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ABSTRACT 

This paper explores architectural support for interfaces 

combining pen, paper, and PC. We show how the event-

based approach common to GUIs can apply to augmented 

paper, and describe additions to address paper’s distinguish-
ing characteristics. To understand the developer experience 

of this architecture, we deployed the toolkit to 17 student 

teams for six weeks. Analysis of the developers’ code 

provided insight into the appropriateness of events for paper 

UIs. The usage patterns we distilled informed a second 

iteration of the toolkit, which introduces techniques for 

integrating interactive and batched input handling, coordi-

nating interactions across devices, and debugging paper 

applications. The study also revealed that programmers 

created gesture handlers by composing simple ink meas-

urements. This desire for informal interactions inspired us 

to include abstractions for recognition. This work has im-
plications beyond paper — designers of graphical tools can 

examine API usage to inform iterative toolkit development. 
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INTRODUCTION 

Recent research has introduced techniques for combining 

pen-and-paper with interactive computing. These aug-

mented interactions provide a fluid and flexible input 
interface for tasks such as documenting information in 

scientific research (e.g., [26, 44]), sketching product de-

signs, and composing music (see Figure 1). The primary 

attraction of designing augmented paper interactions is their 

embrace of existing practices, particularly in mobile, infor-

mal, and collaborative settings (e.g., [17, 40]). To discover 

the best techniques to help developers create these systems, 

we can ask several questions. What aspects of graphical UI 

architectures can be adopted for creating paper applica-

tions? Which aspects of paper applications necessitate a 

departure from previous GUI design tools?  Finally, what 

applications are developers interested in creating, and what 

do they do in practice? This paper addresses these ques-

tions; additionally, we hope our approach and findings will 
provide value to other areas of ubiquitous computing. 

In describing augmented paper interactions, it can be useful 

to delineate two approaches. The first builds digital interac-

tivity on top of the drawing and writing tasks that users 

have traditionally engaged in with pen and paper. The other 

approach begins by regarding the pen as a command-

specification device, exploring paper widgets, gestures, and 
asynchronously executed behaviors. In reality, most re-

search and commercial systems draw from both of these 

approaches. Examples that draw more on the first approach 

include techniques for temporally coordinating multiple 

media—such as Audio Notebook’s and LiveScribe’s inte-

gration of written notes with captured audio [24, 37], 

Adapx’s ruggedized system for capturing field notes [2], A-

book’s use of a PDA to help organize laboratory notes [26], 

and ButterflyNet’s integration of field observations with 

photographs [44]. Work that exemplifies the second, com-

mand-centric approach, includes interactions such as taps of 
the pen (e.g., to retrieve scientific citations [31]), gestures 

for editing printed documents (e.g., [11, 22]), and gestures 

for creating and playing paper-based games [21]. 

 
Figure 1. PaperToolkit provides an event-driven model, output 
to devices, and debugging techniques. Users have created 
tools for many tasks, including web design (left) and music 
composition (right). Going beyond the retrieval and form-filling 
tasks shown in prior paper + digital work, these apps explore 
real-time control of GUI elements and recognition of ink input. 

 



 

This paper explores event-based architectures for paper + 

digital interactions, and describes PaperToolkit, a manifes-

tation of the ideas. There are many enabling technologies 

for integrating paper and computation (e.g., [9, 12, 15, 37, 

40]). PaperToolkit, our implementation of the ideas in this 

paper, is built on top of Anoto’s [3]; chosen for its reliabil-
ity, mobility, high-resolution capture, and ability to 

distinguish pages. This technology employs a tiny camera, 

mounted inside the pen and pointed at the tip, to track pen 

motion across paper pre-printed with a dot-pattern. This 

vision-based tracking provides the location, force, and time 

of each stroke, either in real time (via Bluetooth) or in 

batched mode (via a wired dock). However, most aspects of 

PaperToolkit’s architecture apply to alternate pen hardware. 

This work offers three contributions: First, this research 

builds on prior augmented paper platforms [11, 35] that 

have abstracted development pragmatics such as producing 

Anoto-enhanced paper, acquiring pen data, and digitally 

rendering captured ink. PaperToolkit is similar to this prior 

work in its bookkeeping of the correspondence between 

interactive paper elements and their location in the Anoto 

coordinate space. However, PaperToolkit’s architecture is 

more flexible than these prior systems, introducing tech-

niques for integrated real-time and batched input handling, 
coordinated interactions across multiple devices, and rich 

debugging of augmented paper applications. 

Second, this paper reports on the usage of PaperToolkit, 

and how it has evolved in response to our findings. We 

provided the toolkit to a semester-long undergraduate HCI 

class at another university. The class comprised 69 students 

in 17 groups, mostly computer science juniors and seniors. 
The usage patterns we present were distilled through dis-

cussions with students and a review of the final projects.  

