ARtoolkit, images do not have a predefined content

(black and white square), they can be anything… well nearly anything. Preferably the target

will be rectangular.

b) Multi-targets: similar to ARToolkit multi-targets: a 3D rigid arrangement of image targets

placed on a rigid geometry (e.g. a cube).

c) Cylinder target: an image wrapped on a cylinder to provide tracking for things like soda cans.

I do not recommend these, they can be touchy.

https://developer.vuforia.com/

Mixed Reality and Tangible Interfaces Master Interaction – Virtual Reality 2019/2020

2

d) Object Reco: you “scan” an object with a camera, and the collected set of images become the

marker. A sort of 3D marker but not made of predefined images.

e) VuMark : special kind of image target that can encapsulate meta-data. Uniquely identified,

like the ARToolkit predefined “barcode” markers. Except that you can easily create new ones,

and they can contain stuff like a company logo, etc.

3) Getting started: Image Targets

Let’s do a simple image target example.

If you have enabled the vuforia package during installation, a Vuforia item should be present in the

GameObject dropdown menu. There you will need an “ARCamera”, the main object. This is like a

regular camera except it has a script “Vuforia Behaviour” associated. In the Inspector, you can find

this script, and open up the “Vuforia Configuration menu” with a button.

The first thing is to copy-paste a valid license key, obtained via the developer site.

The second thing is to have a valid image database available. There is a default one, the “Mars”

database, that you can just use by checking the boxes (images are located in the

Assets/Editor/Vuforia/ForPrint subdirectory, you can print them from the files there). Otherwise you

can create your own on the developer site, and download it via the “Add Database” button (so you

need Internet connection to add new datasets – using them does not require Internet access). Then

they will become available for use. Details on how images should be selected and added to a

database are found on the developer site (see “Features/Images/Image Targets” page on the

Developer Library). You will find that sometimes the image is ranked “ok” by the target creation

software, but the detection is not that good in real-life… life sucks.

There are more options in the ARCamera, in particular you can choose your webcam and calibrate it

if your webcam is not known (although default parameters will work most of the time).

After that, you can add a GameObject of type: Vuforia/Image in drop-down menu. This will create an

instance of an ImageTarget in the Unity world. Beware! Default unit is meter, so your Image will likely

be very small, zoom in to make sure it is there. The scale factor should be ok, and correspond to the

actual size you specified when the target was added in the database.

To link a Unity 3D model to the marker, just import your object in your scene and put it as a “son” of

the target in the Unity hierarchy, again with proper scale.

All done ! Now run the Unity project and put the physical image in front of the camera, the object

should appear on top of it (if this is where you put it). Of course the object can be animated, like in

the ImageTargets scene provided as a sample.

4) More target types

There are other targets than just simple images. As in ARtoolkit, you can create MultiTargets, which

are composite targets made out of multiple simple ones. These multi targets are described in a

special xml file. If your image database (the one you created on your developer site) is named

MySetOfImages, then the file is MySetOfImages.xml. You have to put it in the repository, and (if

Mixed Reality and Tangible Interfaces Master Interaction – Virtual Reality 2019/2020

3

needed) reload the image database in your project. Here is what the default file looks like (from the

“Mars” database:

<?xml version="1.0" encoding="UTF-8"?>

<QCARConfig>

 <Tracking>

 <MultiTarget name="MarsBox">

 <Part name="MarsBox.Left" translation="-

0.038100000470876694 0 0" rotation="AD: 0 1 0 -90"/>

 <Part name="MarsBox.Right"

translation="0.038100000470876694 0 0" rotation="AD: 0 1 0 90"/>

 <Part name="MarsBox.Front" translation="0 0

0.019050000235438347" rotation="AD: 1 0 0 0"/>

 <Part name="MarsBox.Back" translation="0 0 -

0.019050000235438347" rotation="AD: 0 1 0 180"/>

 <Part name="MarsBox.Top" translation="0

0.05079999938607216 0" rotation="AD: 1 0 0 -90"/>

 <Part name="MarsBox.Bottom" translation="0 -

0.05079999938607216 0" rotation="AD: 1 0 0 90"/>

 </MultiTarget>

 </Tracking>

</QCARConfig>

Each subpart is a separate database image, added as a simple target. It is placed in space with a 3D

translation (again in meters), and a rotation expressed as Axis/angle (in degree). As in ARToolkit, the

resulting multi-target can be 2D or 3D (in the sample it is a box shaped object).

Once it has been created, the multi-target can be used by adding a “MultiTarget” object in your Unity

scene and selecting the proper database and target.

Note: you can find the data files in your Unity project in the folder:

Your_project_location\Assets\StreamingAssets\Vuforia

Note2 : the default VuforiaMars_Images.xml file also contains a CylinderTarget that works

similarly, except it is for cylindrical objects.

5) Exports

Once your Unity scene behaves as expected you can export the resulting code into the target

architecture of your choice (see File/Build Settings menu). For Hololens, select “Universal Windows”.

For Android, select “Android”, etc. Building should generate the corresponding executable that you

can download on your phone/tablet/gizmo. If things go wrong, try a simple Unity project without AR

in it. Usually, AR is not the problem. Possible trouble: minimum version of Android, Android TV

Compatibility (should be off), and whatever is in “Player Settings”.

