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Abstract. Methods for voting classification algorithms, such as Bagging and AdaBoost, have been shown to be
very successful in improving the accuracy of certain classifiers for artificial and real-world datasets. We review
these algorithms and describe a large empirical study comparing several variants in conjunction with a decision
tree inducer (three variants) and a Naive-Bayes inducer. The purpose of the study is to improve our understanding
of why and when these algorithms, which use perturbation, reweighting, and combination techniques, affect
classification error. We provide a bias and variance decomposition of the error to show how different methods
and variants influence these two terms. This allowed us to determine that Bagging reduced variance of unstable
methods, while boosting methods (AdaBoost and Arc-x4) reduced both the bias and variance of unstable methods
but increased the variance for Naive-Bayes, which was very stable. We observed that Arc-x4 behaves differently
than AdaBoost if reweighting is used instead of resampling, indicating a fundamental difference. Voting variants,
some of which are introduced in this paper, include: pruning versus no pruning, use of probabilistic estimates,
weight perturbations (Wagging), and backfitting of data. We found that Bagging improves when probabilistic
estimates in conjunction with no-pruning are used, as well as when the data was backfit. We measure tree sizes
and show an interesting positive correlation between the increase in the average tree size in AdaBoost trials and its
success in reducing the error. We compare the mean-squared error of voting methods to non-voting methods and
show that the voting methods lead to large and significant reductions in the mean-squared errors. Practical problems
that arise in implementing boosting algorithms are explored, including numerical instabilities and underflows. We
use scatterplots that graphically show how AdaBoost reweights instances, emphasizing not only “hard” areas but
also outliers and noise.
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1. Introduction

Methods for voting classification algorithms, such as Bagging and AdaBoost, have been
shown to be very successful in improving the accuracy of certain classifiers for artificial
and real-world datasets (Breiman, 1996b; Freund & Schapire, 1996; Quinlan,1996). Voting
algorithms can be divided into two types: those that adaptively change the distribution of
the training set based on the performance of previous classifiers (as in boosting methods)
and those that do not (as in Bagging).

Algorithms that do not adaptively change the distribution include option decision tree
algorithms that construct decision trees with multiple options at some nodes (Buntine,
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1992a, 1992b; Kohavi & Kunz, 1997); averaging path sets, fanned sets, and extended
fanned sets as alternatives to pruning (Oliver & Hand, 1995); voting trees using different
splitting criteria and human intervention (Kwok & Carter, 1990); and error-correcting output
codes (Dietterich & Bakiri, 1991; Kong & Dietterich, 1995). Wolpert (1992) discusses
“stacking” classifiers into a more complex classifier instead of using the simple uniform
weighting scheme of Bagging. Ali (1996) provides a recent review of related algorithms,
and additional recent work can be found in Chan, Stolfo, and Wolpert (1996).

Algorithms that adaptively change the distribution include AdaBoost (Freund & Schapire,
1995) and Arc-x4 (Breiman, 1996a). Drucker and Cortes (1996) and Quinlan (1996) applied
boosting to decision tree induction, observing both that error significantly decreases and that
the generalization error does not degrade as more classifiers are combined. Elkan (1997)
applied boosting to a simple Naive-Bayesian inducer that performs uniform discretization
and achieved excellent results on two real-world datasets and one artificial dataset, but failed
to achieve significant improvements on two other artificial datasets.

We review several voting algorithms, including Bagging, AdaBoost, and Arc-x4, and
describe a large empirical study whose purpose was to improve our understanding of why
and when these algorithms affect classification error. To ensure the study was reliable, we
used over a dozen datasets, none of which had fewer than 1000 instances and four of which
had over 10,000 instances.

The paper is organized as follows. In Section 2, we begin with basic notation and follow
with a description of the base inducers that build classifiers in Section 3. We use Naive-
Bayes and three variants of decision tree inducers: unlimited depth, one level (decision
stump), and discretized one level. In Section 4, we describe the main voting algorithms
used in this study: Bagging, AdaBoost, and Arc-x4. In Section 5 we describe the bias-
variance decomposition of error, a tool that we use throughout the paper. In Section 6 we
describe our design decisions for this study, which include a well-defined set of desiderata
and measurements. We wanted to make sure our implementations were correct, so we de-
scribe a sanity check we did against previous papers on voting algorithms. In Section 7,
we describe our first major set of experiments with Bagging and several variants. In
Section 8, we begin with a detailed example of how AdaBoost works and discuss numerical
stability problems we encountered. We then describe a set of experiments for the boosting
algorithms AdaBoost and Arc-x4. We raise several issues for future work in Section 9 and
conclude with a summary of our contributions in Section 10.

2. Notation

A labeledinstanceis a pair〈x, y〉 wherex is an element from spaceX andy is an element
from a discrete spaceY. Let x represent an attribute vector withn attributes andy the class
label associated withx for a given instance. We assume a probability distributionD over
the space of labeled instances.

A sample S is a set of labeled instancesS={〈x1, y1〉, 〈x2, y2〉, . . . , 〈xm, ym〉}. The
instances in the sample are assumed to be independently and identically distributed (i.i.d.).

A classifier(or a hypothesis) is a mapping fromX to Y. A deterministicinducer is a
mapping from a sampleS, referred to as thetraining setand containingm labeled instances,
to a classifier.
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3. The base inducers

We used four base inducers for our experiments; these came from two families of algorithms:
decision trees and Naive-Bayes.

3.1. The decision tree inducers

The basic decision tree inducer we used, calledMC4 (MLC++ C4.5), is a Top-Down De-
cision Tree (TDDT) induction algorithm implemented inMLC++ (Kohavi, Sommerfield,
& Dougherty, 1997). The algorithm is similar to C4.5 (Quinlan, 1993) with the exception
that unknowns are regarded as a separate value. The algorithm grows the decision tree fol-
lowing the standard methodology of choosing the best attribute according to the evaluation
criterion (gain-ratio). After the tree is grown, a pruning phase replaces subtrees with leaves
using the same pruning algorithm that C4.5 uses.

The main reason for choosing this algorithm over C4.5 is our familiarity with it, our ability
to modify it for experiments, and its tight integration with multiple model mechanisms
withinMLC++. MC4 is available off the web in source form as part ofMLC++ (Kohavi,
Sommerfield, & Dougherty, 1997).

Along with the original algorithm, two variants of MC4 were explored:MC4(1) and
MC4(1)-disc. MC4(1) limits the tree to a single root split; such a shallow tree is sometimes
called a decision stump (Iba & Langley, 1992). If the root attribute is nominal, a multi-
way split is created with one branch for unknowns. If the root attribute is continuous, a
three-way split is created: less than a threshold, greater than a threshold, and unknown.
MC4(1)-disc first discretizes all the attributes using entropy discretization (Kohavi &
Sahami, 1996; Fayyad & Irani, 1993), thus effectively allowing a root split with multi-
ple thresholds. MC4(1)-disc is very similar to the 1R classifier of Holte (1993), except
that the discretization step is based on entropy, which compared favorably with his 1R
discretization in our previous work (Kohavi & Sahami, 1996).

Both MC4(1) and MC4(1)-disc build very weak classifiers, but MC4(1)-disc is the
more powerful of the two. Specifically for multi-class problems with continuous attributes,
MC4(1) is usually unable to build a good classifier because the tree consists of a single
binary root split with leaves as children.

3.2. The Naive-Bayes Inducer

The Naive-Bayes Inducer (Good, 1965; Duda & Hart, 1973; Langley, Iba, & Thompson,
1992), sometimes called Simple-Bayes (Domingos & Pazzani, 1997), builds a simple con-
ditional independence classifier. Formally, the probability of a class label valuey for an
unlabeled instancex containingn attributes〈A1, . . . , An〉 is given by

P(y | x)
= P(x | y) · P(y)/P(x) by Bayes rule

∝ P(A1, . . . , An | y) · P(y) P(x) is same for all label values.

=
n∏

j=1

P(Aj | y) · P(y) by conditional independence assumption.
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The above probability is computed for each class and the prediction is made for the
class with the largest posterior probability. The probabilities in the above formulas must
be estimated from the training set.

In our implementation, which is part ofMLC++ (Kohavi, Sommerfield, & Dougherty,
1997), continuous attributes are discretized using entropy discretization (Kohavi & Sahami,
1996; Fayyad & Irani, 1993). Probabilities are estimated using frequency counts with
an m-estimate Laplace correction (Cestnik, 1990) as described in (Kohavi, Becker, &
Sommerfield, 1997).

The Naive-Bayes classifier is relatively simple but very robust to violations of its
independence assumptions. It performs well for many real-world datasets (Domingos &
Pazzani, 1997; Kohavi & Sommerfield, 1995) and is excellent at handling irrelevant
attributes (Langley & Sage, 1997).