Third, the paper contributes a method for user-centered 

toolkit design through static source-code analysis. Our 

findings provided ideas for architecture and API revisions. 

The paper is organized as follows. We first introduce the 

core PaperToolkit architecture and describe how applica-

tions are created with it. We then describe the user study, 

present findings about toolkit usage, and detail how we 

improved the toolkit in response to the results of the study. 

We then describe this paper’s relationship with prior work, 

and close by suggesting opportunities for future research. 

THE PAPERTOOLKIT ARCHITECTURE 

PaperToolkit addresses the problem of creating, debugging, 

and deploying paper + digital applications. In these inter-

faces, one or more people use digital pens and paper to 

capture and organize information, and issue commands to a 

computer via pen gestures and paper widgets. Visual or 

audio feedback is presented to the user on a nearby PC or 

handheld device (see Figure 2). Alternatively, a user may 

work without a PC nearby; his pen input is batched for later 

processing. Paper interfaces come in many forms, including 

datasheets for scientists, notebooks for designers, and large 

maps and posters for engineers. The question is how devel-

opers program the input handling and feedback for the UI. 

PaperToolkit helps programmers accomplish this by provid-

ing methods to create paper forms, abstractions to handle 

multi-device events, and techniques to develop and debug 

faster. The abstractions are distributed across seven main 

concepts, which were developed based on iterative feed-

back from our developers, both internal and external to our 

lab. The concepts are summarized in the following table:  

While all seven areas support paper applications, the ones 

marked by dark circles are also valuable in other domains. 

For example, a mobile application may use the Device 

architecture to send feedback from a phone to a PC. 

Scenario: Designing a Paper-Based Blog 

Karen is building a paper-based blogging system. A user 

writes blog entries with a digital pen, and taps a paper 

button to wirelessly transmit the entries to a handheld de-

vice, which uploads them to a web site. 

On a PC, Karen writes a Java program to create a Sheet 

object, a large Region to capture the user’s handwriting, and 
a small Region to act as the upload button (e.g., the sheet in 

Figure 2). She adds two event handlers: an InkHandler to 

capture notes, and a ClickHandler to detect the pen tap. 

When Karen prints the paper UI, PaperToolkit augments the 

interface with the dot pattern. At runtime, the InkHandler 

receives the user’s strokes from the pen’s wireless connec-

tion. When the user taps the button, Karen’s code retrieves 

the handwritten ink strokes, sends it through handwriting 

recognition, renders it to a JPEG, and uploads both the 

recognized text and the image of the handwriting to the 

user’s blog. This programming approach (see Figure 3) 

 
Figure 2. In PaperToolkit, input arrives from pens (left) and is 
sent to handlers (middle). Output is displayed on the local ma-
chine or routed to devices (bottom). Event dispatch and UI 
construction are modeled after GUI architectures, to help pro-
grammers create paper + digital applications rapidly. 

 



 3

builds on the Java Swing [38] and Windows Forms [27] 

architectures. However, PaperToolkit distinguishes itself by 

providing API support for integrating paper tools into mo-

bile and collaborative environments. 

Implementation 

The core event loop receives input from multiple pens. It 

translates hardware pen coordinates to page locations, and 

dispatches events to the corresponding handlers. To support 

easy debugging of pen interactions, all event data is sent 
over sockets as XML, and also logged to the file system. 

This toolkit was developed over multiple iterations. It 

comprises 242 classes, and is implemented primarily with 

Java SE 6, with pieces built on other platforms. For exam-

ple, batched pen input is handled through a .NET 

component, as Anoto synchronization is implemented in 

Windows code. For rendering to paper, PaperToolkit uses 
PS/PDF: paper UIs and dot patterns are rendered using the 

Java EPS [28] and iText PDF libraries [25]. Handwriting 

recognition uses Microsoft’s Tablet PC recognizer, and the 

gesture handler uses Wobbrock’s $1 recognizer [41].  

Exploring the Design Space 

Once we built a working version of the toolkit, we began to 

use it in our own lab to experiment with augmented paper. 

This process served two purposes. First, we could rapidly 

identify deficiencies in the toolkit, and improve its abstrac-
tions iteratively. Second, we gained an intuition about the 

applications and features that were interesting, yet difficult 

to implement. This section highlights some of the projects 

we implemented, and how they cover points in the paper-

digital design space. For more details, see [42]. We ex-

plored three areas—tables, walls, and notebooks. 

Collaborative Scenarios using Paper on Digital Tables 

Through three projects (~19 Java classes each) involving a 

touch-sensitive digital table [8], we learned the importance 

of supporting multiple users, coordinating multiple devices, 

and translating between multiple coordinate systems.  

