(remedial) Java

anastasia.bezerianos@lri.fr

1 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

Packages

2 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

Packages (1)
package path.to.package.foo;
= Each class belongs to a package

= Packages groups classes that serve a similar
purpose.

= Packages:

= Help avoid classes with the same name

= Classes in other packages need to be imported

3 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

Packages (2)

package path.to.package.foo;

= Are just directories (in the disk or jar)

= For example class3.inheritanceRPG is located in
<workspace>\Remediallava\src\class3\inheritenceRPG

= The compiled classes under ...\Remediallava\bin\...

4 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

Packages (3)

= Defining packages

package path.to.package.foo;
class Foo {

}

the class full name is package.ClassName (ie
path.to.package.foo.Foo

5 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

Packages (2)

= Defining packages

package path.to.package.foo;
class Foo {

}

= Using packages

import path.to.package.foo.*;
import path.to.package.foo.Foo;

6 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

Packages example

package neighborhood;

public class Car {

}

package neighborhood;

public class Road {
}

7 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

Packages example

package citytools;

import neighborhood.Car;
import neighborhood.Road;

public class City {
public static void main (String[] args){
Car car = new Car();
car.move(30);

8 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

Packages example

package citytools;

// import neighborhood.Car;
// import neighborhood.Road;

public class City {
public static void main (String[] args){

neighborhood.Car car = new neighborhood.Car();
car.move(30);

9 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

Why packages?

= Combine similar functionality

fr.upsud.libraries.Library
fr.upsud.libraries.Book

= Separate similar names

shopping.List
packing.List

Convention (domain.society.project.modules)

fr.upsud.remedialjava.class3

10 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

Why packages?
= All classes “see” classes in the same package (no
import needed)
= All classes “see” classes in java.lang

= Such as: java.lang.String; java.lang.System

= Java has a LOT of packages/classes. Reuse them to
avoid extra work (use your java version)

= http://docs.oracle.com/javase/10/docs/

1 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

Collections

12 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

Remember our Library

public class Library {

private Book[] allBooks = new Book[10];

= What would happen if we wanted a more than 10
books? Even better, a library that we can periodically
add books to without worrying about its storage?

13 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

Object collections: ArrayLists

= Java comes with several collections, i.e., objects
that represent a grouping of other objects.

Examples include ArrayLists, Sets, Maps, etc.
(see Java API on collections for more info)

ArrayList: Modifiable list (internally implemented with Array)
- get(index) to access item at index (not array[i])

= Add/delete items (no size restriction)

= Loop over items

14 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

ArrayList example

public class ArrayListExample {
public static void main(String[] arguments) {

ArrayList<String> someStrings = new ArrayList<String>(); // creation

// adding as many items as we want
someStrings.add("Alice") ;
someStrings.add("Bob");
someStrings.add("Steve");

System.out.println("Size is + someStrings.size()); // can get its size

System.out.println(someStrings.get(0)); // can get items in index position 0
System.out.println(someStrings.get(5)); // error when outside

for (int i = 0; i < dishes.size(); ++i) // loop using index
System.out.println(someStrings.get(i));

dishes.set(2, "Peter");// replace item at index

for (String s: someStrings) // another loop over collection
System.out.println(s); // that gives us references

15 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

Exercise 1 (part one & two)

https://www.Iri.fr/~anab/teaching/remediallava/ex-session3.pdf

Reminder:

= Import classes from other packages using import package.classname;
= ArraylList:

= ArrayList<Class> someName = new ArrayList<Class>();

= get(index): returns object in index pos

= set(index,object): sets objectin index pos

= add(object): adds an object at the end of the ArrayList

= remove (?):removes object at either index, or object itself

= Loop using index, or over elements for(Class c: someCollection)

16 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

Object collections: Maps

= Stores a (key, value) pair of objects
= Look up the key, get back the value
= Key needs to be unique

Example:

= Address book: map name to email address
= Menu: map dish number to Dish object

= TreeMap (sorted), HashMap (pseudorandom)

17 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

Map example

public class MapExample {
public static void main (String[] args){

HashMap<String,String> emails = new HashMap<String, String>(); // creation

emails.put("John", "john@doe.com"); // adding entry of type String:String
emails.put("Cat", "cat@withemail.org");