4. The voting algorithms

The different voting algorithms used are described below. Each algorithm takes an inducer
and a training set as input and runs the inducer multiple times by changing the distribution of
training set instances. The generated classifiers are then combined to create a final classifier
that is used to classify the test set.

4.1. The Bagging algorithm

TheBagging algorithm(Bootstrapaggregating) by Breiman (1996b) votes classifiers gener-
ated by different bootstrap samples (replicates). Figure 1 shows the algorithm. ABootstrap
sample(Efron & Tibshirani, 1993) is generated by uniformly samplingm instances from
the training set with replacement.T bootstrap samplesB1, B2, . . . , BT are generated and
a classifierCi is built from each bootstrap sampleBi . A final classifierC∗ is built from

Figure 1. The Bagging algorithm.
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C1,C2, . . . ,CT whose output is the class predicted most often by its sub-classifiers, with
ties broken arbitrarily.

For a given bootstrap sample, an instance in the training set has probability 1−(1−1/m)m

of being selected at least once in them times instances are randomly selected from the
training set. For largem, this is about 1− 1/e= 63.2%, which means that each bootstrap
sample contains only about 63.2% unique instances from the training set. This perturbation
causes different classifiers to be built if the inducer is unstable (e.g., neural networks,
decision trees) (Breiman, 1994) and the performance can improve if the induced classifiers
are good and not correlated; however, Bagging may slightly degrade the performance of
stable algorithms (e.g.,k-nearest neighbor) because effectively smaller training sets are
used for training each classifier (Breiman, 1996b).

4.2. Boosting

Boosting was introduced by Schapire (1990) as a method for boosting the performance
of a weak learning algorithm. After improvements by Freund (1990), recently expanded
in Freund (1996),AdaBoost(Adaptive Boosting) was introduced by Freund & Schapire
(1995). In our work below, we concentrate on AdaBoost, sometimes called AdaBoost.M1
(e.g., Freund & Schapire, 1996).

Like Bagging, the AdaBoost algorithm generates a set of classifiers and votes them.
Beyond this, the two algorithms differ substantially. The AdaBoost algorithm, shown in
figure 2, generates the classifiers sequentially, while Bagging can generate them in parallel.
AdaBoost also changes the weights of the training instances provided as input to each
inducer based on classifiers that were previously built. The goal is to force the inducer to
minimize expected error over different input distributions.1 Given an integerT specifying
the number of trials,T weighted training setsS1, S2, . . . , ST are generated in sequence
andT classifiersC1,C2, . . . ,CT are built. A final classifierC∗ is formed using a weighted
voting scheme: the weight of each classifier depends on its performance on the training set
used to build it.

The update rule in figure 2, steps 7 and 8, is mathematically equivalent to the following
update rule, the statement of which we believe is more intuitive:

For-eachxj , divide weight(xj ) by 2εi if Ci (xj ) 6= yj and 2(1− εi ) otherwise (1)

One can see that the following properties hold for the AdaBoost algorithm:

1. The incorrect instances are weighted by a factor inversely proportional to the error on
the training set, i.e., 1/(2εi ). Small training set errors, such as 0.1%, will cause weights
to grow by several orders of magnitude.

2. The proportion of misclassified instances isεi , and these instances get boosted by a factor
of 1/(2εi ), thus causing the total weight of the misclassified instances after updating
to be half the original training set weight. Similarly, the correctly classified instances
will have a total weight equal to half the original weight, and thus no normalization is
required.
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Figure 2. The AdaBoost algorithm (M1).

The AdaBoost algorithm requires aweak learningalgorithm whose error is bounded by
a constant strictly less than 1/2. In practice, the inducers we use provide no such guarantee.
The original algorithm aborted when the error bound was breached, but since this case
was fairly frequent for multiclass problem with the simple inducers we used (i.e., MC4(1),
MC4(1)-disc), we opted to continue the trials instead. When using nondeterministic in-
ducers (e.g., neural networks), the common practice is to reset the weights to their initial
values. However, since we are using deterministic inducers, resetting the weights would
simply duplicate trials. Our decision was to generate a Bootstrap sample from the original
dataSand continue up to a limit of 25 such samples at a given trial; such a limit was never
reached in our experiments if the first trial succeeded with one of the 25 samples.

Some implementations of AdaBoost use boosting byresamplingbecause the inducers
used were unable to support weighted instances (e.g., Freund & Schapire, 1996). Our imple-
mentations of MC4, MC4(1), MC4(1)-disc, and Naive-Bayes support weighted instances,
so we have implemented boosting byreweighting, which is a more direct implementation of
the theory. Some evidence exists that reweighting works better in practice (Quinlan, 1996).

Recent work by Schapire et al. (1997) suggests one explanation for the success of
boosting and for the fact that test set error does not increase when many classifiers are
combined as the theoretical model implies. Specifically, these successes are linked to the
distribution of the “margins” of the training examples with respect to the generated voting
classification rule, where the “margin” of an example is the difference between the number
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of correct votes it received and the maximum number of votes received by any incorrect
label. Breiman (1997) claims that the framework he proposed “gives results which are the
opposite of what we would expect given Schapire et al. explanation of why arcing works.”

4.3. Arc-x4

The termArcing (Adaptivelyresample andcombine) was coined by Breiman (1996a) to
describe the family of algorithms that adaptively resample and combine; AdaBoost, which
he calls arc-fs, is the primary example of an arcing algorithm. Breiman contrasts arcing
with the P&C family (Perturb and Combine), of which Bagging is the primary example.
Breiman (1996a) wrote:

After testing arc-fs I suspected that its success lay not in its specific form but in its
adaptive resampling property, where increasing weight was placed on those cases more
frequently misclassified.

The Arc-x4 algorithm, shown in figure 3, was described by Breiman as “ad hoc invention”
whose “accuracy is comparable to arc-fs [AdaBoost]” without the weighting scheme used
in the building final AdaBoosted classifier. The main point is to show that AdaBoosting’s
strength is derived from the adaptive reweighting of instances and not from the final com-
bination. Like AdaBoost, the algorithm sequentially induces classifiersC1,C2, . . . ,CT for
a number of trialsT , but instances are weighted using a simple scheme: the weight of an
instance is proportional to the number of mistakes previous classifiers made to the fourth
power, plus one. A final classifierC∗ is built that returns the class predicted by the most
classifiers (ties are broken arbitrarily). Unlike AdaBoost, the classifiers are voted equally.

Figure 3. The Arc-x4 algorithm.



112 E. BAUER AND R. KOHAVI

5. The bias and variance decomposition

The bias plus variance decomposition (Geman, Bienenstock, & Doursat, 1992) is a powerful
tool from sampling theory statistics for analyzing supervised learning scenarios that have
quadratic loss functions. Given a fixed target and training set size, the conventional formu-
lation of the decomposition breaks the expected error into the sum of three non-negative
quantities:

Intrinsic “ target noise” (σ 2). This quantity is a lower bound on the expected error of any
learning algorithm. It is the expected error of the Bayes-optimal classifier.

Squared“bias” (bias2). This quantity measures how closely the learning algorithm’s av-
erage guess (over all possible training sets of the given training set size) matches the
target.

“Variance” (variance). This quantity measures how much the learning algorithm’s guess
fluctuates for the different training sets of the given size.

For classification, the quadratic loss function is inappropriate because class labels are
not numeric. Several proposals for decomposing classification error into bias and variance
have been suggested, including Kong and Dietterich (1995), Kohavi and Wolpert (1996),
and Breiman (1996a).

We believe that the decomposition proposed by Kong and Dietterich (1995) is inferior
to the others because it allows for negative variance values. Of the remaining two, we
chose to use the decomposition by Kohavi and Wolpert (1996) because its code was avail-
able from previous work and because it mirrors the quadratic decomposition best. LetYH

be the random variable representing the label of an instance in the hypothesis space andYF

be the random variable representing the label of an instance in the target function. It can be
shown that the error can be decomposed into a sum of three terms as follows:

Error=
∑

x

P(x)
(
σ 2

x + bias2x + variancex
)

(2)

where

σ 2
x ≡

1

2

(
1−

∑
y∈Y

P(YF = y | x)2
)

bias2x ≡
1

2

∑
y∈Y

[ P(YF = y | x)− P(YH = y | x)]2

variancex ≡ 1

2

(
1−

∑
y∈Y

P(YH = y | x)2
)
.

To estimate the bias and variance in practice, we use the two-stage sampling procedure
detailed in Kohavi and Wolpert (1996). First, a test set is split from the training set. Then,
the remaining data,D, is sampled repeatedly to estimate bias and variance on the test
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set. The whole process can be repeated multiple times to improve the estimates. In the
experiments conducted herein, we followed the recommended procedure detailed in Kohavi
and Wolpert (1996), makingD twice the size of the desired training set and sampling from it
10 times. The whole process was repeated three times to provide for more stable estimates.