We created a tabletop design environment [6] (see Figure 4, 
right) that used PaperToolkit to capture writing from multi-

ple users, render ink to a canvas, and send drawings to a 

printer. A second project, by a visiting researcher, captured 

ink written on sticky notes [16]. It recognized handwriting 

from multiple users, and associated the annotations to a 

map displayed on the table. Cross-out gestures deleted 

annotations. These two projects supported multiple users, 

and recognition of handwriting and stylus gestures. 

The third project, by a Masters student, explored fluid 

multi-device input [5]. For example, a user can set a pivot 

point with his pen and rotate/zoom a photo around that 

pivot using his other hand. PaperToolkit provided the han-

dlers to locate the pen while writing, rotating, and zooming. 

From this project, we learned the importance of creating an 

abstract input device, to allow the toolkit to receive data 

from a digital pen, mouse, or fingertip. This device and its 

handlers help to coordinate transformations; while pen 

input is physically co-located with finger input, the pen and 
table each report coordinates that must be reconciled.  

Remote Collaboration around Large Paper Displays 

The second area explored large paper prints for collabora-

tion. We created FeedReader, a wall poster that displayed 

articles in an RSS feed. Multiple users write in comments 

(captured by InkHandlers); the ink is transported to a web 

site where remote participants can view the discussion. 

ClickHandlers retrieved articles to a nearby display, and the 

InkRenderer created JPEGs for upload to the web. We also 
created BuddySketch, which supported video conferencing 

between scientists by providing real-time sharing of draw-

Figure 3. This PaperToolkit program, written in Java, includes 
all the core concepts. Every application is defined in terms of 
Sheets, Regions, and Handlers, which correspond to GUI 
Windows, Components, and Event Handlers. PaperToolkit also 
includes a Device abstraction, which helps programmers coor-
dinate feedback across multiple computers. This program 
contains two regions, which will appear as rectangles when 
printed on a sheet of paper. When a user writes in the inking 
region, and taps the button region, the application sends feed-
back to a remote device. A GUI programmer would find this 
approach familiar (compare lines 14-18 with Java Swing). 
Additionally, inter-device interactions are abstracted (lines 8 & 
17). The Device object handles message passing, without 
requiring a developer to program socket communications. 

 
Figure 4. We built applications (such as the Twistr tabletop 
game, left) to explore the design space of paper interfaces. Our 
students have used the toolkit to produce research, such as a 
collaborative design environment integrating sketches on paper 
with manipulations on a digital table [6] (right). These applica-
tions support multiple users (e.g., four pens in Twistr). 



 

ings. These projects taught us to coordinate between paper 

and devices (e.g., triggering remote display of digital ink). 

Mobile Field Notes and Maps 

In the third area, we looked at how handheld maps could fit 

into a field biologist’s ensemble. For example, users can 

search GPS-tagged field data with circle gestures, specifying 

the center and radius of the search in a single motion. The 

map comprises two Java classes, and communicates with a 

database over a Web API. We have also explored larger 

maps. For example, the Audio Guide allows scientists to 

retrieve audio annotations on a map while out in the field. A 

pen tap selects a region, and nearby audio notes are played 
to a wireless earpiece the user wears. These projects sug-

gested a need for GPS support and gesture recognition.  

Figure 5 summarizes the paper + digital design parameters 

we considered. While not all the categories are orthogonal 

(e.g., outdoor use tends to imply smaller sizes), they illus-

trate the application areas we have encountered. 

EVALUATION BY DEPLOYMENT AND CODE ANALYSIS 

We conducted a study of the core toolkit elements (UI 

construction, pen input, and event handlers) with 69 pro-

grammers (17 teams) as part of an undergraduate HCI class 

at UC Berkeley (the authors did not teach the class). The 

students developed applications using PaperToolkit, begin-

ning in the eighth week of the 14-week semester. The first 

author held in-person sessions to answer questions, receive 

feedback, and record observations of toolkit usage. 

First, we observed that the toolkit’s GUI-like approach 

worked well. It is notable that 17 teams of students with no 

experience in building paper interfaces were able to build 

working projects in six weeks. Because PaperToolkit built 

on established conventions, students who had programmed 

GUIs before could leverage existing patterns instead of 

learning new ones. Additionally, some students learned GUI 

programming as part of this introductory course (one team 
said that “none of us had developed event-driven programs 

prior to this”). For these students, the similarity to Java 

Swing meant that they did not have to learn two different 

programming models. 

Second, we learned that developers desired event-based 

access to both real-time and batched pen data. PaperToolkit 

primarily targets synchronous pen interactions, so it dis-

patched events only when the pen was in real-time mode. 

