é (remedial) Java

anastasia.bezerianos@lri.fr

1 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

Remedial Java class

= Objective:
= Cover the fundamentals of the Java programming language.
= Designed for students with some programming experience, but ...

= Practical info:
contact Anastasia by email, using [RJ] in the title
www.lIri.fr/~anab/teaching/remedial-java/

= 6 sessions of 3h (theory + practice):
Programming basics (Mon 2/9, pm)

Java Language basics (Tue 3/9, am)

Object oriented programming (Tue 3/9, pm)
Inheritance (Tue 5/9 am)

Packages and Exceptions (Tue 5/9 am)
Independent work (Wed 6/9 — no class)

I/0 (Thu 7/9 pm)

2 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

Programming basics

3 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

What is a program

= Algorithm: A recipe / sequence of steps to follow. "A step-by-
step procedure for solving a problem or accomplishing some
end, especially by a computer” (Merriam-Webster Online)

= Program: A sequence of instructions in a programming
language that perform a task (e.g., follow an algorithm)

The two numbers are
(pseudo-code) not known a-priori

get from user a first number <_____,,//

get from user a second number

add the first and second number

return to user the result

add to the result 2 and return the new result

\ The number 2 is known

Each of the steps are called instructions of the program

4 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

What is a program

> Please give a number:

> Please give a second number:

> Result is 5
> New result is 7

> Please give a number:

> Result i

> New result is 15

Same Program, two runs

get from user a first number
get from user a second number
add the first and second number
return to user the result

add to the result 2 and return the new result

> Please give a second number:

s13

ABezerianos - Remedial Java - Session-1.key - 6 September 2019

What is a variable

= avariable is a storage space for keeping information
that may change every time we run the program, or
even during the same program (thus their name

= they are temporary and store additional information

the algorithm needs to function

get from user
let variablel
get from user
let variable2
let variable3

nmno o

first number

first number
second number

second number

variablel + variable2

return to user variable3

let variable3

variable3 + 2

return to user variable3

variables are "shortcuts"
to numbers we stored

ABezerianos - Remedial Java - Session-1.key - 6 September 2019

What is a variable

> Please give a number:

value 2 stored in variablel

> Please give a second number:

value 3 stored in variable2
variable3 used to do the sum

> Result is 5

variable3 updated

> New result is 7
Same output as before, different structure (use of variables)

first number
first number
second number

Q

get from user
let variablel
get from user
let variable2 second number

let variable3 variablel + variable2
return to user variable3

let variable3 = variable3 + 2

return to user variable3

nmn o

7 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

What is a function / method

= |tis a sub-algorithm that does a specific task, to help
break down large programs into small parts

= |t is a group of steps, to which we assign a name

= We can call these steps with their name

set of steps with name
add, that we can call

multiple times (and may
function add (variablel, variable2) return different results

let variable3 = variablel + variable2

return to user variable3 <%_____——’,/////
get from user first number and second number (e.g, 3 and 4)
let variablel= first number and variable2 = second number
add (variablel, variable2)
get from user first number and second number (now 6 and 5)

let variablel= first number and variable2 = second number
add (variablel, variable2)

8 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

What is a function / method

> Please give two numbers:

value 2 and stored in variablel and variable2

add is called, with variable1=3 and variable2=4
> Result is 7 inside add the sum is performed
and returned

> Please give two numbers:

value 2 and stored in variablel and variable2

> Result is 11 add is called, with variable1=6 and variable2=5
inside add the sum is performed

and returned
function add (variablel, variable2y

let variable3 = variablel + variable2
return to user variable3

get from user firs number and second number (e.g, 3 and 4)
let variablel= first number and variable2 = second number
add (variablel, variable2)

get from user firs number and second number (now 6 and 5)
let variablel= first number and variable2 = second number
add (variablel, variable2)

9 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

conditionals

= When an algorithm needs to make a decision we use
condition statements

if the condition is met
the line after “if” is executed,
if not the line after "else"

function add (variablel, variable2)
variable3 = variablel + variable2
if (variable3 > 10)
return to user “Too
else
return to user variable3

get from user firs number and second number (e.g, 3 and 4)
let variablel= first number and variable2 = second number
add (variablel, variable2)

get from user firs number and second number (now 6 and 5)
let variablel= first number and variable2 = second number
add (variablel, variable2)