In practical experiments on real data, it is impossible to estimate the intrinsic noise
(optimal Bayes error). The actual method detailed in Kohavi and Wolpert (1996) for
estimating the bias and variance generates a bias term that includes the intrinsic noise.

The experimental procedure for computing the bias and variance gives similar estimated
error to holdout error estimation repeated 30 times. Standard deviations of the error estimate
from each run were computed as the standard deviation of the three outer runs, assuming
they were independent. Although such an assumption is not strictly correct (Kohavi, 1995a;
Dietterich, 1998), it is quite reasonable given our circumstances because our training sets
are small in size and we only average three values.

6. Experimental design

We now describe our desiderata for comparisons, show a sanity check we performed to verify
the correctness of our implementation, and detail what we measured in each experiment.

6.1. Desiderata for comparisons

In order to compare the performance of the algorithms, we set a few desiderata for the
comparison:

1. The estimated error rate should have a small confidence interval in order to make a
reliable assessment when one algorithm outperforms another on a dataset or on a set of
datasets. This requires that the test set size be large, which led us to choose only files
with at least 1000 instances. Fourteen files satisfying this requirement were found in the
UC Irvine repository (Blake, Keogh, & Merz, 1998) and are shown in Table 1.

2. There should be room for improving the error for a given training set size. Specifically,
it may be that if the training set size is large enough, the generated classifiers perform as
well as the Bayes-optimal algorithm, making improvements impossible. For example,
training with two-thirds of the data on the mushroom dataset (a common practice)
usually results in 0% error. To make the problem challenging, one has to train with fewer
instances. To satisfy this desideratum, we generated learning curves for the chosen
files and selected a training set size at a point where the curve was still sloping down,
indicating that the error was still decreasing. To avoid variability resulting from small
training sets, we avoided points close to zero and points where the standard deviation
of the estimates was not large. Similarly, training on large datasets shrinks the number
of instances available for testing, thus causing the final estimate to be highly variable.
We therefore always left at least half the data for the test set. Selected learning curves
and training set sizes are shown in figure 4. The actual training set sizes are shown in
Table 1.



114 E. BAUER AND R. KOHAVI

Table 1. Characteristics of the datasets and training set sizes used. The files are sorted by increasing dataset size.

Attributes

Data set
Dataset

size
Training
set size Continuous Nominal Classes

Credit (German) 1,000 300 7 13 2

Image segmentation (segment) 2,310 500 19 0 7

Hypothyroid 3,163 1,000 7 18 2

Sick-euthyroid 3,163 800 7 18 2

DNA 3,186 500 0 60 3

Chess 3,196 500 0 36 2

LED-24 3,200 500 0 24 10

Waveform-40 5,000 1,000 40 0 3

Satellite image (satimage) 6,435 1,500 36 0 7

Mushroom 8,124 1,000 0 22 2

Nursery 12,960 3,000 0 8 5

Letter 20,000 5,000 16 0 26

Adult 48,842 11,000 6 8 2

Shuttle 58,000 5,000 9 0 7

In one surprising case, the segment dataset with MC4(1), the errorincreasedas the
training set size grew. While in theory such behavior must happen for every induction
algorithm (Wolpert, 1994; Schaffer, 1994), this is the first time we have seen it in
a real dataset. Further investigation revealed that in this problem all seven classes
are equiprobable, i.e., the dataset was stratified. A strong majority in the training set
implies a non-majority in the test set, resulting in poor performance. A stratified holdout
might be more appropriate in such cases, mimicking the original sampling methodology
(Kohavi, 1995b). For our experiments, only relative performance mattered, so we did
not specifically stratify the holdout samples.

3. The voting algorithms should combine relatively few sub-classifiers. Similar in spirit
to the use of the learning curves, it is possible that two voting algorithms will reach
the same asymptotic error rate but that one will reach it using fewer sub-classifiers. If
both are allowed to vote a thousand classifiers as was done in Schapire et al. (1997),
“slower” variants that need more sub-classifiers to vote may seem just as good. Quinlan
(1996) used only 10 replicates, while Breiman (1996b) used 50 replicates and Freund and
Schapire (1996) used 100. Based on these numbers and graphs of boosting error rates
versus the number of trials/sub-classifiers, we chose to vote 25 sub-classifiers throughout
the paper.

This decision on limiting the number of sub-classifiers is also important for practical
applications of voting methods. To be competitive, it is important that the algorithms
run in reasonable time. Based on our experience, we believe that an order of magnitude
difference is reasonable but that two or three orders of magnitude is unreasonable in
many practical applications; for example, a relatively large run of the base inducer (e.g.,
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Figure 4. Learning curves for selected datasets showing different behaviors of MC4 and Naive-Bayes. Waveform
represents stabilization at about 3000 instances; satimage represents a cross-over as MC4 improves while Naive-
Bayes does not; letter and segment (left) represent continuous improvements, but at different rates in letter and
similar rates in segment (left); LED24 represents a case where both algorithms achieve the same error rate with
large training sets; segment (right) shows MC4(1), which exhibited the surprising behavior of degrading as the
training set size grew (see text). Each point represents the mean error rate for 20 runs for the given training set size
as tested on the holdout sample. The error bars show one standard deviation of the estimated error. Each vertical
bar shows the training set size we chose for the rest of the paper following our desiderata. Note (e.g., in waveform)
how small training set sizes have high standard deviations for the estimates because the training set is small and
how large training set sizes have high standard deviations because the test set is small.
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MC4) that takes an hour today will take 4–40 days if the voted version runs 100–1000
times slower because that many trials are used.

6.2. Sanity check for correctness

As mentioned earlier, our implementations of the MC4 and Naive-Bayes inducers support
instance weights within the algorithms themselves. This results in a closer correspondence
to the theory defining voting classifiers. To ensure that our implementation is correct and
that the algorithmic changes did not cause significant divergence from past experiments, we
repeated the experiments of Breiman (1996b) and Quinlan (1996) using our implementation
of voting algorithms.

The results showed similar improvements to those described previously. For example,
Breiman’s results show CART with Bagging improving average error over nine datasets
from 12.76 to 9.69%, a relative gain of 24%, whereas our Bagging of MC4 improved
the average error over the same datasets from 12.91 to 9.91%, a relative gain of 23%.
Likewise, Quinlan showed how boosting C4.5 over 22 datasets (that we could find for
our replication experiment) produced a gain in accuracy of 19%; our experiments with
boosting MC4 also show a 19% gain for these datasets. This confirmed the correctness of our
methods.

6.3. Runs and measurements

The runs we used to estimate error rates fell into two categories: bias-variance and repeated
holdout. The bias-variance details were given in Section 5 and were the preferred method
throughout this work, since they provided an estimate of the error for the given holdout size
andgave its decomposition into bias and variance.

We ran holdouts, repeated three times with a different seed each time, in two cases.
First, we used holdout when generating error rates for different numbers of voting trials.
In this case the bias-variance decomposition does not vary much across time, and the time
penalty for performing this experiment with the bias-variance decomposition as well as with
a varying number of trials was too high. The second use was for measuring mean-squared
errors. The bias-variance decomposition for classification does not extend to mean-squared
errors, because labels in classification tasks have no associated probabilities.

The estimated error rates for the two experimental methods differed in some cases, espe-
cially for the smaller datasets. However, thedifferencein error rates between the different
induction algorithms tested under both methods was very similar. Thus, while the absolute
errors presented in this paper may have large variance in some cases, the differences in
errors are very accurate because all the algorithms were trained and tested onexactlythe
same training and test sets.

When we compare algorithms below, we summarize information in two ways. First,
we give the decrease or increase inaverage(absolute) error averaged over all our datasets,
assuming they represent a reasonable “real-world” distribution of datasets. Second, we give
theaverage relative error reduction. For two algorithmsA andB with errorsεA andεB, the
decrease inrelative errorbetweenA andB is (εA − εB)/εA. For example, if algorithmB
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has a 1% error and algorithmA had a 2% error, the absolute error reduction is only 1%, but
the relative error reduction is 50%. The average relative error is the average (over all our
datasets) of the relative error between the pair of algorithms compared. Relative error has
been used in Breiman (1996b) and in Quinlan (1996), under the names “ratio” and “average
ratio” respectively.

Note that average relative error reduction isdifferentfrom the relative reduction in average
error; the computation for the latter involves averaging the errors first and then comput-
ing the ratio. The relative reduction in average error can be computed from the two error
averages we supply, so we have not explicitly stated it in the paper to avoid an overload of
numbers.

The computations of error, relative errors, and their averages were done in high precision
by our program. However, for presentation purposes, we show only one digit after the
decimal point, so some numbers may not add up exactly (e.g., the bias and variance may
be off by 0.1% from the error).