Operating in batched mode — where data resides on the pen 

until it is uploaded — eases the deployment of mobile appli-
cations by eliminating the need for a wireless connection to 

a nearby PC or smartphone. For batched pen data, the 

toolkit mirrored Anoto’s existing model by providing page 

and region-indexed access to ink data when a pen is placed 

in its docking station.  In the end, ten teams built mobile 

applications, but only four teams explored asynchronous 

pen interactions (see Figure 6, bottom row). An ideal paper 

+ digital toolkit would provide a unified event-based pro-

gramming model for both real-time and batched input. 

Third, we observed that many teams created applications by 

mashing-up interactive paper with the pre-built functional-

ity in web services and desktop applications (see Figure 6). 

These projects included paper-based web design, personal 

organizers, and sharing tools for news and blogs. Teams 

integrated web apps into their projects by scraping HTML or 

using established APIs (e.g., Flickr and Google Calendar). 

One group created a Firefox plug-in. From this, we learned 

that modern platforms should facilitate data-transfer with 
web services and desktop applications. PaperToolkit sup-

ports this goal by exporting Ink objects to web-friendly 

formats (e.g., XML and PNG). We have since also explored 

support for GUI feedback through Adobe Flash. 

Next, we review the insights we achieved by using source-

code analysis to inform toolkit design. Examining code 

produced by developers offers an empirical account of 
usage patterns and provides insight into usability of the 

architecture and API. We manually reviewed the students’ 

304 source files (~35K statements or ~51K lines of com-

mented code) and also used automatic scripts to calculate 

statistics (see Figure 7). We recorded observations for each 

file, and grouped recurring themes. The following sections 

 
 

Figure 5. We show how four of the projects we built cover the 
design space of paper interactions. One area we did not explore 
was haptic feedback (e.g., [23]). This design space borrows 
elements from prior taxonomies (e.g., [10]). 

 

Figure 6. The 17 projects in this study (named A-Q) covered 
many themes. PaperToolkit supported selection (e.g., check a 
box) and writing operations well. However, informal interactions 
requiring recognition were less common (e.g., draw a musical 
note). We have since included better support for gesture recog-
nition. Ten projects were mobile, and seven integrated with 
existing apps in mash-up fashion. Four supported batched in-
put, where ink is processed after the user returns to his PC. 
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present these themes, and introduce implications to inform 

the design of future pen-and-paper tools. 

Composing Ink Operations for Gesture Recognition 

The deployed toolkit provided handlers for directional 

marking gestures, but did not include a full recognition 

engine. Thus, teams added value to informal interactions by 

implementing their own gesture recognition. To understand 

how developers approached recognition, we gathered data 

on all ink operations. Figure 8 shows that only a handful of 

teams clustered or sorted ink strokes (to implement recogni-

tion via heuristics). This suggests that the value of 

recognition comes at a considerable cost of time and effort.  

Four teams composed basic ink operations to recognize ink 

gestures. Team D detected when users crossed out hand-

written text, and updated a web planner to reflect the 

completed task. Team G recognized paper-based games 

(e.g., tic-tac-toe). Team I detected boxes users had drawn in 

a blog entry, and helped users import photos into those 

areas. Team N recognized handwritten music, including 

whole, half, quarter, and eighth notes, and translated the 
composition into MIDI. In the following snippets, we see 

that heuristics can be simple yet robust enough to rapidly 

prototype gesture recognition. In Team I’s project, the user 

inserts a picture into a blog entry by drawing a square with 

a single stroke. The team iterated through the page’s strokes 

to find the one with the largest area: 
 

Later, they test the box against a minimum size threshold, 

and position the photo at its boundaries. Similarly, Team N 

applied heuristics to inkstrokes to determine note durations: 
 

This algorithm compares strokes to temporal and spatial 

thresholds, and detects their direction. An eighth note is 

recognized when the last ink samples are written in a direc-

tion opposite to the main stem (detecting the note’s flag). 

These examples show how teams approached recognition 

by composing ink statistics. Heuristics are straightforward 

to specify in code and can be robust for simple interactions.  

To make gesture recognition more approachable, we added 

a single-stroke gesture recognizer [41] and new methods to 

search and measure digital ink. PaperToolkit does not com-

pletely disregard heuristics-based recognition in favor of a 

full recognition engine. Heuristic can help developers rap-

idly prototype recognition for their applications. Heuristics 

can also be used to select a subset of ink input to be sent to 
a full recognizer, to enhance recognition rates. We plan to 

further improve support by providing techniques to com-

pose ink operations, select/cluster strokes by time, size and 

location, and visualize recognition results.  