System.out.println(emails.size()); // gets size

for (String k : emails.keySet()) // gets all keys
System.out.println(k);

if (emails.containsKey("John")) // checks if key exists
emails.replace("John", "johnnie@gmail.com"); // replaces value
for (String v : emails.values()) // gets all values

System.out.println(v);

if (!emails.isEmpty()) // checks if empty
System.out.println("I have stuff!");

emails.remove("Cat"); // removes key

for (HashMap.Entry<String,String> pairs: emails.entrySet())
System.out.println(pairs); // iterates over all entries

}

18 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

Object collections: Maps

= Maps are good for dictionaries, look-up tasks
when you have unique ids, and convertions

(e.g., check MorseCode example in code)

19 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

A bit more on methods

20 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

A bit more on methods

= Methods (including constructors) can be
overloaded (multiple methods, same name)

(one way of ensuring polymorphism in Java)

public Car {
this.Car("unknown", "white"); // I want a default value

}

public Car(String myname, String mycolor)({
name = myname; // or this.name = myname;
color = mycolor; // or this.color = mycolor;

21 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

Overloading

= The compiler searches for the best method,
based on the TYPE of the arguments passed

public class PrintStream {
public void println(String text){

}
public void println(double value){

}

public static void main (String args[]){
PrintStream out = System.out;
out.println(“toto”);
out.println(3.0);
out.println(2);

22 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

Overloading

= The return TYPE of the method is not considered,
so it is impossible to differentiate methods just by
their return TYPE

public class BadOverloading {
public int f(){

}
public double f(){

} // £ is already defined in BadOverloading
public static void main (String args[]){

BadOverloading bo = new BadOverloading();
bo.f();

23 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

Overloading, when to use?

= We use overloading when methods have the
same semantic (purpose), but different
arguments

public class Math {
public float sqrt(float value){..}

public double sqgrt (double value){..}
} // this is ok

public class List {
public void remove (Object value) {..}
public void remove (int index) {..}
} // if we want to be picky, this is NOT ok, why?

24 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

Varargs

= |t is possible to define methods with variable
number of arguments using the notation “...”

= Arguments are put in a table

public class PrintStream {
public void printf (String text, Object... args){
. // args is an ArrayList so we can run a
loop
}
}

public static void main (String[] args) {
System.out.printf(“%d\n”,2);

}

25 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

Varargs

= \arargs are considered as tables, so we cannot
overload varargs and tables

public class VarargsOverloading {
private static int min(int... array){ }

private static int min(double... array){ }

private static int min(int[] array){
} // min(int...) already defined in VarargsOverloading

26 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

Exercise 1 (part 3)

www.lri.fr/~anab/teaching/remediallava/ex-class3.pdf

Reminder:

= Syntex for varargs
method TYPE (other input params, TYPE... name)

27 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

Inheritance

28 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

A basic inheritance example

= Imagine a very simple RPG game

public class Person {
public String name;
public int health = 100;
public int mana = 0;

public void sayName (){
System.out.println(name);

}

public void attackPerson(Person target){
System.out.println(name + " attacking " +
target. name);
target. health -= 10;

}

29 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

A basic inheritance example

= We now want to create a Wizard

public class Wizard {

// need to copy all of Person staff
// booooring

}

= Why go into all the trouble? Wizard has and does
everything that a simple Person does ...

30 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

A basic inheritance example

= Wizard is a subclass of Person

public class Wizard extends Person {

31 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

A basic inheritance example

= Wizard is a subclass of Person

= Wizard can use everything* that Person has
e.g.,wizardl. health +=1;

= Wizard can do everything* that Person can do
e.g.,wizardl.attackPerson(personl);

= You can use Wizard as a Person too
e.g., personl.attackPerson(wizardl);

*except for private fields and methods (keyword protected may be used)

32 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

A basic inheritance example

= Let’s improve Wizard

public class Wizard extends Person {

int mana = 100;
ArrayList<String> spells;

public void cast (String spell){
// do cool stuff here
_mana -= 10;

33 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

A basic inheritance example

= Can we inherit from inherited classes?

public class GrandWizard extends Wizard {

}

grandWizardl.name = “Gandalf”;
grandWizardl.attackPerson (personl);
grandWizardl.sayName();

34 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

= What Java does when it sees granawizardi.sayname();

How does Java do that?