7. The Bagging algorithm and variants

We begin with a comparison of MC4 and Naive-Bayes with and without Bagging. We then
proceed to variants of Bagging that include pruning versus no pruning and classifications
versus probabilistic estimates (scoring). Figure 5 shows the bias-variance decomposition for
all datasets using MC4 with three versions of Bagging explained below. Figure 6 shows the
average bias and variance over all the datasets and for MC4, Naive-Bayes, and MC4(1)-disc.

7.1. Bagging: Error, bias, and variance

In the decomposition of error into bias and variance, applying Bagging to MC4 caused
the average absolute error to decrease from 12.6 to 10.4%, and the average relative error
reduction was 14.5%.

The important observations are:

1. Bagging is uniformly better forall datasets. In no case did it increase the error.
2. Waveform-40, satimage, and letter’s error rate decreased dramatically, with relative

reductions of 31, 29, and 40%. For the other datasets, the relative error reduction was
less than 15%.

3. The average tree size (number of nodes) for the trees generated by Bagging with MC4
was slightly larger than the trees generated by MC4 alone: 240 nodes versus 198 nodes.
The average tree size (averaged over the replicates for a dataset) was larger eight times,
of which five averages were larger by more than 10%. In comparison, only six trees
generated by MC4 alone were larger than Bagging, of which only three were larger by
more than 10%. For the adult dataset, the average tree size from the Bagged MC4 was
1510 nodes compared to 776 nodes for MC4. This is above and beyond the fact that the
Bagged classifier contains 25 such trees.

We hypothesize that the larger tree sizes might be due to the fact that original instances
are replicated in Bagging samples, thus implying a stronger pattern and reducing the
amount of pruning. This hypothesis and related hypotheses are tested in Section 7.2.
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Figure 5. The bias-variance decomposition for MC4 and three versions of Bagging. In most cases, the reduction
in error is due to a reduction in variance (e.g., waveform, letter, satimage, shuttle), but there are also examples of
bias reduction when pruning is disabled (as in mushroom and letter).

4. The bias-variance decomposition shows that error reduction is almost completely due
to variance reduction: the average variance decreased from 5.7 to 3.5% with a matching
29% relative reduction. The average bias reduced from 6.9 to 6.8% with an average
relative error reduction of 2%.

The Bagging algorithm with MC4(1) reduced the error from 38.2 to 37.3% with a small
average reduction in relative error of 2%. The bias decreased from 27.6 to 26.9% and the
variance decreased from 10.6 to 10.4%. We attribute the reduction in bias to the slightly
stronger classifier that is formed with Bagging. The low reduction in variance is expected,
since shallow trees with a single root split are relatively stable.
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Figure 6. The average bias and variance over all datasets for several variants of Bagging with three induction
algorithms. MC4 and MC4(1)-disc improve significantly due to variance reduction; Naive-Bayes is a stable inducer
and improves very little (as expected).

The Bagging algorithm with MC4(1)-disc reduced the error from 33.0 to 31.5%, an
average relative error reduction of 4%. The biasincreasedfrom 24.4 to 25.0% (mostly due
to to waveform, where bias increased by 5.6% absolute error) and the variance decreased
from 8.6 to 6.5%. We hypothesize that the bias increase is due to an inferior discretization
when Bagging is used, since the discretization does not have access to the full training set,
but only to a sample containing about 63.2% unique instances.

The Bagging algorithm with Naive-Bayes reduced the average absolute error from 13.6
to 13.2%, and the average relative error reduction was 3%.

7.2. Pruning

Two effects described in the previous section warrant further investigation: the larger
average size for trees generated by Bagging and the slight reduction in bias for Bagging.
This section deals only with unbounded-depth decision trees built by MC4 not MC4(1) or
MC4(1)-disc.

We hypothesized that larger trees were generated by MC4 when using bootstrap replicates
because the pruning algorithm pruned less, not because larger trees were initially grown.
To verify this hypothesis, we disabled the pruning algorithm and reran the experiments.
The MC4 default—like C4.5—grows the trees until nodes are pure or until a split cannot
be found where two children each contain at least two instances.

The unpruned trees for MC4 had an average size of 667 and the unpruned trees for Bagged
MC4 trees had an average size of 496—25% smaller. Moreover, the averaged size for trees
generated by MC4 on the bootstrap samples for a given dataset wasalwayssmaller than
the corresponding size of the trees generated by MC4 alone. We postulate that this effect
is due to the smaller effective size of training sets under bagging, which contain only about
63.2% unique instances from the original training set. Oates and Jensen (1997) have shown
that there is a close correlation between the training set size and the tree complexity for the
reduced error pruning algorithm used in C4.5 and MC4.
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The trees generated from the bootstrap samples were initially grown to be smaller than the
corresponding MC4 trees, yet they were larger after pruning was invoked. The experiment
confirms our hypothesis that the structure of the bootstrap replicates inhibits reduced-error
pruning. We believe the reason for this inhibition is that instances are duplicated in the
bootstrap sample, reinforcing patterns that might otherwise be pruned as noise.

The non-pruned trees generated by Bagging had significantly smaller bias than their
pruned counterparts: 6.6% vs. 6.9%, or a 14% average relative error reduction. This
observation strengthens the hypothesis that the reduced bias in Bagging is due to larger
trees, which is expected: pruning increased the bias but decreased the variance. Indeed, the
non-Bagged unpruned trees have a similar bias of 6.6% (down from 6.9%).

However, while bias is reduced for non-pruned trees (for both Bagging with MC4 and
MC4 alone), variance for trees generated by MC4 grew dramatically: from 5.7 to 7.3%,
thus increasing the overall error from 12.6 to 14.0%. The variance for Bagging grows less,
from 3.5 to 3.9%, and the overall error remains the same at 10.4%. The average relative
error decreased by 7%, mostly due to a decrease in the absolute error of mushroom from
0.45 to 0.04%—a 91% decrease (note how this impressive decrease corresponds to a small
change in absolute error).

7.3. Using probabilistic estimates

Standard Bagging uses only the predicted classes, i.e., the combined classifier predicts
the class most frequently predicted by the sub-classifiers built from the bootstrap sam-
ples. Both MC4 and Naive-Bayes can make probabilistic predictions, and we hypothesized
that this information would further reduce the error. Our algorithm for combining proba-
bilistic predictions is straightforward. Every sub-classifier returns a probability distribution
for the classes. The probabilistic bagging algorithm (p-Bagging) uniformly averages the
probability for each class (over all sub-classifiers) and predicts the class with the highest
probability.

In the case of decision trees, we hypothesized that unpruned trees would give more
accurate probability distributions in conjunction with voting methods for the following
reason: a node that has a 70%/30% class distribution can have children that are 100%/0%
and 60%/40%, yet the standard pruning algorithms will always prune the children because
the two children predict the same class. However, if probability estimates are needed, the
two children may be much more accurate, since the child having 100%/0% is identifying a
perfect cluster (at least in the training set). For single trees, the variance penalty incurred by
using estimates from nodes with a small number of instances may be large and pruning can
help (Pazzani et al.,1994); however, voting methods reduce the variance by voting multiple
classifiers, and the bias introduced by pruning may be a limiting factor.

To test our hypothesis that probabilistic estimates can help, we reran the bias-variance
experiments using p-Bagging with both Naive-Bayes and MC4 with pruning disabled.

The average error for MC4 decreased from 10.4 to 10.2% and the average relative error
decreased by 2%. This decrease was due to both bias and variance reduction. The bias
reduced from 6.5 to 6.4% with an average relative decrease of 2%. The variance decreased
from 3.9 to 3.8% with an average relative decrease of 4%.
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The average error for MC4(1) decreased significantly from 37.3 to 34.4%, with an average
relative error reduction of 4%. The reduction in bias was from 26.9 to 24.9% and the
reduction in variance was from 10.4 to 9.5%.

The average error for MC4(1)-disc decreased from 33.0 to 28.9%, an average relative
reduction of 8%. The bias decreased from 25.0 to 23.0%, an average relative reduction
of 3% (compared to an increase in bias for the non-probabilistic version). The variance
decreased from 8.6 to 5.9%, an average relative error reduction of 17%.

The average error for Naive-Bayes decreased from 14.22 to 14.15% and the average
relative error decreased 0.4%. The bias decreased from 11.45 to 11.43% with zero rela-
tive bias reduction and the variance decreased from 2.77 to 2.73% with a 2% relative
variance reduction. These results for Naive-Bayes are insignificant. As is expected, the
error incurred by Naive-Bayes is mostly due to the bias term. The probability estimates
generated are usually extreme because the conditional independence assumption is not true
in many cases, causing a single factor to affect several attributes whose probabilities are
multiplied assuming they are conditionally independent given the label (Friedman, 1997).