Creating Interfaces by Example Modification 

While examining the projects, we found evidence that 

developers would copy and paste code into their project, 

and then modify the skeletons to grow their interface 

around the working base. To find out what code developers 
copied, how much they would copy, and from where, we 

used a combination of methods. First, we used MOSS [34], a 

tool traditionally used to detect plagiarism in software, to 

detect similarities between projects and the toolkit. While 

MOSS worked for comparing projects fed to it, it was not 

suited for locating clones of code residing on the web. As a 

result, we manually identified clones in the corpus, noticing 

that unusual comments and identifiers were effective in 

signaling copied code. Once we found a clone candidate, 

we searched the web and the corpus to establish the source. 

This is the first work that uses static code analysis methods 

to study developer behavior and assess toolkit usability.  

 
Figure 8. This shows the different ink operations we discovered 
(an operation may contain multiple statements). While display 
and scale were common, it took extra effort to recognize ges-
tures (e.g., by clustering strokes). Making it easier to explore 
these operations can raise the tail of this curve, adding extra 
value to informal pen-and-paper interactions. 

 

 

 

 

 

 

Figure 7. Student teams created substantial projects in six 
weeks, with the average project comprising 2102 statements and 
21 Java classes. The size of the projects supports the external 
validity of our research insights. The light blue bars show the 
parts of projects directly interfacing with PaperToolkit. 



 

Developers copied code to reduce the boilerplate they need 

to write, and to solve problems they (or others) have solved 

before. Our data show that 41% of the 159 copied chunks 

directly supported GUIs, and 37% supported paper UIs (see 

Figure 9, left). The clones came from several sources, in-
cluding a Hello World app they had worked through, the 

Web (e.g., Java Swing tutorials), and PaperToolkit. In 96 of 

the 159 instances, developers copied an entire class file, and 

then modified the class to fit their application (right). These 

findings support earlier studies (e.g., [18, 32]) that discov-

ered that programmers copy blocks of method calls to save 

time. We find that developers copy boilerplate to construct 

UIs using unfamiliar APIs (to minimize errors). We suggest 

that tools embrace this approach of learning APIs by copy-

and-paste. In this vein, we have integrated more example 

code into the documentation. We also made the entire 
toolkit available as open source, as opposed to sealed JAR 

files, to facilitate learning by example. 

Usage Frequency Reveals Opportunities for Design 

Toolkit usage statistics can reveal opportunities for improv-

ing the API. Figure 10 shows how many instances of each 

class were declared. The most used classes (Inches, Region, 

Sheet) are for UI construction. Since developers spend so 

much time working with these classes, we might spend time 

making this part of the API more clear and concise, to im-
prove code readability and minimize bugs.  

Examining the distribution’s tail may reveal classes that 

were difficult to understand, hidden by lack of examples or 

documentation. For instance, BatchedEventHandler was 

only used twice, as the deployed toolkit touted real-time 

handling. We suggest that designers can improve toolkits 

by examining usage, and reflecting on why certain methods 
or classes are or are not used. 

Using Debug Output to Understand Event Flow  

We also noticed liberal use of debugging print statements. 

To discover where they helped most, we searched for all 

instances of debug output (as this study was conducted 

outside our lab, we did not log interactions with the 

IDE/debugger). The corpus contained 1232 statements 

containing “println.” We examined them to see where the 

statements were located and what was printed in each one 
(see Figure 11). Overall, 39% of all debug statements were 

found inside event handlers: 333 were in GUI handlers, and 

145 in PaperToolkit handlers. The top three printed values 

were object instances particular to the program, error mes-

sages, and got here messages serving to signal that a code 

block was reached. When coupled with the location of 

statements, we find that half of GUI handler printlns and a 

third of PaperToolkit handler printlns were got here state-

ments. Sometimes, they tracked unimplemented handlers: 

As the handler was filled in, debug statements were then 
used to help developers visualize the program’s (often 

hidden) behavior to help monitor for bugs. Print statements 

also helped programmers track how their application re-

sponded to pen input, so that they could iteratively debug 

their program “into existence” [32]. 

We suggest that tools can help developers understand when 

events are fired, and what the object values are at runtime. 
A println is lightweight compared to a breakpoint, as it can 

signal warnings at runtime without stopping execution. 

Printlns are also manifest in the code, easily shared be-

tween teammates. If a tool can maintain this lightweight 

property and provide the benefits of a debugger, it can 

substantially speed up the development of applications. 

 
Figure 11. Code analysis revealed that most debugging state-
ments (printlns) helped programmers visualize object values. 
Other statements reveal when the program encounters an 
error, or gets to a particular location. Developers place most of 
the printlns in GUI and PaperToolkit handlers. This suggests a 
need for tools to help monitor objects and events at runtime. 

