é(remedial) Java

anastasia.bezerianos@Iri.fr

Packages

6/09/16

6/09/16

Packages (1)
package path.to.package.foo;
= Each class belongs to a package

= Packages groups classes that serve a similar
purpose.

= Packages:
= Help avoid classes with the same name

= Classes in other packages need to be imported

Packages (2)
package path.to.package.foo;
= Are just directories (in the disk or jar)
= For example

= class3.inheritanceRPG is located in

= <workspace>\Remediallava\src
\class3\inheritenceRPG

= The compiled classes under ...\Remediallava\bin\...

Packages (3)

= Defining packages

package path.to.package.foo;
class Foo {

}
the class full name is package.ClassName

Packages (2)

= Defining packages

package path.to.package.foo;
class Foo {

}
the class full name is package.ClassName

= Using packages

import path.to.package.foo.*;
import path.to.package.Foo;

6/09/16

Packages example

package neighborhood;

public class Car {

}

package neighborhood;

public class Road {

}

Packages example

package citytools;

import neighborhood.Car;
import neighborhood.Road;

public class City {
public static void main (String[] args)({
Car car = new Car();
car.move(30);

6/09/16

Packages example

package citytools;

// import neighborhood.Car;
// import neighborhood.Road;

public class City {
public static void main (String[] args){

car.move(30);

neighborhood.Car car = new neighborhood.Car ()|;

Why packages?

= Combine similar functionality

fr.upsud.libraries.Library
fr.upsud.libraries.Book

= Separate similar names

shopping.List
packing.List

Convention (domain.society.project.modules)

fr.upsud.remedialjava.class3

6/09/16

Why packages?

= All classes “see” classes in the same package (no
import needed)

= All classes “see” classes in java.lang
= Such as: java.lang.String; java.lang.System

= Java has a LOT of packages/classes. Reuse them
to avoid extra work (use your java version)

= http://docs.oracle.com/javase/8/docs/

= http://docs.oracle.com/javase/8/docs/api

Collections

6/09/16

Remember our menu orders

public class Menu {

private Dish[] dishes = new Dish[10];

= What would happen if we wanted a menu of
more than 10 items (even better, a menu that we
can periodically add new dishes to)?

Object collections: ArrayLists

= Java comes with several collections, i.e., objects
that represent a grouping of other objects.
Examples include ArrayLists, Sets, Maps, etc.
(see Java API on collections for more info)

ArrayList:
Modifiable list (internally implemented with Array)
= Get/put item by index

= Add/delete items
= Loop over items

6/09/16

Object collections: ArrayLists

= Java comes with several collections, i.e., objects
that represent a grouping of other objects.
Examples include ArrayLists, Sets, Maps, etc.
(see Java API on collections for more info)

ArrayList: Modifiable list (internally implemented with Array)
= get(index) to access item at index (not array[i])
= Add/delete items (no size restriction)

= Loop over items

ArrayList example

public class ArrayListExample {
public static void main(String[] arguments) {

ArrayList<String> someStrings = new ArrayList<String>(); // creation

// adding as many items as we want
someStrings.add ("Alice");
someStrings.add("Bob");
someStrings.add("Steve");

System.out.println("Size is " + someStrings.size()); // can get its size
System.out.println(someStrings.get(0)); // can get items in index position 0
System.out.println(someStrings.get(5)); // error when outside

for (int i = 0; i < dishes.size(); ++i) // loop using index

System.out.println(someStrings.get(i));
dishes.set (2, "Peter");// replace item at index

for (String s: someStrings) // another loop over collection
System.out.println(s); // that gives us references

6/09/16

6/09/16

Exercise 1 (part one & two)

www.lri.fr/~anab/teaching/remediallava/ex-class3.pdf

Reminder:

= Import classes from other packages using import package.classname;
= Arraylist:

= ArrayList<Class> someName = new ArrayList<Class>();

= get(index): returns object in index pos

* set(index,object): sets object in index pos

= add(object):adds an object at the end of the ArrayList

= remove (?):removes object at either index, or object itself

= Loop using index, or over elements for(Class c: someCollection)

Object collections: Maps

= Stores a (key, value) pair of objects
= Look up the key, get back the value
= Key needs to be unique

Example:
= Address book: map name to email address
= Menu: map dish number to Dish object

= TreeMap (sorted), HashMap (pseudorandom)