To summarize, we have seen error reductions for the family of decision-tree algorithms
when probabilistic estimates were used. The error reductions were larger for the one level
decision trees. This reduction was due to a decrease in both bias and variance. Naive-Bayes
was mostly unaffected by the use of probabilistic estimates.

7.4. Mean-squared errors

In many practical applications it is important not only to classify correctly, but also to
give a probability distribution on the classes. A common measure of error on such a task
is mean-squared error (MSE), or the squared difference of the probability for the class
and the probability predicted for it. Since the test set assigns a label without a probability,
we measure the MSE as(1− P(Ci (x)))2, or one minus the probability assigned to the
correct label. The average MSE is the mean-squared error averaged over the entire test
set. If the classifier assigns a probability of one to the correct label, then the penalty is
zero; otherwise, the penalty is positive and grows with the square of the distance from
one.

A classifier that makes a single prediction is viewed as assigning a probability of one to
the predicted class and zero to the other classes. Under those conditions, the average MSE
is the same as the classification error. Note, however, that our results are slightly different
(less than 0.1% error for averages) because five times holdout was used for these runs as
compared to 3 times 10 holdout for the bias-variance runs above, which cannot compute
the MSE.

To estimate whether p-Bagging is really better at estimating probabilities, we ran each
inducer on each datafile five times using a holdout sample of the same effective size as
was used for the bias-variance experiments. For MC4, the average MSE decreased from
10.4% for Bagging with no pruning (same as the classification error above) to 7.5% for
p-Bagging with probability estimates—a 21% average relative reduction. If MC4 itself is
run in probability estimate mode using frequency counts, its average MSE is 10.7%; if we
apply anm-estimate Laplace correction to the leaves as described in Kohavi, Becker, and
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Sommerfield (1997), the average MSE decreased to 10.0%, but p-Bagging still significantly
outperformed this method, reducing the average relative MSE by 21%.

For Naive-Bayes, the average MSE went down from 13.1 to 9.8%, an average relative
reduction of 24%. When Naive-Bayes was run in probability estimate mode, the MSE was
10.5%, and there was no average relative MSE difference.

For MC4(1)-disc, the average MSE went down from 31.1 to 18.4%, a 34% decrease in
average relative MSE. However, running MC4(1)-disc in probability estimate mode gave
an average MSE of 19.5%, so most of the benefit came not from Bagging but from using
probability estimates. Indeed, the children of the root usually tend to give fairly accurate
probability estimates (albeit based on a single attribute).

From the above results, we can see that applyingm-estimate Laplace corrections during
classification in MC4 significantly reduces the average MSE and that p-Bagging reduces
it significantly more. For Naive-Bayes, the main improvement results from switching to
probabilities from classification, but there is a small benefit to using p-Bagging.

7.5. Wagging and backfitting data

An interesting variant of Bagging that we tried is calledWagging(WeightAggregation). This
method seeks to repeatedly perturb the training set as in Bagging, but instead of sampling
from it, Wagging adds Gaussian noise to each weight with mean zero and a given standard
deviation (e.g., 2). For each trial, we start with uniformly weighted instances, add noise to
the weights, and induce a classifier. The method has the nice property that one can trade
off bias and variance: by increasing the standard deviation of the noise we introduce, more
instances will have their weight decrease to zero and disappear, thus increasing bias and
reducing variance. Experiments showed that with a standard deviation of 2–3, the method
finishes head-to-head with the best variant of Bagging used above, i.e., the error of Bagged
MC4 without pruning and with scoring was 10.21% and the errors for Wagging with 2, 2.5,
and 3 were 10.19, 10.16, and 10.12%. These differences are not significant. Results for
Naive-Bayes were similar.

A more successful variant that we tried for MC4 uses a method called backfitting described
below. Bagging creates classifiers from about 63.2% unique instances in the training set.
To improve the probability estimates at the leaves of the decision tree, the algorithm does
a second “backfit” pass after sub-classifier construction, feeding the original training set
into the decision tree without changing its structure. The estimates at the leaves are now
expected to be more accurate as they are based on more data.

Indeed, a bias-variance run shows that the error for Bagging MC4 without pruning and
with scoring reduces the error from 10.4 to 10.1%; the average relative error decreased
by 3%. The bias and variance decomposition shows that the bias is about the same: 6.7%
with backfitting and 6.6% without backfitting, but the variance is reduced from 3.9 to 3.4%
with an average relative variance decrease of 11%. In fact, the variance forall files either
remained the same or was reduced!

Figure 7 shows graphs of how error changes over trials for selected datasets that repre-
sent the different behaviors we have seen for the initial version of Bagging and the final
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Figure 7. Bagging graphs for selected datasets showing different behaviors of MC4 and the original Bagging
versus the backfit-p-Bagging. The graphs show the test set and training set errors as the number of bootstrap
samples (replicates) increases. Each point shows error performance for the set of classifiers created by the bagging
algorithm so far, averaged of three 25-trial runs. Satimage represents the largest family where both versions track
each other closely and where most of the improvement happens in the first five to ten trials. Chess represents a case
where backfit-p-Bagging is initially better but flattens out and Bagging matches it in later trials. DNA-nominal
and nursery are examples where backfit-p-Bagging is superior throughout and seems to keep its advantage. Note
how low the training set errors were, implying that the decision trees are overfitting.

backfitting version for MC4. The graphs show both test set and training set error as the num-
ber of bootstrap samples increases. In no case did Bagging significantly outperform backfit-
p-Bagging.

7.6. Conclusions on Bagging

We have shown a series of variants for Bagging, each of which improves performance
slightly over its predecessor for the MC4 algorithm. The variants were: disabling pruning,
using average probability estimates (scores), and backfitting. The error decreased from
10.34% for the original Bagging algorithm to 10.1% for the final version (compared to
12.6% for MC4). The average relative decrease in error was 10%, although most of it
was due to mushroom, which reduced from 0.45 to 0.04% (a 91% relative decrease). Even
excluding mushroom, the average relative decrease in error was 4%, which is impressive
for an algorithm that performs well initially.
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For MC4, the original Bagging algorithm achieves most of its benefit by reducing variance
from 5.7 to 3.5%. Our final version decreased the variance slightly more (to 3.4%) and
decreased the bias from 6.8 to 6.6%.

Bagging also reduces the error for MC4(1), which was somewhat surprising to us initially,
as we did not expect the variance of one-level trees to be large and thought that Bagging
would have no effect. However, the error did decrease from 38.2 to 34.4%, and analyzing
the results showed that this change is due mostly tobiasreduction of 2.6% and a variance
reduction of 1.1%. A similar effect was true for MC4(1)-disc: the error reduced from 33.0
to 28.9%.

While Naive-Bayes has been successful on many datasets (Domingos & Pazzani, 1997;
Friedman, 1997; Langley & Sage, 1997; Kohavi, 1995b) (although usually coupled with
feature selection which we have not included in this study), it starts out inferior to MC4
in our experiments (13.6% error for Naive-Bayes versus 12.6% error for MC4) and the
difference only grows. The MC4 error decreased to 10.1%, while Naive-Bayes went down
to only 13.2%. Naive-Bayes is an extremely stable algorithm, and Bagging is mostly a
variance reduction technique. Specifically, the average variance for Naive-Bayes is 2.8%,
which Bagging with probability estimates decreased to 2.5%. The average bias, however,
is 10.8%, and Bagging reduces that to only 10.6%.

The mean-squared errors generated by p-Bagging were significantly smaller than the
non-Bagged variants for MC4, MC4(1), and MC4(1)-disc. We are not aware of anyone
who reported any mean-squared errors results for voting algorithms in the past. Good
probability estimates are crucial for applications when loss matrices are used (Bernardo &
Smith, 1993), and the significant differences indicate that p-Bagging is a very promising
approach.

8. Boosting algorithms: AdaBoost and Arc-x4

We now discuss boosting algorithms. First, we explore practical considerations for boost-
ing algorithm implementation, specifically numerical instabilities and underflows. We then
show a detailed example of a boosting run and emphasize underflow problems we experi-
enced. Finally, we show results from experiments using AdaBoost and Arc-x4 and describe
our conclusions.

8.1. Numerical instabilities and a detailed boosting example

Before we detail the results of the experiments, we would like to step through a detailed
example of an AdaBoost run for two reasons: first, to get a better understanding of the pro-
cess, and second, to highlight the important issue of numerical instabilities and underflows
that is rarely discussed yet common in boosting algorithms. We believe that many authors
have either faced these problems and corrected them or do not even know that they exist,
as the following example shows.