10 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

conditionals

> Please give two numbers:

add is called, with variable1=3 and variable2=4
inside add the sum is performed

> Resultis 7 then the the conditional is tested (if)

here variable3 is less than 10 so returned

> Please give two numbers: add is called, with variable1=6 and variable2=5

" inside add the sum is performed
: then the conditional is tested (if)

. .) but not met, so return “Too Big"
function add (variablel, variableZy

variable3 = variablel + variable2
if (variable3 > 10)

return to user “Too big !!!"”
else

return to user variable3

> Result is “Too big !!

get from user firs number and second number (e.g, 3 and 4)
let variablel= first number and variable2 = second number
add (variablel, variable2)

get from user firs number and second number (now 6 and 5)
let variablel= first number and variable2 = second number
add (variablel, variable2)

1 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

repetitions

= An action performed multiple times, either while a
condition holds, or for a specific number of times

function that loops (iterates)
for as many times as the
variable iterations states

function loop (variable iterations)
for iterations times
say Hi!

get from user (variable) iterations(e.g, 3)
loop (iterations)
loop (iterations + 1)

12 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

repetitions

> Please give iterations:

value 3 stored in variable iterations

function loop is called with argument iterations

first time
second time
third time (that is equal to iterations)

function loop called again with argument
iterations +1
How many Hi! ’s will we see?

function loop (variable iterations)
for iterations times
say Hi!

get from user (variable) iterations(e.g, 3)
loop (iterations)
loop (iterations + 1)

13 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

Java basics

14 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

Java

= Multi-platform “Pure” object-oriented language and
application runtime environment

= Language syntax based on C/C++ to be familiar
= with simplifications: no unsigned values, pointers, ...
= developers not responsible for memory management

= Pure object-oriented language:
= build from the ground up with OOP design in mind
= programs are completely constructed with objects
(as opposed to Bolt-on languages, like C++, where OO
structures are an enhancement to the language, and there
is @ mix of procedural and O0)

15 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

Java and JVM

= Code in Java does not compile to machine code

directly, but to a specific type of Bytecode
= Bytecode executable on any architecture
= Write once, run anywhere (WORA)

= Java bytecode runs through a Java Virtual
Machine (JVM), achieving cross-platform support

= Different platforms have their implementation of
the JVM (included in the Java Runtime
Environments JRE). The Java Development Kit
(JDK) also includes the Java JRE.

16 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

Compiling Java

Source code Bytecode
_ —> — —>
(.java) (.class)
Java Archieve
(.jar)
17 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

First Java program

In a simple text editor (Notepad, TextEdit, Emacs)
write the following and save in HelloWorld.java

class HelloWorld #

public static void main (String[] arguments){

System.out.println("Hello World !");

}
This is a class declaration, more on that later.

18 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

First Java program

In a simple text editor (Notepad, TextEdit, Emacs)
write the following and save in HelloWorld.java

class HelloWorld {

public static void main (String[] arguments){

System.out.println("Hello World !");

}

Main method: entry point to the program (public + static)
and needs to be inside a class

19 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

First Java program

In a simple text editor (Notepad, TextEdit, Emacs)
write the following and save in HelloWorld.java

class HelloWorld {

public static void main (String[] arguments){

System.out.println("Hello World !");

}

System is a class, that calls out that represents the stdout
(here output to console). Method println prints the text
argument, and adds a newline character.

20 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

First Java program

In a simple text editor (Notepad, TextEdit, Emacs)
write the following and save in HelloWorld.java

class HelloWorld {

public static void main (String[] arguments){

System.out.println("Hello World !");

}

}
Lets compile and run it!

> javac HelloWorld.java

> java HelloWorld

21 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

Program structure

class CLASSNAME {
public static void main (String[] arguments){

STATEMENTS
// comments

}

Main function is needed to run a program
It is always inside a class
It is always public static

22 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

Let’s move to our IDE

= Run Eclipse, and FilesNew-=Java Project
= Name your project: RemedialJava and click finish

= Select in the Package Explorer your project

Remediallava, and File > New > Package
= Name your package: sessionl.introduction

= Finally, select your package in the Package Explorer,

File - New - Java Class
= Name your class HelloWorld

= Copy paste the code from HelloWold example

= Project-Build and Run=Run your code (or select the
HelloWorld class and Run - Run As - Java Application)

23 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

Types

= As in all programming languages, Java has some
basic types, the kinds of values that can be stored
and manipulated:

boolean: Truth value (true or false).
int: Integer (0, 1, -30).

double: Real number (3.14, 2.0, -4.1).
String: Text (“hello”, “cat”).