Map example

public class MapExample {
public static void main (String[] args){

HashMap<String,String> emails = new HashMap<String, String>(); // creation
emails.put("John", "john@doe.com"); // adding entry of type String:String
emails.put("Cat", "cat@withemail.org");

System.out.println(emails.size()); // gets size

for (String k : emails.keySet()) // gets all keys

System.out.println(k);

if (emails.containsKey("John")) // checks if key exists
emails.replace("John", "johnnie@gmail.com"); // replaces
for (String v : emails.values()) // gets all values

System.out.println(v);

if (!emails.isEmpty()) // checks if empty
System.out.println("I have stuff!");

emails.remove("Cat"); // removes key
for (HashMap.Entry<String,String> pairs: emails.entrySet())

System.out.println(pairs); // iterates over all entries

}

value

A bit more on methods

6/09/16

10

A bit more on methods

= Methods (including constructors) can be
overloaded (multiple methods, same name)

(one way of ensuring polymorphism in Java)

public Car {
this.Car("unknown", "white"); // I want a default value

}

public Car(String myname, String mycolor){
name = myname; // or this.name = myname;
color = mycolor; // or this.color = mycolor;

Overloading

* The compiler searches for the best method,
based on the TYPE of the arguments passed

public class PrintStream {
public void println(String text){

}

public void println(double value){

}

public static void main (String args[]){
PrintStream out = System.out;
out.println(“toto”);
out.println(3.0);
out.println(2);

6/09/16

11

6/09/16

Overloading

= The return TYPE of the method is not considered,
so it is impossible to differentiate methods just
by their return TYPE

public class BadOverloading {
public int £(){
}
public double f()({

} // £ is already defined in BadOverloading
public static void main (String args[]){

BadOverloading bo = new BadOverloading();
bo.f();

Overloading, when to use?

= We use overloading when methods have the
same semantic (purpose), but different
arguments

public class Math {
public float sqrt(float value)({..}
public double sqrt (double value)({..}
} // this is ok

public class List {
public void remove (Object value) {..}
public void remove (int index) {..}
} // if we want to be picky, this is NOT ok, why?

12

Varargs

= |t is possible to define methods with variable
number of arguments using the notation “...”

= Arguments are put in a table

public class PrintStream ({
public void printf (String text, Object... args){

}

public static void main (String[] args) {
PrintStream out = System.out;
out.printf(“%d\n”,2);

Varargs

= Varargs are considered as tables, so we cannot
overload varargs and tables

public class VarargsOverloading {
private static int min(int... array){ }

private static int min(double... array){ }

private static int min(int[] array){
} // min(int...) already defined in VarargsOverloading

6/09/16

13

6/09/16

Exercise 1 (part 3)

www.lri.fr/~anab/teaching/remediallava/ex-class3.pdf

Reminder:

= Syntex for varargs

method TYPE (other input params, TYPE... name)

Inheritance

14

6/09/16

A basic inheritance example

= Imagine a very simple RPG game

public class Person {
public String _name;
public int _health = 100;
public int mana = 0;

public void sayName () {
System.out.println(_name);

}

public void attackPerson(Person target){

System.out.println(_ name + " attacking " + target. name);
target._health -= 10;

A basic inheritance example

= \We now want to create a Wizard

public class Wizard {

// need to copy all of Person staff
// booooring

}

= Why go into all the trouble? Wizard has and does
everything that a simple Person does ...

15

6/09/16

A basic inheritance example

= Wizard is a subclass of Person

public class Wizard extends Person {

A basic inheritance example

= Wizard is a subclass of Person

= Wizard can use everything” that Person has
e.g.,wizardl. health +=1;

*except for private fields and methods (keyword protected may be used)

16

A basic inheritance example

= Wizard is a subclass of Person

= Wizard can use everything” that Person has
e.g.,wizardl. health +=1;

= Wizard can do everything” that Person can do

e.g.,wizardl.attackPerson(personl);

*except for private fields and methods (keyword protected may be used)

A basic inheritance example

= Wizard is a subclass of Person

= Wizard can use everything” that Person has
e.g.,wizardl. health +=1;

= Wizard can do everything” that Person can do

e.g.,wizardl.attackPerson(personl);

= You can use Wizard as a Person too
e.g., personl.attackPerson(wizardl);

*except for private fields and methods (keyword protected may be used)

6/09/16

17

A basic inheritance example

= Let’s improve Wizard

public class Wizard extends Person {

int mana = 100;
ArrayList<String> _spells;

public void cast (String spell){
// do cool stuff here
_mana -= 10;

A basic inheritance example

= Can we inherit from inherited classes?

public class GrandWizard extends Wizard {

}

grandWizardl.name = “Gandalf”;
grandWizardl.attackPerson (personl);
grandWizardl.sayName();

6/09/16

18

6/09/16

How does Java do that?