Look for sayName ()in GrandWizard
It’s not there! Does GrandWizard have a parent?

Look for sayname()in Wizard

It’s not there! Does Wizard have a parent?

Look for sayname()in Person

Got it! Call sayName ()and print the field __name

35

ABezerianos - Remedial Java - Session-3.key - 6 September 2019

Inheritance structure

Person:
Parent of Wizard, EIf, ...

Subclasses of Person

Subclass of Wizard

—

W

36

ABezerianos - Remedial Java - Session-3.key - 6 September 2019

Can only inherit from one class

Can only inherit from @

one parent class

Multiple inheritance
not possible ...

Why?

37 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

A basic inheritance example

= Adapting methods from inherited classes

public class GrandWizard extends Wizard {

public void sayName (){
System.out.println("Grand Wizard" + name);
} //overriding (ancestor) parent method

}

grandWizardl.name = “Gandalf”;
grandWizardl.attackPerson (personl);
grandWizardl.sayName();

38 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

Exercise 2 - part one & two

www.lri.fr/~anab/teaching/remediallava/ex-class3.pdf

Reminder: Wizard

= Partone protected ArrayList<String> spells

example of a single class diagram
public void sayName()

public String castSpell()

= Part two

inheritance between classes

class CHILDCLASS extends PARENTCLASS {

}

a child class can override (i.e., redefine) a method from a parent/
ancestor class by redefining it in its body

39 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

Access to parent information

= A class inherits all the members of the parent
(super) class, i.e., all fields and methods and can
use them without having to do anything more.

= All except Constructors, that are not inherited
= Unless the default constructor is used, constructors
need to be redefined for each child (more later).

40 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

class Person {
public void sayName (){ public void sayName (){
System.out.println(_name); System.out.println("GW" + name);

}

= Methods are inherited.

= Adding a method of the same name as one in a

}

Access to parent information

super-class redefines (overrides) the method. This
way we have implementations adapted to the
semantics of the method.

class GrandWizard extends Wizard {

}
}

41 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

}

class Person { class Wizard extends Person {
public int name; public String name;
public int sayName (){ public String sayName (){
System.out.println(_name); System.out.println("GW" + name);

}

Access to parent information

= Fields are inherited

= When we add a field of the same name as one in
a parent class, the field of the super class is no
longer visible to us (we say it is hidden or masked)

}
}

42 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

Access to parent information

= What if we want to access methods or fields from
the super class, when we have overridden the
methods or masked the fields (e.g., use the
sayName () of Person for the GrandWizard Zed?

43 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

Access to parent information

We use the keyword super

class Wizard extends Person {

public String sayName (boolean modest){
if (modest)
super.sayName();
else
System.out.println("GW" + name);

44 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

Access to parent information

= We use the keyword super

class Wizard extends Person {

public String sayName (boolean modest){
if (modest)
super.sayName();
else
System.out.println("GW" + name);

}
}

= Only works for immediate parent and non-static
methods (they belong to their class)

45 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

Access to parent information

= We use the keyword super

= Constructors are not inherited.
= Unless the default constructor is used, constructors
need to be redefined for each child.
= First line in the constructor needs to be a call to the
constructor of the parent class, using super
class Person {
protected String name;
public Person(String n){

_name = nj;

}

class Wizard {
public Wizard(String name, int m) {
super (name) ;
_mana = m;
}
}

}

46 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

Inheritance

Another example:

Customer

name: String

Customer Firm address: Address
name: String name: String validate(): boolean
address: Address address: Address

firm: String
validate(): boolean

validate(): boolean Firm

firm: String

In reality, true inheritance is rare ...

47 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

Inheritance, reasons

= We use inheritance to:

Customer

= Reuse members (structural),
e.g., Customer & Firm

name: String
address: Address

= Redefine some methods,
e.g., change the code to
validate()

validate(): boolean

= Express sub-types, A
e.g., Wizard is a Person

firm: String

48 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

Upcasting, downcasting

= Upcasting: the ability to consider a reference of a
child (sub-class) as if it is a reference of a parent-
(super-class).

= In Java done automatically.

49 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

Upcasting, downcasting

= Upcasting: the ability to consider a reference of a
child (sub-class) as if it is a reference of a parent-
(super-class).