Example. Domingos and Pazzani (1997) reported very poor accuracy of 24.1% (error of
75.9%) on the Sonar dataset with the Naive-Bayes induction algorithm, which otherwise
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performed very well. Since this is a two-class problem, predicting majority would have
done much better. Kohavi, Becker, and Sommerfield (1997) reported an accuracy of 74.5%
(error of 25.5%) on the same problem with a very similar algorithm. Further investigation of
the discrepancy by Domingos and Kohavi revealed that Domingos’ Naive-Bayes algorithm
did not normalize the probabilities after every attribute. Because there are 60 attributes, the
multiplication underflowed, creating many zero probabilities.

Numerical instabilities are a problem related to underflows. In several cases in the past,
we have observed problems with entropy computations that yield small negative results (on
the order of−10−13 for 64-bit double-precision computations). The problem is exacerbated
when a sample has both small- and large-weight instances (as occurs during boosting).
When instances have very small weights, the total weight of the training set can vary
depending on the summation order (e.g., shuffling and summing may result in a slightly
different sum). From the standpoint of numerical analysis, sums should be done from the
smallest to the largest numbers to reduce instability, but this imposes severe burdens (in
terms of programming and running-time) on standard computations.

InMLC++, we defined the natural weight of an instance to be one, so that for a sample
with unweighted instances, the total weight of the sample is equal to the number of instances.
The normalization operations required in boosting were modified accordingly. To mitigate
numerical instability problems, instances with weights of less than 10−6 are automatically
removed.

In our initial implementation of boosting, we had several cases where many instances
were removed due to underflows as the described below. We explore an example boosting
run both to show the underflow problem and to help the reader develop a feel for how the
boosting process functions.

Example. A training set of size 5000 was used with the shuttle dataset. The MC4
algorithm already has relatively small test set error (measured on the remaining 53,000
instances) of 0.38%. The following is a description of progress by trials, also shown in
figure 8.

1. The training set error for the first (uniformly weighted, top-left in figure 8) boosting trial
is 0.1%, or five misclassified instances. The update rule in Eq. (1) shows that these five
instances will now be re-weighted from a weight of one to a weight of 500 (the update
factor is 1/(2 · 0.1%)), while the correctly classified instances will have their weight
halved (1/(2(1−0.1%))=1/1.998) to a weight of about 0.5. As with regular MC4, the
test set error for the first classifier is 0.38%.

2. On the second trial, the classifier trained on the weighted sample makes a mistake on
a single instance that wasnot previously misclassified (shown in top-right figure as
red, very close to the previous large red instance). The training set error is hence
0.5/5000=0.01%, and that single instance will weigh 2500—exactly half of the
total weight of the sample! The weight of the correctly classified instances will be
approximately halved, changing the weights for the four mistaken instances from trial
one to around 250 and the weights for the rest of the instances to about 0.25. The test
set error for this classifier alone is 0.19%.



126 E. BAUER AND R. KOHAVI

Figure 8. The shuttle dataset projected on the three most discriminatory axes. Color/shading denotes the class
of instances and the cube sizes correspond to the instance weights. Each picture shows one AdaBoost trial, where
progression is from the top left to top right, then middle left, etc. A color version of this figure can be found in
http://robotics.stanford.edu/˜ronnyk/vote Boost Graph.ps.gz.

3. On the third trial (middle-left in figure 8), the classifier makes five mistakes again, all
on instances correctly classified in previous trials. The training set error is hence about
5 · 0.25/5000= 0.025%. The weight of the instance incorrectly classified in trial two
will be approximately halved to about 1250 and the five incorrectly classified instances
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will now occupy half the weight—exactly 500 each. All the other instances will weigh
about 0.125. The test set error for this classifier alone is 0.21%.

4. On the fourth trial (middle-right in figure 8), the classifier makes 12 mistakes on the
training set. The training set error is 0.03% and the test set error is 0.45%.

5. On the fifth trial (lower-left in figure 8), the classifier makes one mistake on an instance
with weight 0.063. The training set error is therefore 0.0012%.

In our original implementation, we used the update rule recommended in the algo-
rithm shown in the AdaBoost algorithm in figure 2. Because the error is so small,β is
1.25 · 10−5; multiplying the weights by thisβ (prior to normalization) caused them to
underflow below the minimum allowed weight of 10−6. Almost all instances were then
removed, causing the sixth trial to have zero training set error but 60.86% test set error.

In our newer implementation, which we use in the rest of the paper, the update rule
in Eq. (1) is used, which suffers less from underflow problems.

6. On the sixth trial (lower-right in figure 8), the classifier makes no mistakes and has a
test set error of 0.08% (compared to 0.38% for the original decision-tree classifier). The
process then stops. Because this classifier has zero training set error, it gets “infinite
voting” power. The final test set error for the AdaBoost algorithm is 0.08%.

The example above is special because the training set error for a single classifier was
zero for one of the boosting trials. In some sense, this is a very interesting result because
a single decision classifier was built that had a test set error that was relatively better than
the original decision tree by 79%. This is really not an ensemble but a single classifier!

Using the update rule that avoids the normalization step mainly circumvents the issue
of underflow early in the process, but underflows still happen. If the error is close to zero,
instances that are correctly classified ink trials are reduced by a factor of about 2k. For
our experiments with 25 trials, weights can be reduced to about 3· 10−8, which is well
below our minimum threshold. For the rest of the paper, the algorithm used sets instances
with weights falling below the minimum weight to have the minimum weight. Because
most runs have significantly larger error than in the above example (especially after a few
boosting trials), the underflow issue is not severe.

Recent boosting implementations by Freund, Schapire, and Singer maintain the log of
the weights and modify the definition ofβ so that a small value (0.5 divided by the number
of training examples) is added to the numerator and denominator (personal communication
with Schapire 1997). It seems that the issue deserves careful attention and that boosting
experiments with many trials (e.g., 1000 as in Schapire et al. (1997)) require addressing the
issue carefully.

8.2. AdaBoost: Error, bias, and variance

Figure 9 shows the absolute errors for MC4 and AdaBoosted MC4 and their decomposition
into bias and variance. Figure 10 shows the average bias and variance over all the datasets
for Bagging and boosting methods using MC4, Naive-Bayes, and MC4(1)-disc.

The average absolute error decreased from 12.6% for MC4 to 9.8% for AdaBoosted
MC4, and the average relative error reduction was 27%. The important observations are:
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Figure 9. The bias and variance decomposition for MC4, backfit-p-Bagging, Arc-x4-resample, and AdaBoost.
The boosting methods (Arc-x4 and AdaBoost) are able to reduce the bias over Bagging in some cases (e.g.,
DNA, chess, nursery, letter, shuttle). However, they also increase the variance (e.g., hypothyroid, sick-euthyroid,
LED-24, mushroom, and adult).

1. On average, AdaBoost was better than the most promising bagging algorithm explored,
backfit-p-Bagging (9.8% versus 10.1%).

2. Unlike Bagging, however, boosting wasnotuniformly better for all datasets:

(A) The error for hypothyroid increased by 0.3% from 1.2% (21% relative), which is
significant at the 95% level because the standard deviation of the estimate is 0.1%.

(B) The error for sick-euthyroid had a similar increase of 0.2% (9% relative), which is
again significant at the 95% level.
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Figure 10. The average bias and variance over all datasets for backfit-p-Bagging, two boosting variants and three
inductions algorithms. Both boosting algorithms outperform backfit-p-Bagging although the differences are more
noticeable with Naive-Bayes and MC4(1)-disc. Somewhat surprisingly, Arc-x4-resample is superior to AdaBoost
for Naive-Bayes and MC4(1)-disc.

(C) The error for LED-24 increased by 3.1% from 34.1% (9% relative), which is very
significant as the standard deviation of the estimate is 0.5%. It is worth noting that
LED-24 has 10% attribute noise, which may be a contributing factor to the poor
performance of AdaBoost as noted (for class noise) by Quinlan (1996). We repeated
the experiment with the noise level varying from 1 to 9% (as opposed to the original
10% noise) and the difference between MC4 and AdaBoosted MC4 increased as
the noise level increased. AdaBoost is always behind with the absolute differences
being: 0.84% for 1% noise, 0.88% for 2% noise, 1.01% for 3% noise, and 2.9% for
6% noise.

(D) The error for adult increased from 15.0 to 16.3% (9% relative), again a very signi-
ficant increase given that the standard deviation of the estimate is 0.06%. We have
found some errors in the adult dataset (US census data) and postulate that—like
LED24—it is noisy.

3. The error for segment, DNA, chess, waveform, satimage, mushroom, nursery, letter, and
shuttle decreased dramatically: each has at least 30% relative reduction in error. Letter’s
relative error decreased 60% and mushroom’s relative error decreased 69%.

4. The average tree size (number of nodes) for the AdaBoosted trees was larger for all files
but waveform, satimage, and shuttle. Hypothyroid grew from 10 to 25, sick-euthyroid
grew from 13 to 43, led grew from 114 to 179, and adult grew from 776 to 2513. This
is on top of the fact that the Boosted classifier contains 25 trees.