= \What Java does when it sees granawizardi.sayName();

Look for sayname()in GrandWizard

It’s not there! Does GrandWizard have a parent?

Look for sayname()in Wizard

It’s not there! Does Wizard have a parent?

Look for sayName()in Person

Got it! Call sayName ()and print the field _name

Inheritance structure

Person:

Parent of Wizard, EIf, ...

Subclasses of Person LJ
Subclass of Wizard

19

Can only inherit from one class

Can only inherit from
one parent class

Multiple inheritance
not possible ...

Why?

—_—

s

-

A basic inheritance example

= Adapting methods from inherited classes

public class GrandWizard extends Wizard {

public void sayName (){

System.out.println("Grand Wizard"
} //overriding (ancestor) parent method

}

grandWizardl.name = “Gandalf”;

grandWizardl.attackPerson (personl);

grandWizardl.sayName();

+ name);

6/09/16

20

Exercise 2 - part one & two

www.lri.fr/~anab/teaching/remediallava/ex-class3.pdf

Reminder: Wizard
= Part one protected ArrayList<String> _spells
example of a single class diagram public void sayName()

public String castSpell()

= Part two

inheritance between classes
class CHILDCLASS extends PARENTCLASS {

}

a child class can override (i.e., redefine) a method from a
parent/ancestor class by redefining it in its body

Access to parent information

= A class inherits all the members of the parent
(super) class, i.e., all fields and methods and can
use them without having to do anything more.

6/09/16

21

Access to parent information

= A class inherits all the members of the parent
(super) class, i.e., all fields and methods and can
use them without having to do anything more.

= All except Constructors, that are not inherited

= Unless the default constructor is used, constructors
need to be redefined for each child (more later).

Access to parent information

= Methods are inherited.

= Adding a method of the same name as one in a
super-class redefines (overrides) the method.
This way we have implementations adapted to
the semantics of the method.

class Person { class GrandWizard extends Wizard {
public void sayName () { public void sayName () {
System.out.println(_name); System.out.println("GW" + _name)
} }
} }

6/09/16

22

Access to parent information

= Fields are inherited

= When we add a field of the same name as one in
a parent class, the field of the super class is no
longer visible to us (we say it is hidden or
masked)

class Person { class Wizard extends Person {
public int name; public String name;
public int sayName (){ public String sayName () {
System.out.println(_ name); System.out.println("GW" + name)

}
}

}
}

Access to parent information

= What if we want to access methods or fields from
the super class, when we have overridden the
methods or masked the fields (e.g., use the
sayName () of Person for the GrandWizard Zed?

6/09/16

23

Access to parent information

= We use the keyword super

class Wizard extends Person {

public String sayName (boolean modest){
if (modest)
super.sayName();
else
System.out.println("GW" + name);

Access to parent information

= We use the keyword super

class Wizard extends Person {

}

public String sayName (boolean modest){
if (modest)
super.sayName();
else
System.out.println("GW" + name);

}

= Only works for immediate parent and non-static

methods (they belong to their class)

6/09/16

24

Access to parent information

= We use the keyword super

= Constructors are not inherited.

= Unless the default constructor is used, constructors
need to be redefined for each child.

= First line in the constructor needs to be a call to the
constructor of the parent class, using super

class Person {
public Person(String n){

name = n; .
- ! class Wizard {

} public Wizard(String name, int m)
super (name) ;
_mana = m;

}

{

}
}
Another example:

Customer

name: String
Customer Firm address: Address
name: String name: String validate(): boolean
address: Address address: Address
----------------------- firm: String
validate(): boolean | | ---------mmoemeeee-

validate(): boolean Firm
firm: String

In reality, true inheritance is rare ...

6/09/16

25

Inheritance, reasons

= We use inheritance to:

= Reuse members (structural),
e.g., Customer & Firm

= Redefine some methods,
e.g., change the code to
validate()

= Express sub-types,
e.g., Wizard is a Person

Customer

name: String
address: Address

firm: String

Upcasting, downcasting

= Upcasting: the ability to consider a reference of a
child (sub-class) as if it is a reference of a parent-

(super-class).