= |n Java done automatically.
public static main (String[] args){

Wizard wizard = new Wizard();
System.out.println(wizard);

Person person = wizard;
System.out.println(person);

50 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

Upcasting, downcasting

= Upcasting: the ability to consider a reference of a
child (sub-class) as if it is a reference of a parent-
(super-class).

= |n Java done automatically.

public static main (String[] args){

person

Wizard wizard = new Wizard();
System.out.println(wizard);

Person person = wizard;
System.out.println(person);

}
= Note: the object is still a Wizard, but we can treat

it as a Person (e.g., add it in an arrayrist<person>)

51 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

Upcasting, downcasting

= Downcasting: the ability to consider a reference
to a parent (super-class) as if it is a reference of to
a child (sub-class)

52 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

Upcasting, downcasting

= Downcasting: the ability to consider a reference
to a parent (super-class) as if it is a reference of to
a child (sub-class)

public static main (String[] args){

// assuming I know Zed is a Wizard
for (Person p: persons){
if (p.getName().equals("zed")){
Wizard zed = (Wizard)zed;

}

53 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

Upcasting, downcasting

= Downcasting: the ability to consider a reference
to a parent (super-class) as if it is a reference of to
a child (sub-class)

public static main (String[] args){

// assuming I know Zed is a Wizard
for (Person p: persons)/{
if (p.getName().equals("Zed")){
Wizard zed = (Wizard)zed;

}
. If you want to check if an object belongs to a class

cah use instanceof

if(p instanceof Wizard){..}

54 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

(aside) OOP Polymorphism

= Polymorphism is the ability to take many forms.
In Java it can be seen in:

= Objects: because we can upcast, an object can be
seen as being of the class of (one of) it’s ancestors

= Methods: because we can override a method that we
inherit to adapt its behavior

= Methods: because we can overload a method (i.e.,
have a method with same name but different input
parameters) to adapt its implementation to the
context of the input parameters

55 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

Exercise 2 — part three

www.lri.fr/~anab/teaching/remediallava/ex-class3.pdf

Reminder:
= Constructors are not inherited

= You can access the parent’s constructor with super
= In the constructor, super needs to be the first command

56 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

Exercise 3 — Homework

www.lri.fr/~anab/teaching/remediallava/ex-class3.pdf

Reminder:
= Constructors are not inherited
= You can access the parent’s constructor with super
= In the constructor, super needs to be the first command

57 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

Inheritance

= In Java all class are inheriting directly or indirectly
from the class java.lang.object

= Directly: when we declare a new class without
inheritance, the compiler adds extends object

= Indirectly: when we declare a new class that inherits
from another one, the parent class inherits (directly or
indirectly) from the class Object

58 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

Object class

= Parent class of all Java classes

= Has basic methods (we can redefine/override)
= toString() & hashCode()
= equals()
= getClass()
= clone()

= finalize()

59 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

Equality tests

= The operators == and != test
= Values for primitive/basic types (e.g., int, double)

= Values of references for Objects

pl > x:2,y:2
Point pl; \‘/1/////////////97
pl=new Point(2,2); 02
Point p2; I—
p2=pl;

Point p3; —
p3=new Point(2,2); p3 g2y
pl==p2; //true —-—

pl==p3; //false
p2==p3; //false

60 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

equals()

= There is a method equals(Object) in Object

= But generally its implementation tests references
(what is an exception we have used?)

pl P X2
Point pl=new Point(2,2);
Point p3=new Point(2,2); _)//////////,///)7
pl==p3; //false p2
pl.equals(p3); //false _

= To structurally compare two objects we need to
redefine (override) the method equals().

61 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

Advanced Inheritance

62 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

Can only inherit from one class

(—

. . Person

Can only inherit from -
one parent class

(not entirely true ...) w = ﬁ

|za !

EIf

If both Wizard and Elf implement (differently)
sayvame (), Which one does WizardElIf call?

63 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

Interfaces (not Ul)

R
But what if the method
was not

implemented? w W ﬁ

|za !