Note the close correlation between the average tree sizes and improved performance.
For the three datasets that had a decrease in the average number of nodes for the decision
tree, the error decreased dramatically, while for the four datasets that had an increase in
the average number of nodes of the resulting classifiers, the error increased.

5. The bias and variance decomposition shows that error reduction is due to both bias and
variance reduction. The average bias reduced from 6.9 to 5.7%, an average relative re-
duction of 32%, and the average variance reduced from 5.7 to 4.1%, an average relative
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reduction of 16%. Contrast this with the initial version of Bagging reported here, which
reduced the bias from 6.9 to 6.8% and the variance from 5.7 to 3.5%. It is clear that
these methods behave very differently.

We have not used MC4(1) with boosting because too many runs failed to get less than
50% training set error on the first trial, especially multiclass problems. MC4(1)-disc failed
to get less than 50% errors only on two files: LED-24 and letter. For those two cases, we
used the unboosted versions in the averages for purposes of comparison.

For MC4(1)-disc, the average absolute error decreased from 33.0 to 27.1%, an average
relative decrease of 31%. This compares favorably with Bagging, which reduced the error to
28.9%, but it is still far from achieving the performance achieved by Naive-Bayes and MC4.
The bias decreased from 24.4 to 19.2%, a 34% improvement. The variance was reduced
from 8.6 to 8.0%, but the average relative improvement could not be computed because the
variance for MC4(1)-disc on chess was 0.0% while non-zero for the AdaBoost version.

For Naive-Bayes, the average absolute error decreased from 13.6 to 12.3%, a 24% de-
crease in average relative error. This compares favorably with Bagging, which reduced
the error to 13.2%. The bias reduced from 10.8 to 8.7%, an average relative reduction of
27%, while the varianceincreasedfrom 2.8 to 3.6%. The increased variance is likely to be
caused by different discretization thresholds, as real-valued attributes are discretized using
an entropy-based method that is unstable.

Figure 11 shows progress across trials for selected datasets that represent the different
behaviors we have seen for AdaBoost and backfit-p-Bagging in conjunction with the MC4
algorithm. The graphs show the test set and training set errors as the number of trials
(replicates for backfit-p-Bagging) increases. For MC4, the training set error decreases to
approximately zero by trial five for all cases, indicating severe overfitting, as the test set
error does not decrease to zero. Figures 12 and 13 show similar trial graphs for Naive-Bayes
and MC4(1)-disc respectively. For these classifiers, the training set error did not commonly
reach zero.

8.3. Arc-x4: Error, bias, and variance

Our original implementation of Arc-x4 used instance reweighting. For AdaBoost, both
reweighting and resampling have been used in past papers, and reweighting was consid-
ered superior. Quinlan (1996) wrote that his better results using AdaBoost compared with
Freund and Schapire (1996) may be due to his use of reweighting compared with their use
of resampling. He wrote that “resampling negates a major advantage enjoyed by boosting
over bagging, viz. that all training instances are used to produce each constituent classifier.”

Initial experiments showed that our Arc-x4 with reweighting performed significantly
worse than in Breiman’s experiments, so we tried a resampling version of Arc-x4, which
indeed performed better. The two versions of Arc-x4 will therefore be calledArc-x4-reweight
andArc-x4-resamplebelow. Similar experiments with AdaBoost did not change the per-
formance for AdaBoost significantly in either direction. This indicates that there is a fun-
damental difference between AdaBoost and Arc-x4 because the latter performs worse if
sampling is not done, while the former does not.
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Figure 11. Trial graphs for selected datasets showing different behaviors of MC4 and AdaBoost and backfit-
p-Bagging. The graphs show the test set and training set errors as the number of trials (replicates for Bagging)
increases. Each point is an average of three 25-trial runs. Nursery represents cases where AdaBoost outperforms
backfit-p-Bagging. LED-24 represents the less common cases where backfit-p-Bagging outperforms AdaBoost.
Waveform is an example where both algorithms perform equally well. Adult is an example where AdaBoost
degrades in performance compared to regular MC4. Note that the point corresponding to trial one for AdaBoost
is the performance of the MC4 algorithm alone. Bagging runs are usually worse for the first point because the
training sets are based on effectively smaller samples. Forall graphs, the error was zero or very close to zero after
trial five, although only for hypothyroid, mushroom, and shuttle did the training set error for a single classifier
reach zero, causing the boosting process to abort.

The average error for MC4 with Arc-x4-resample was 9.81%, almost exactly the same as
AdaBoost, which had an average error rate of 9.79%; the average error for Arc-x4-reweight
was 10.86%, significantly worse than both. The important observations are:

1. Arc-x4-resample is superior to Arc-x4-reweight.
2. The bias and variance decomposition shows that Arc-x4-resample is better than Arc-x4-

reweight because of the higher variance of Arc-x4-reweight. AdaBoost’s bias was 5.7%,
Arc-x4-resample’s bias was 5.8%, and Arc-x4-reweight’s bias was 5.9%. The variances
are where the differences between algorithms showed: AdaBoost’s variance was 4.1%,
Arc-x4-resample’s variance was 4.0%, and Arc-x4-reweight’s variance was 4.9%.

3. Compared to Bagging, we can see that the variance is higher for AdaBoost and both
versions of Arc-x4, but the bias is lower (the bias for Bagging variants was between
6.7 and 6.8%).
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Figure 12. Trial graphs for selected datasets showing different behaviors of Naive-Bayes and AdaBoost. The
graphs show the test set and training set errors as the number of trials increases. Each point is an average of
three runs, each of which is based on 25 trials/replicates. Nursery represents the classical theoretical scenario
where the test set error tracks the training set error because Naive-Bayes is a simple classifier; this case was
fairly rare. Satimage is an example where the training set error and test set errors decrease and asymptote. DNA
represents a most interesting example, where the training set error went down to zero as the theory predicts, but
the test set errorincreased. Note that they-axis ranges vary.

4. Both versions of Arc-x4 increased the average tree size forall datasets except waveform-
40.

5. The error rates for Arc-x4-resample were higher than MC4 on Hypothyroid, Sick-
euthyroid, LED-24, and adult. These are the exact datasets for which AdaBoost did
worse than MC4. As with AdaBoost, this is likely to be due to noise.

MC4(1)-disc failed to get less than 50% errors on two files: LED-24 and letter. For
those two cases, we used unboosted versions in the averages for sake of comparison. The
average error for Arc-x4-resample was 24.6% and for Arc-x4-reweight it was 24.8%. This
compares very favorably with AdaBoost, which had an error of 27.1%. The bias and variance
decomposition shows that the difference stems from the bias. The Arc-x4 runs have a bias of
17.4 and 17.7% for resampling and reweighting respectively; AdaBoost has a bias of 19.2%.
AdaBoost also has the highest variance (7.9%), while Arc-x4-resample has a variance of
7.2% and Arc-x4-reweight has a variance of 7.1%.
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Figure 13. Trial graphs for selected datasets showing different behaviors of MC4(1)-disc and AdaBoost. The
graphs show the test set and training set errors as the number of trials increases. Each point is an average of three
runs, each of which is based on 25 trials/replicates. Adult represents a nice run where the training set and test set
error track each other and both improve (the final error rate is one of the best we have seen). Shuttle represents
some erratic behavior. Nursery represents failure to change anything. After a few trials, the training set error is
about 49% and nothing happens because the weights change very little; in fact, at trial 11,β = 0.999999993.
Note that they-axis ranges vary.

For Naive-Bayes, the average absolute error for Arc-x4-resample was 12.1% and the
average absolute error for Arc-x4-reweight was 12.3%; AdaBoost had an error of 12.3%
and Naive-Bayes had an error of 13.6%. As for MC4(1)-disc, the bias for Arc-x4-resample
is the lowest: 8.2%, followed with with Arc-x4-reweight and AdaBoost, which both have
an error of 8.7%. For variance, Naive-Bayes itself is the clear winner with 2.8%, followed
by AdaBoost with 3.5%, then Arc-x4-reweight with 3.6%, and Arc-x4-resample with 3.8%.
As with MC4(1)-disc, Arc-x4-resample slightly outperformed AdaBoost.

To summarize, Arc-x4-resample was superior to Arc-x4-reweight, and also outperformed
AdaBoost for one level decision trees and Naive-Bayes. Both Arc-x4 algorithms increased
the variance for Naive-Bayes, but decreased the overall error due to strong bias reductions.

8.4. Conclusions for boosting

The AdaBoost and Arc-x4 algorithms have different behavior than Bagging, and they also
differ themselves. Here are the important observations:
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1. On average, AdaBoost and Arc-x4-resample are better than Bagging for our datasets.
This confirms previous comparisons (Breiman, 1996a; Quinlan, 1996).