24 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

Variables

= Variable: location that stores a value of a type.
The form is: TYPE NAME;
e.g., String cat;

" We use = to make variable assignments.
e.g., String cat;
cat = “Garfield”;

= Can combine declaration and assignment
e.g., String cat = “Garfield”;

25 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

Variables of different Types

= example

class HelloWorld {
public static void main (String[] arguments){
System.out.println("Hello World !");

String cat = "Garfield";
int age = 3;

System.out.println(
"My cat is " 4+ cat + ” and he is " + age);

26 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

Operators

= Symbols: = Ordering:
Assignment: = 1. left to right, () increase
Operators: +,-,*,/,% precedence

Combined: +=, -=, *=, /

2. multiplication/division

3. addition/substraction

class SomeMath {

public static void main (String[] arguments){
double calculate = 1.0 + 2.0 * 3.0;
// different from (1.0 + 2.0) * 3.0
System.out.println(calculate);
calculate = calculate * 2.0;
// calculate *= 2.0; would work too
System.out.println(calculate);

27 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

Division
= Division (“/”) operates differently on integers and
doubles

Example

double a = 5.0/2.0; // a = 2.5
int b = 4/2; // b = 2
int ¢ = 5/2; // ¢c = 2
double d = 5/2; // d=2.0

28 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

types

= Java verifies that types match:
String five = 5; // ERROR!

= Can convert types by casting

int a=2; // a =2

double a = 2; // a = 2.0 (Implicit)

int a = 18.7; // ERROR

int a = (int)18.7; // a = 18

double a = 2/3; // a = 0.0

double a = (double)2/3; // a = 0.6666...

29 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

String concatenation

Basic concatenation

String text = "hello" + " world,";
text = text + " times " + 6;
// text = "hello world, times 6"

Can also create formatted strings

String text = String.format(”Printing a
string variable %s, and an integer one %d4d”,
stringVar, intVar);

To check equality: stringl.equals(string2)

Many methods available !!!

30 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

Exercise 1

www.lri.fr/~anab/teaching/remediallava/ex-sessionl.pdf

Reminder:

= Types (boolean, int, double, String)
= Operators +,-,*,/,%

= Assignment =, +=, *=, -=, /=

= Standard output system.out.println(“some text”);

31 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

Methods

A method is similar to a function

A section of a program that is given a name,
and that that performs a specific task

It may take some input parameters and may
return a value

It can be called from elsewhere in the program
to be executed

32 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

Methods

public static void main(String[] arguments) {

System.out.println(“hi”);

public static void NAME (TYPENAME) {
STATEMENTS;

}

To call a method:
NAME (EXPRESSION);

33 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

Methods example (1)

class Square {

public static void printSquare (int x) {
System.out.println (x * x);

}

public static void main(String[] arguments){
int value = 2;
printSquare (value);
printSquare(value*2);
printSquare(3);

34 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

Methods example (2)

class Square {
public static void printSquare (int x) {

System.out.println (x * x);

public static void main(String[] arguments){
printSquare ("Hello World");
printSquare(5.5);

What is wrong here ?

35 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

Methods example (3)

class Square {

public static void printSquare (double x) {
System.out.println (x * x);

public static void main(String[] arguments){
printSquare(5);

What is wrong here ?

36 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

Methods example (4)

class Square {

public static void printSquare (double x) {
System.out.println (x * x);

}

public static void printSquare (String x) {
System.out.println (x + x);

}

public static void main(String[] arguments){
printSquare(5.0);
printSquare("Hello");

37 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

Methods example (4)

class Square {

public static void printSquare (double x) {
System.out.println (x * x);

}

Method overloading: a class can have two or more methods
having same name, if their argument lists are different.