EIf

64 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

Interfaces (not Ul)

= Interfaces define a type (as do classes) but
without code. We use the keyword interface

public interface E1f {

public void seeInTheDark(); // simple declaration, no code
public String otherCoolStuffICanDo (int coolness);
}

= In the interface you can declare methods

that subclasses will then have to implement

= We call these abstract methods
= They are always declared public

65 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

Interfaces

Then we need to define a class Q
that inherits the declarations

of the abstract methods in | 2
| |

the interface, and provides

code for them ca

We use the keyword
implements

66 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

Interface implementation

public interface E1f {
public void seeInTheDark(); // simple declaration, no code
public String otherCoolStuffICanDo (int coolness);

public class WizardElf extends Wizard implements E1f{

public void seeInTheDark(){
System.out.println("I see as well as a cat");

}

public String otherCoolStuffICanDo (int coolness){
if (coolness < 5)
System.out.println("Not so cool after all");

67 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

Interfaces

= An interface has no code (i.e., is not implemented)
and so cannot be instantiated (i.e., we cannot
create objects of their type using new)

= The compiler verifies that once a class implements
an interface, it implements all its methods

= A class can implement more than one interfaces,

and thus inherits their combined declarations
= This is the closest Java comes to multiple inheritance

68 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

Interfaces

public interface E1f {

public void seeInTheDark(); // simple declaration, no code
}
public interface Running {

public int run(int time); // simple declaration, no code

}

public class WizardElf extends Wizard implements El1f, Running{
private int distance = 0;

@Override

public void seeInTheDark(){ // inherited from E1lf
System.out.println("I see as well as a cat");

}

@Override

public int run (int time){// inherited from Running
_distance += time*10;

}

69 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

Interface or Class Inheritance

= Inherit from a class:
= The subclass is a type of the parent class

= Implement an interface:
= Enforce the implementation of specific methods (i.e.,
shared functionality)
= Objects that share different groups of functionalities

(a call to interface methods is a bit slower)

70 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

Exercise 5

www.lri.fr/~anab/teaching/remediallava/ex-class3.pdf

Reminder:
= |Interface creation: public interface INTERFACENAME({}
= Interface only has (abstract) method declarations, all public
= A class implements one or more interfaces
class CLASSNAME implements INTERFACENAME({}

= A class that implements an interface needs to provide code for all
the abstract methods defined in the interface (the keyword
@Override proceeds their code)

71 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

Abstract classes

= |t is possible to create in Java classes with abstract
methods, i.e., methods that child classes need to
implement
= Abstract classes can also have fields and methods with
implementation as well, so it is a partially implemented
class
= They can inherit normally from other classes or
implement interfaces

= BUT they cannot have instances (i.e., we cannot
create an object from them using new)

72 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

Abstract classes

public interface Moving {
public int run(int time);
public int walk(int time);

}

public interface Resting {
public void stand(int time);
public void sleep(int time);

}

public abstract class Person implements Moving,Resting {
String name;
int distance;
public int run(int time){
distance += time*10; // implemented method
}
public abstract void sayName(); // declaration only

}

// What code does Wizard have to provide?
public class Wizard extends Person {

}

73 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

Type and Class: reminder

Aside note:
= Variables have a Type
= References have a Class

public static void main (String args[]){
String s = args[0];
Car k = new Car (“peugeot”, *“pink”);

Type Class

74 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

Type and Class: reminder

Aside note:
= Variables have a Type
= References have a Class

public static void main (String args[]){
String s = args[0];
Car k = new Car (“peugeot”, “pink”);

Type Class

75 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

Types vs classes

public interface Moving { .. }

public interface Resting {.. }

public abstract class Person implements Moving,Resting {..}
public class Wizard extends Person { .. }

public class Fighter extends Person { .. }

=Which of the following are correct?

Person p = new Person("John");
Wizard z = new Wizard("Zed");
Fighter f = new Fighter("Fred");
Resting r = new Resting("Resting");
Person p2 = z;

ArrayList<Person> people = new ArrayList<Person>();
people.add(z);
people.add(f);
for (Person ip: people){
if (ip instanceof Wizard) {..}

}

76 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

Object collections: ArrayLists

(Aside)

= Arraylists are one type of List (that is an
interface). Often it is best to declare the type as
List and instantiate (i.e., implement) using
ArrayList.

= This can make easier in the future to change the
implementation of your List (to use for example
LinkedList)

(see Java API on collections for more info)

77 ABezerianos - Remedial Java - Session-3.key - 6 September 2019