2. AdaBoost and Arc-x4, however, arenot uniformly better than Bagging. There were
several cases where the performance of the boosting algorithms degraded compared to
the original (non-voted) algorithms. For MC4 and AdaBoost, these “failures” correlate
well with the average decision-tree growth size relative to the original trees. The Arc-x4
variants almost always increased the average tree size.

3. AdaBoost does not deal well with noise (this was also mentioned in Quinlan, 1996).
4. AdaBoost and Arc-x4 reduced both bias and variance for the decision tree methods.

However, both algorithms increased the variance for Naive-Bayes (but still reduced the
overall error).

5. For MC4(1)-disc, Breiman’s “ad hoc” algorithm works better than AdaBoost.
6. Arc-x4 and AdaBoost behave differently when sampling is applied. Arc-x4-resample

outperformed Arc-x4-reweight, but for AdaBoost the result was the same. The fact that
Arc-x4 works as well as AdaBoost reinforces the hypothesis by Breiman (1996a) that
the main benefit of AdaBoost can be attributed to the adaptive reweighting.

7. The boosting theory guarantees that the training set error will go to zero. This scenario
happens with MC4 but not with Naive-Bayes and MC4(1)-disc (see figures 12 and 13).
In some cases we have observed errorsvery close to 0.5 after several trials (e.g., the
nursery dataset with MC4(1)-disc described above, DNA, and satimage). This is expected
because boosting concentrates the weight on hard-to-classify instances, making the
problem harder. In those cases the requirement that the error be bounded away from 0.5
is unsatisfied. In others, the improvement is so miniscule that many more boosting trials
are apparently needed (by orders of magnitude).

8. Unlike Bagging, where there was a significant difference between the combined decision
tree classifier making probabilistic or non-probabilistic predictions for calculating the
mean-squared error (MSE), AdaBoost was not significantly different—less than 0.1%.
AdaBoost is optimizing classification error and may be too biased as a probability
estimator.

With Bagging, we found that disabling pruning sometimes reduced the errors. With
boosting it increased them. Using probabilistic estimates in the final combination was also
slightly worse than using the classifications themselves. This is probably due to the fact
that all the reweighting that is done is based on classification errors. Finally, we did try to
reweight instances based on the probabilistic predictions of the classifiers as mentioned in
Freund and Schapire (1995), but that did not work well either.

9. Future work

Our study highlighted some problems in voting algorithms using error estimation, the bias
and variance decomposition, average tree sizes, and graphs showing progress over trials.
While we made several new observations that clarify the behavior of the algorithms, there
are still some issues that require investigation in future research.

1. The main problem with boosting seems to be robustness to noise. We attempted to drop
instances with very high weight but the experiments did not show this to be a successful
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approach. Should smaller sample sizes be used to force theories to be simple if tree
sizes grow as trials progress? Are there methods to make boosting algorithms more
robust when the dataset is noisy?

2. It is unclear how the tree size is affected in the different variants. AdaBoost seemed
to have an interesting correlation between the change in average tree size and error
reduction, but Arc-x4-resample did not have a similar correlation. Further research
should try to explain the relations.

3. Boosting stops if one of the classifiers achieves zero training set error. That classifier
gets infinite voting power and is effectively the single classifier. Are there better
methods for handling this extreme situation?

4. In the case of the shuttle dataset, a single decision tree was built that was significantly
better than the original MC4 tree. The decision tree had zero error on the training
set and thus became the only voter. Are there more situations when this is true, i.e.,
where one of the classifiers that was learned from a sample with a skewed distribution
performs well by itself on the unskewed test set?

5. Boosting and Bagging both create very complex classifiers, yet they do not seem
to “overfit” the data. Domingos (1997) claims that the multiple trees do not simply
implement a Bayesian approach, but actually shift the learner’s bias (machine learning
bias, not statistical bias) away from the commonly used simplicity bias. Can this bias
be made more explicit?

6. We found that Bagging works well without pruning. Pruning in decision trees is a
method for reducing the variance by introducing bias. Since Bagging reduces the vari-
ance, disabling pruning indirectly reduces the bias. How does the error rate change as
pruning is increased? Specifically, are there cases where pruning should still happen
within Bagging?

7. Wolpert (1992) discusses stacking as a generic method for meta-learning. Bagging and
Arc-x4 use uniform weighting, and AdaBoost uses a more complex weighting scheme.
Is it possible that stacking another inducer might help? We attempted to stack a Naive-
Bayes on top of the base classifiers built by AdaBoost and Bagging without success.
Can some better method to combine classifiers be devised?

8. How can boosting be applied to other algorithms, such ask-nearest-neighbors? On the
surface, the standard interpretation of counting a highly weighted instance more would
not work, as increasing the weight of an instance helps to classify its neighbors, not to
classify itself.

9. Could probabilistic predictions made by the sub-classifiers be used? Quinlan (1996)
used it as the voting strength, but this ignores the fact that the classifiers were built
using skewed distributions.

10. Voting techniques usually result in incomprehensible classifiers that cannot easily
be shown to users. One solution proposed by Kohavi and Kunz (1997) attempts to
build a structured model that has the same affect as Bagging. Ridgeway, Madigan,
and Richardson (1998) convert a boosted Naive-Bayes to a regular Naive-Bayes,
which then allows for visualizations (Becker, Kohavi, & Sommerfield, 1997). Are
there ways to make boosting comprehensible for general models? Craven and Shavlik
(1993) built a single decision tree that attempts to make the same classifications as a
neural network. Quinlan (1994) notes that there are parallel problems that require testing
all attributes. A single tree for such problems must be large.
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11. In parallel environments, Bagging has a strong advantage because the sub-classifiers can
be built in parallel. Boosting methods, on the other hand, require the estimated training
set error on trialT to generate the distribution for trialT + 1. This makes coarse-grain
parallelization very hard. Can some efficient parallel implementations be devised?

10. Conclusions

We provided a brief review of two families of voting algorithms: perturb and combine (e.g.,
Bagging), and boosting (e.g., AdaBoost, Arc-x4). Our contributions include:

1. A large-scale comparison of Bagging, Bagging variants, AdaBoost, and Arc-x4 on
two families of induction algorithms: decision trees and Naive-Bayes. Many previ-
ous papers have concentrated on a few datasets where the performance of Bagging
and AdaBoost was stellar. We believe that this paper gives a more realistic view of
the performance improvement one can expect. Specifically, with the best algorithm,
AdaBoost, the average relative error reduction was 27% for MC4, 31% for MC4(1)-
disc, and 24% for Naive-Bayes. The boosting algorithms were generally better than
Bagging, but not uniformly better. Furthermore, in some datasets (e.g., adult) none of
the voting algorithms helped, even though we knew from the learning curve graphs that
the Bayes optimal error was lower.

2. A decomposition of the error rates into bias and variance for real datasets. Previous
work that provided this decomposition did so only for artificial datasets. We believe that
our decomposition on real-world problems is more informative and leads to a better un-
derstanding of the tradeoffs involved in real-world scenarios. Bagging’s error reduction
in conjunction with MC4 is mostly due to variance reduction because MC4 is unstable
and has high variance. For MC4(1) and MC4(1)-disc, Bagging reduced the bias more
significantly than the variance. Bagging had little effect on Naive-Bayes. The boosting
methods reduced both the bias and the variance.

3. An evaluation of several variants of voting algorithms, including no-pruning, proba-
bilistic variants, and backfitting. These were shown to outperform the original Bagging
algorithm.

4. A mean-squared error evaluation showed that voting techniques are extremely successful
at reducing the loss under this metric. We believe that voting techniques should perform
significantly better when loss matrices are used, which is fairly common in real-world
applications.

5. A discussion of numerical instabilities, which require careful thought in implementation
of boosting algorithms.

6. A positive correlation between the increase in the average tree size in AdaBoost trials
and its success in reducing the error.

7. An observation that Arc-x4 does not work as well with reweighting methods; rather,
unlike AdaBoost, the sampling step is crucial.

The error rates we achieved with Bagging and the boosting algorithms were sometimes
surprisingly good. Looking at the learning curves, the voting algorithms built classifiers
from small samples that outperformed what looked like the asymptotic error for the original
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algorithms. For example, Waveform seemed to have stabilized around an error of 20% when
the training set size was 3000–4500 instances, yet AdaBoost had a 17.7% error rate with
training set sizes of 1000 instances. For the Letter domain, the lowest error on the learning
curve was about 12% for 18,000 instances, yet AdaBoost had an error rate of 8.1% with a
training set size of 5000.

For learning tasks where comprehensibility is not crucial, voting methods are extremely
useful, and we expect to see them used significantly more than they are today.
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