 

Figure 10. This shows how often teams used the toolkit classes. 
The heavily used classes are for constructing UIs (e.g., Region). 
Classes for manipulating ink were popular (e.g., InkPanel). The 
seldom used classes were advanced features that were less well-
documented. We can have impact if we improve the API of 
classes on the left. To raise the tail, we might add example code. 

 

Figure 9. Teams used copy-and-paste to facilitate coding. De-
velopers customized utility functions (left), and often copied code 
from their own projects (middle). Developers would copy an 
entire class file to get a program working, and then modify it 
(right). Programmers can benefit from tools that embrace this 
behavior (e.g., by providing templates, facilitating refactoring of 
copied code, and tracking code lineage). 
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Multiple Coordinate Systems and Representations 

Finally, we observed the common task of converting ink 

strokes between different coordinate systems and semantic 

representations. With paper UIs, developers often deal with 

coordinate conversions (in GUIs, most work is done in 

screen space). For example, two projects used maps, and 

needed methods such as: 

With maps, we have paper coordinates (e.g., inches), the 

device’s screen coordinates (pixels) and world coordinates 

(GPS). To improve PaperToolkit, we included GPS support, 

and provided a CoordinateConverter for generic mappings. 

Conversions do not always produce numerical results. For 

example, invokes a database query 

that returns names of streets in San Francisco. Likewise, the 

music project interpreted ink coordinates as locations on a 

staff, converting them into musical tones. Even in non-

mapping projects, developers transform coordinates to 

accomplish tasks such as displaying ink (e.g., Team M’s 

flashcards handle when users write upside down on a card). 

DESIGN IMPLICATIONS AND TOOLKIT ITERATION 

In this section, we highlight the main design implications, 
and describe how we applied them in a second iteration of 

PaperToolkit (see Figure 12). We also touch on implica-

tions for designing paper applications in general. 

Feedback in Mobile and Collaborative Environments 

Because paper is tangible, lightweight, and robust, paper 

applications lend themselves to mobile and ubiquitous 

computing scenarios. These situations often require devel-

opers to handle feedback across multiple users and devices 

(e.g., [4]). To integrate paper into this device ensemble 
[33], the second iteration of PaperToolkit provides abstrac-

tions to help developers cope with three issues: 

First, unlike graphical UIs, paper does not provide real-time 

visual feedback. To provide feedback to end users, pro-

grammers can use Java Swing on the computer running the 

program. PaperToolkit differs from prior paper + digital 

platforms as it also integrates with Adobe Flash, to provide 
added flexibility in the look-and-feel of the feedback. 

Second, programmers need to be able to distinguish multi-

ple users, as in Twistr, a game we created where players use 

pens to pick photos from a printed poster (see Figure 4). To 

enable this, PaperToolkit captures input from multiple pens, 

and provides a penID in PenEvents (similar to [8, 13]).  

Third, mobile scenarios may involve multiple devices. For 

example, in BuddySketch (an application we built to pro-

vide shared paper sketching during video conferencing) the 

local computer asks its remote peer to refresh its ink dis-

play. This interaction is accomplished through mobile code 

[39], where each computer (a Device) invokes Actions (e.g., 

OpenURL) on other Devices. For example, in Figure 3, lines 

8 and 17 send feedback to a remote device. Network details 

are hidden. Behind the scenes, a call to the Device serializes 
an Action to XML and sends it to a remote device over TCP. 

The remote device (running a toolkit program which listens 

for Actions) reconstitutes the object and calls . 

PaperToolkit provides a set of common actions, and the 

option to pass arbitrary messages. This abstraction helps 

developers rapidly create ensemble interactions. 

Unifying Real-time and Batched Event Handling 

Paper applications can be used near or away from PCs, so 

input can arrive in real-time or in batch. Prior tool support 
allowed developers to access pen data either in real-time 

(via Bluetooth) [35], or in batched mode (when the user 

docks his pen) [11, 22]. Our experience shows that users 

can often benefit from real-time and batched interactions.  

For example, a biologist using an augmented notebook [44] 

is frequently away from a PC. Here, a batched architecture 

enables the handwritten notes to be processed when the pen 
is docked at the field station. However, while working in 

the field, she may use a pen gesture to link a photograph 

she has just captured to a place in her notebook. When her 

camera recognizes this action, it provides immediate audio 

and visual feedback to acknowledge the linking gesture. In 

ButterflyNet, this was accomplished with two applications. 

The camera software recognized gestures in real-time, 

logging events to a file. The software that ran on the PC 

would take these timestamps and align them to the photos. 