= In Java done automatically.

6/09/16

26

Upcasting, downcasting

= Upcasting: the ability to consider a reference of a
child (sub-class) as if it is a reference of a parent-
(super-class).

= In Java done automatically.

public static main (String[] args){f——

person

Wizard wizard = new Wizard();

System.out.println(wizard); ——

wizard

Person person = wizard;
System.out.println(person);

Upcasting, downcasting

= Upcasting: the ability to consider a reference of a
child (sub-class) as if it is a reference of a parent-
(super-class).

* In Java done automatically.

—
person

public static main (String[] args)({

Wizard wizard = new Wizard();

System.out.println(wizard); ——

wizard

Person person = wizard;
System.out.println(person);

}
= Note: the object is still a Wizard, but we can treat

it as a Person (e.g., add it in an arrayList<person>)

6/09/16

27

Upcasting, downcasting

= Downcasting: the ability to consider a reference
to a parent (super-class) as if it is a reference of
to a child (sub-class)

Upcasting, downcasting

= Downcasting: the ability to consider a reference
to a parent (super-class) as if it is a reference of
to a child (sub-class)

public static main (String[] args)({

// assuming I know about Zed
for (Person p: persons){
if (p.getName().equals("Zed")){
Wizard zed = (Wizard)zed;
}
}
}

6/09/16

28

Upcasting, downcasting

= Downcasting: the ability to consider a reference
to a parent (super-class) as if it is a reference of
to a child (sub-class)

public static main (String[] args){

// assuming I know about Zed
for (Person p: persons){
if (p.getName().equals("Zed")){
Wizard zed = (Wizard)zed;
}
}

} . :
= |f you want to check if an object belongs to a
ClaSS can use instanceOf, e.g., (p.instanceof Wizard)

(aside) OOP Polymorphism

= Polymorphism is the ability for something © to
take many forms. In Java it can be seen in:

= Objects: because we can upcast, an object can be
seen as being of the class of (one of) it’s ancestors

= Methods: because we can override a method that
we inherit to adapt its behavior

= Methods: because we can overload a method (i.e.,
have a method with same name but different input
parameters) to adapt its implementation to the
context of the input parameters

6/09/16

29

Exercise 2 — part three

www.lri.fr/~anab/teaching/remediallava/ex-class3.pdf

Reminder:
= Constructors are not inherited
= You can access the parent’s constructor with super

= |n the constructor, super needs to be the first command

Inheritance

= In Java all class are inheriting directly or indirectly
from the class java.lang.0object

= Directly: when we declare a new class without
inheritance, the compiler adds extends object

= Indirectly: when we declare a new class that inherits
from another one, the parent class inherits (directly
or indirectly) from the class Object

6/09/16

30

Object class

= Parent class of all Java classes

= Has basic methods (we can redefine/override)
= toString() & hashCode()
= equals()
= getClass()
= clone()

= finalize()

Equality tests

= The operators == and != test
= Values for primitive/basic types (e.g., int, double)

= Values of references for Objects

p1 X:2,y:2
Point pl; /
pl=new Point(2,2); p2
Point p2;
p2=pl;

Point p3;
p3=new Point(2,2); p3 X:2,y:2
pl==p2; //true

pl==p3; //false
p2==p3; //false

6/09/16

31

equals()

= There is a method equals(Object) in Object

= But generally its implementation tests references
(what is an exception we have used?)

p1 —3A X:2,y:2

Point pl=new Point(2,2);
Point p3=new Point(2,2); —
pl==p3; //false

pl.equals(p3); //false

= To structurally compare@o objects we need to

redefine (override) the method equals().

Advanced Inheritance

6/09/16

32

Can only inherit from one class

Can only inherit from Q
one parent class

(not entirely true ...) w u w

If both Wizard and Elf implement (differently)
sayName (), Which one does WizardElIf call?

Interfaces (not Ul)

But what if the Q

method was not

implemented? F Fghrer w
.