38 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

Method return values

public static TYPE NAME (TYPE NAME, TYPE NAME,...) {
STATEMENTS;
return EXPRESSION;

= void means “no type”, ie nothing returned

39 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

Methods example (5)

class Square {

public static double square (double x) {
return x * Xx;

}

public static void main(String[] arguments){
System.out.println(square(5));
}
}

40 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

Variable Scope

= Variables live in the block {} where they are defined
(scope)

= Method input parameters are like defining a new
variable in the method

41 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

Variable scope example (1)

class SquareChange {

public static void printSquare(int x) {

System.out.println("printSquare x = " + x);
X = X * X;
System.out.println("printSquare x = " + x);

}

public static void main(String[] arguments) {
int x = 5;

System.out.println("main x = " + x);
printSquare(x);
System.out.println("main x = " + x);

Note: this is for basic types ...

42 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

Methods

You should know this, but repetition is good &

= Big programs are built out of small methods

= Methods can be individually developed, tested and
reused

= The user of method does not need to know how it works
(this is called “abstraction”)

43 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

Conditionals

if (CONDITION) { if (CONDITION) { if (CONDITION) {
STATEMENTS 1 STATEMENTS 1
STATEMENTS }else { } else if (CONDITION) {
) STATEMENTS 2 STATEMENTS 2
} } else if (CONDITION) {
STATEMENTS 3
}else {

STATEMENTS 4
}

44 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

Conditions ...

Are a combination of:

= Comparison operators:
X>y , x>=y :xisgreaterthany, x is greater or equal toy
X<y , x<=y :xislessthany, xislessthan orequaltoy
X==y : X equals y (equality: ==, assignment: =)
(NOT for Strings, non basic types or doubles)

= Boolean operators:
&& : logical AND
| : logical OR
! : logical NOT

45 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

Conditions ...

= Comparison operators:

= Do not call == for String
String is an object, so Java will look at its memory (more later)
Instead use equals (e.g., sl.equals(s2))

= Do not call == for doubles
double a = Math.cos (Math.PI / 2);
double b = 0.0;
a=6.123233995736766E-17
a == b will return FALSE
use Math.abs(a-b) < somethingSmall

46 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

Conditional Switch ...

switch (variable) {
case valuel:
STATEMENTS
break;
case value2:
STATEMENTS
break;

default:
STATEMENTS

break;

47

ABezerianos - Remedial Java - Session-1.key - 6 September 2019

Exercise 2

www.lri.fr/~anab/teaching/remediallava/ex-sessionl.pdf

Reminder:
= if (cond) {
} else if (cond) {

} else {

}

= Condition operators: x>y, x>=y, X<y, X<=y, X==y
= Boolean operators: && (AND), || (OR), ! (NOT)

48

ABezerianos - Remedial Java - Session-1.key - 6 September 2019

Loops (1)

while (CONDITION) { do{

STATEMENTS STATEMENTS
} } while (CONDITION)
int 1 = 0;

while (i < 3) {
System.out.println(“Counting #"“ + 1i);
i+=1;

}

= Make sure that your loop has a chance to finish
(especially if you cannot count a-priori)

49 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

Loops (2)

for (intialization; CONDITION; update) {
STATEMENTS

for(int i = 0; i < 5; i=i+l) {

System.out.println(“Counting #“ + i);

= Note:i=i+1 may be replaced by i++ (or ++i)

50 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

Loops (3)

Embedded loops

for(int i = 0; i < 5; i=i+1) {
for (int j = 0; j < 7; j=3j+1) {
System.out.println(i + “ “ + j);

}

= Scope of variables defined inside loop exist in the
respective for block

= Scope of the iterating variable (e.g., i,j) defined in the
initialization (also exist in the respective for block)

51 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

Loops (4)

Jumping loops (brunching statements):
= You can terminate a loop by using break, this will
move to the first instruction after the loop

= You can skip the current iteration of a loop using
continue, which moves you to the next iteration

for(int i = 0; i < 5; i=i+l) {
for (int j = 0; j < 7; j=3j+1) {

if (j == 3) continue; // go to j 4
if (j == 5) break; // stop the inner loop
System.out.println(i + “ “ + j);

52 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

Exercise 3

www.lri.fr/~anab/teaching/remediallava/ex-sessionl.pdf

Reminder:
= for (i=1; i<=10; ++i) { ... }
= double a = (double) 1/2;

53 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

Exercise 4 - Homework

www.lri.fr/~anab/teaching/remediallava/ex-sessionl.pdf

Reminder:
= for (i=1;i<=10; ++i) { ... }
= System.out.print() prints in the same line

= System.out.printin() adds a new line at the end

54 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

Java basics, Arrays

55 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

Arrays

= An array is an indexed list of values.