While functional, this fractured implementation has nega-

tive impact on code readability and maintainability. 

PaperToolkit helps developers co-locate event handling for 

batched and real-time events. To do this, it provides a flag 

in PenEvents so that data received through the wireless 

connection can be distinguished from data received via the 

dock. In event handlers, developers check the  

flag to provide appropriate feedback. To support this, when 

a pen is docked, PaperToolkit reads the data and injects 
events into the application’s event stream. Besides the 

creation timestamp and the  flag, batched and 

real-time events behave equivalently. This architectural 

feature enables developers to present feedback appropriate 

to each situation, facilitates clear code organization, and 

provides developers a way to test in real time applications 

that actually target batched usage.  
Figure 12. The concepts in the current iteration of PaperToolkit. 



 

Debugging with Save and Replay 

When iterating designs, a developer is limited by the speed 

at which she can test. PaperToolkit introduces several tech-

niques to help developers test applications. For example, 

since repeated testing is laborious, we introduced a toolkit 

feature to allow developers to save and replay user input. 

PaperToolkit accomplishes save and replay by logging all 

input at runtime. The developer can then select a log file 

and replay the saved input stream. When she selects a file to 

replay, the replay manager injects events into the EventDis-

patcher. The dispatcher relays the events to handlers, as if 

they had come from a physical pen. Save and replay mini-
mizes the need to reproduce input sequences, and produces 

consistent results across trials. In our experience, it has 

become an indispensable feature. 

Save and replay also enables developers to write code to 

handle pre-defined test input, similar to test-driven devel-

opment. As an example, we return to Karen’s blogging 

application. She first runs a skeleton version, where none of 
the handlers are defined. She uses the paper UI as if it were 

functional, composing a blog article, performing a gesture 

to insert a photo, and tapping a button to upload the entry. 

When she later fills in the event handlers, she can repeat-

edly replay her input to see the program gradually develop. 

Simulating Printed UIs with Off-the-Shelf Notebooks 

Our experience in building paper interfaces (e.g., [43, 44]) 

taught us that the time required to physically print the inter-

face became a bottleneck to testing. Additionally, students 
in our study reported that they seldom iterated their paper 

UIs, since printing slows the workflow. The toolkit now 

addresses this by delaying the printing step until it is abso-

lutely necessary, such as when deploying to an end user. To 

minimize the need for printing, PaperToolkit provides a 

technique to test event handlers using a graphical simulator 

or pre-printed Anoto notebook.  

The graphical simulator is accessed through the tray icon of 

the running application, and can be used with a mouse or 

Tablet PC stylus. Input is translated into PenEvents and sent 

to handlers. To test with an actual digital pen, the designer 

uses pre-printed digital paper. Through the tray menu, she 

selects a Region to test. The system prompts her to define 

that region by drawing a rectangle on a patterned page; this 

binding is saved for future test runs.  

Simulation can speed up prototyping. For example, a de-

signer can cut out the defined Regions and affix them to 

physical prototypes, such as a “smart magazine” (see Figure 

13). This also provides a method for user testing early 

prototypes. Since input is saved, developers can gather user 

data before implementing any event handlers.  

Enhancing Debugging with Visualizations 

Visual tools can help programmers debug programs by 

exposing hidden aspects of the application. Previously, 

visualizations have helped people understand algorithms 

and data structures (e.g., [36]). In our case, visualizations 

might help programmers understand event flow at runtime. 

To explore this, we created a working prototype that pro-

vides a visual log of user input and application output (see 

Figure 14). The top half of the interface displays a visual 

log of application input (ink strokes) and output (GUI feed-

back). The bottom half lists events that were fired, and 
objects sent to println. We hypothesize that this design can 

improve upon today’s text-based logs; we leave a deeper 

exploration of this debugging approach to future work. 

Interaction Language of Paper Interfaces 

To add value to their applications, developers recognize 

informal input and gestures. However, this presents prob-

lems when a user wants to learn the UI. GUIs have built up a 

language of interaction through widgets, but paper UIs have 

not. Some patterns translate well (e.g., paper buttons re-
spond to pen taps). To specify a map location, however, a 

user might tap, circle, or draw an .  

A related issue lies in enforcing constraints. In a GUI, de-

velopers can gray out a component when it is not 

appropriate, directing users toward an ordering of interac-

tions. On paper, one can never prevent a user from checking 

a box or turning the page. Developers must account for this 

by embedding tutorials in the paper UI and by dealing with 

incomplete input. 

 

Figure 14. We built a visual monitor for debugging. During 
testing, the monitor logs all user input, system events, and 
application output along an interactive timeline. Unlike current 
practices of using print statements and debuggers, this ap-
proach does not require the developer to instrument her code.  