6/09/16

33

Interfaces (not Ul)

= Interfaces define a type (as do classes) but
without code. We use the keyword interface

public interface E1f {
public void seeInTheDark(); // simple declaration, no code
public String otherCoolStuffICanDo (int coolness);

}
= In the interface you can declare methods
that subclasses will then have to implement

= We call these abstract methods
= They are always declared public

Interfaces

Then we need to define a G
class that inherits the
declarations of the abstract (} (} -
methods in the interface, I |

and provides code for them @

We use the keyword
implements

6/09/16

34

Interface implementation

public interface E1f {

public void seeInTheDark(); // simple declaration, no code
public String otherCoolStuffICanDo (int coolness);

public class WizardElf extends Wizard implements E1f{

public void seeInTheDark(){
System.out.println("I see as well as a cat");

}

public String otherCoolStuffICanDo (int coolness){
if (coolness < 5)

System.out.println("Not so cool after all");

Interfaces

= The compiler verifies that once a class implements
an interface, it implements all its methods

= A class that implements an interface, is a sub-type
of the interface (and all the cool upcasting works
here as well)

public static main (String[] args)({
ElfWizard elw = new ElfWizard();

Wizard wizard alias = elw;
Elf elf alias = elw;

6/09/16

35

Interfaces

= An interface has no code (i.e., is not implemented)
and so cannot be instantiated (i.e., we cannot
create objects of their type using new)

= The compiler verifies that once a class implements
an interface, it implements all its methods

= A class can implement more than one interfaces,
and thus inherits their combined declarations

= This is the closest Java comes to multiple inheritance

Interfaces

public interface E1f {

public void seeInTheDark(); // simple declaration, no code
}
public interface Running {

public int run(int time); // simple declaration, no code

}

public class WizardElf extends Wizard implements E1f, Running{
private int distance = 0;

@override

public void seeInTheDark(){ // inherited from E1lf
System.out.println("I see as well as a cat");

}

@Override

public int run (int time){// inherited from Running
_distance += time*10;

}

6/09/16

36

Interface or Class Inheritance

= Inherit from a class:
= The subclass is a type of the parent class

= Implement an interface:

= Enforce the implementation of specific methods (i.e.,
shared functionality)

= Objects that share different groups of functionalities

(a call to interface methods is a bit slower)

Exercise 3

www.lri.fr/~anab/teaching/remediallava/ex-class3.pdf

Reminder:
= Interface creation: public interface INTERFACENAME{}
= |Interface only has (abstract) method declarations, all public
= Aclass implements one or more interfaces
class CLASSNAME implements INTERFACENAME({}

= Aclass that implements an interface needs to provide code for all
the abstract methods defined in the interface (the keyword
@Override proceeds their code)

6/09/16

37

Abstract classes

= |t is possible to create in Java classes with abstract
methods, i.e., methods that child classes need to
implement
= Abstract classes can also have fields and methods with

implementation as well, so it is a partially
implemented class

= They can inherit normally from other classes or
implement interfaces

= BUT they cannot have instances (i.e., we cannot
create an object from them using new)

Abstract classes

public interface Moving {
public int run(int time);
public int walk(int time);

}

public interface Resting {
public void stand(int time);
public void sleep(int time);

}

public abstract class Person implements Moving,Resting {
String _name;
int _distance;
public int run(int time){
distance += time*10; // implemented method
}
public abstract void sayName(); // declaration only

}

// What does Wizard have to do?
public class Wizard extends Wizard {

}

6/09/16

38

Type and Class: reminder

Aside note:
= Variables have a Type

= References have a Class

public static void main (String args[]){
String s = args[0];
Car k = new Car (“peugeot”, “pink”);

Type Class

Types vs classes

public interface Moving { .. }
public interface Resting {.. }

public abstract class Person implements Moving,Resting {..}

public class Wizard extends Person { .. }
public class Fighter extends Person { .. }

=Which of the following are correct?

Person p new Person("John");
Wizard z new Wizard("zed");
Fighter f = new Fighter("Fred");
Resting r = new Resting("Resting");

Person p2 = z;

ArrayList<Person> people = new ArrayList<Person>();
people.add(z);
people.add(f);
for (Person ip: people){
if (ip instanceof Wizard) {..}
}

6/09/16

39

Object collections: ArrayLists

(Aside)
= Arraylists are one type of List (that is an
interface, more on this later). Often it is best to

declare the type as List and instantiate (i.e.,
implement) using ArrayList.

= This can make easier in the future to change the
implementation of your List (to use for example
LinkedList)

(see Java API on collections for more info)

6/09/16

40