= You can make an array of any type
= int, double, String, etc.

= All elements of an array must have the same
type.

56 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

Arrays

o
=t
N T
Wi

ABezerianos - Remedial Java - Session-1.key - 6 September 2019

Arrays

Example: double|]

5.0 233 | 0.0

T

0

.

Bezerianos - Remedial Java - Session-1.key - 6 September 2019

Arrays

= The index starts at zero and ends at length-1.

Example:

values[0] 1; // CORRECT

values|[3] 1; // CORRECT

values|[5] 1; // WRONG!! compiles but
// throws an Exception
// at run-time

int[] values = new int[5];

59 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

Arrays

= An array is defined as TYPE[].

= They are themselves just another type
(more advanced)

int[] values; // array of int

int[][] values; // array of int[]
// (array of arrays)

60 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

Arrays

= Arrays of a specific size created using new:

int[] values = new int[5];

= Or using a variable:

int arraySize = 5;
int[] values = new int[arraySize];

= Or using {} to initialize the array values. This
can only be used in the array declaration:

int[] values = {2, 5, 3, 6, 6};

61 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

Array Access

= You can access elements in the array with

arrayName[index]

Example:

int[] values = {2, 5, 3, 6, 6};
values[2] = 12; // assign value at position 2
// {2,5,12,6,6}
int x = values[3]/2; // read value at pos 3
// {2,5,3,3,6}

62 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

Array Access

= Arrays have a 1length variable build-in

Example:

int[] values = new int[5];
int arraySize = values.length; // 5

int[] values2 = {2, 5, 3, 6, 6};
int arraySize2 = values2.length; // 5

public static void main (String[] arguments){
if (arguments.lengh > 0)
System.out.println(“Passed " +
arguments.length + “ arguments”);

63 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

Looping over Arrays

Examples:

int[] values = {2, 5, 3, 6, 6};
for (int i=0; i<values.length; ++i)
values[i]= values[i]*values[i];

int[] values2 = new int[5];
int i = 0;
while (i < values2.length){
values[i] = i;
++1;

64 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

Exercise 5

www.lri.fr/~anab/teaching/remedial-java/ex-sessionl.pdf

Reminders/aid:
int[] values = {2, 5, 3, 6, 6};
new int[SIZE];

int[] values

array[index] accesses value at index position, with index
starting at 0

array.length gives the array size

for (intialization; CONDITION; update) {
STATEMENTS

}
You can get the max possible int with Integer. MAX_VALUE;

65 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

Common problems

66 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

Common problems (1)

= Array Index vs Array Value

int[] values = {2, 5, 3, 6, 6};
System.out.println(values[0]); // 2

= Curly braces {...} after if/else, while/for
for (int i = 0; 1 < 5; 1i++)
System.out.println(“Hi");
System.out.println(“Bye”);

Output?

67 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

Common problems (2)

= Variable initialization

int getMinValue(int[] vals) {
int min = 0;
for (int i = 0; i < vals.length; i++) {
if (vals[i] < min) {
min = vals[i];

}
}

What if vals = {1,2,3}?

Set min = Integer.MAX VALUE Or vals[0]

68 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

Common problems (2)

= Defining method within method

public static void main (String[] args) {
public static void foo (){

}

= General comment:

= Use System.out.println throughout your code

69 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

(aside, in our IDE)

= Ctrl-Shift-L: show list of keyboard shortcuts
= Ctrl-S: save
= Ctrl-Shift-F: aligns code

= Ctrl-O: opens an autocomplete window to jump to a member
definition for all members of the open type

= Ctrl-Shift-O: organize imports automatically

= Ctrl-Shift-T: opens a window to open a type via autocompletion
= Ctrl-Shift-R: opens an autocomplete window for resources (files)
= F3:jump to definition

(On a Mac, replace Ctrl above with Cmd.)

70 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

Java resources

Many resources online ...

https://docs.oracle.com/javase/tutorial/
tutorialLearningPaths.html

« Thinking in Java » by Bruce Eckel (older versions of
the book available online)

71 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

Exercises 4,6,7

Homework (together with anything else you did not finish in class)

www.lri.fr/~anab/teaching/remedial-java/ex-sessionl.pdf

72 ABezerianos - Remedial Java - Session-1.key - 6 September 2019