 
Figure 13. Designers can create functional prototypes by binding 
patterned pieces of paper to Regions containing event handlers, 
and then attaching them to physical objects such as this maga-
zine. On the left, a reader can write his email to subscribe to a 
mailing list. On the right, he can draw a path to calculate a ball’s 
elasticity. With simulation, designers can prototype interesting 
interactions in very little time. 



 9

RELATED WORK 

This research builds on prior studies of software engineers’ 

development and debugging practices, and earlier work in 

user interface architectures and design tools.  

Supporting Existing Programming Practices  

The literature on development practices shows that copy-
and-paste and example modification are common tech-

niques among software engineers. Rosson and Carroll 

studied four programmers and found that they benefited 

from having working examples they could modify to in-

clude in their own project [32]. Other studies indicate that 

programmers use copy-and-paste to reduce typing, and 

ensure that the easy-to-forget details (e.g., method ordering) 

are correct. For example, Kim et al. studied expert pro-

grammers and found that copy-and-paste was used to save 

time when creating or calling similar methods [18]. Later, 

LaToza et al. found that modifying example code was one 

of several types of code duplication, which can cause prob-
lems when fixing bugs and refactoring [20]. Our results 

support these earlier findings, contributing from a much 

larger corpus. We also find that developers tend to copy 

from their own code (earlier projects, or places in the same 

project), probably because these snippets have a high prob-

ability of working, and are easy for them to understand. We 

also find that programmers copy when they need to learn a 

new API, such as PaperToolkit’s. 

The earlier studies have inspired a number of programming 

environments that map to the way programmers (and non-

programmers) think about software [29]. For example, 

WhyLine [19] provided a timeline view for inspecting how 

events produced behaviors in an animation. PaperToolkit’s 

replay was inspired by this timeline, which allowed pro-

grammers to scroll back to visualize hidden dependencies. 

User Interface Software Architectures and Tools 

Overall, we learned that the GUI model for programming 

largely works for programming paper UIs. PaperToolkit 

borrowed the ideas of components, layout, event handling, 

and extensibility from toolkits like Java Swing [38], Win-

dows Forms [27], and SubArctic [14]. This work has also 

explored XML representations of the paper UI, inspired by 

the movement to better separate the view from event han-

dling, as seen in [1, 30]. PaperToolkit extends beyond GUIs 

by including ensemble interactions across paper and digital 

devices and by supporting asynchronous event handling.  

PaperToolkit also distinguishes itself from existing tools for 

paper interfaces. Anoto’s SDK [3] enables developers to 

access pen data, but does not support event handling. Cohen 

et al.’s work [2, 7] combines input with speech commands. 

PADD integrates annotations on a physical document back 

into the digital one [11]. iPaper maps pen input to objects 

stored on the remote iServer [31, 35], providing media 

retrieval and event handling through its active components. 
PaperToolkit contributes by combining real-time and 

batched event handling into a single programming model, 

by foregrounding abstractions for mobility and recognition, 

and by supporting debugging with event replay. Compared 

with iPaper, PaperToolkit also differs by not requiring a 

database for media retrieval, and by providing Actions to 

simplify communication between devices. Our methodo-

logical contribution beyond the prior platforms is iteration 

of the abstractions—informed by a toolkit deployment, in-
depth evaluation, and code analysis. 

CONCLUSIONS AND FUTURE WORK 

Through the deployment, evaluation, and improvement of 

the toolkit, we have learned that an event-driven approach 

provides a solid platform for building paper applications. 

Added support for multi-device communication, unifying 

batched and real-time event handling, ink processing, and 

rapid debugging helps to provide a low barrier for entering 

this space. Our results can have impact on tools outside of 

this domain. For example, we found it valuable to combine 
evidence from long-term use with static analysis of source 

code to inform toolkit design, and thus suggest that tool 

designers adopt these techniques. GUI platforms can also 

benefit from better abstractions for integrating web services 

and mobile devices, as consistent with today’s trends. 

However, there remain opportunities for research. First, we 

would like to involve non-programmers (e.g., designers). 
One line of future work would be to provide tools to specify 

interactions by example. Second, since programmers fre-

quently need to learn new libraries and toolkits, we will 

examine how visualizations can help developers understand 

program internals to speed development. Finally, in today’s 

paper applications, if the user needs to update his UI, he 

must print out a new copy. In the future, we will support the 

scheduling of automatic updates, and treat the paper UI as a 

view (from MVC) with a very slow refresh rate. 

PaperToolkit is open-source. The code and documentation 

are at http://hci.stanford.edu/paper. For more details, see 

[42]. Hopefully, our iterative approach for toolkit design 

can inspire and inform future design tools. 
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