Experimental design and analysis

Hands-on approach to experimental design

https://www.lri.fr/~appert/eval/

Operationalizing in practice

State your hypothesis

H: The number of distractors has an impact on pointing performance

Target icon that the user wants to point at

distractors (other visual objects on screen)

My advice:

1. start with sketching the charts you would like to report in a paper (i.e., the charts that would support your hypothesis)

H: The number of distractors has an impact on pointing performance

2. Clearly name factors and measures

2. Clearly name factors and measures

Values for factors:
start with values
that seem
reasonable to you,
and then refine
with pilot studies

3. Design a task to collect measures in response to variations in factors' values

Measures

pointing time: interval between appearance of scene and click on red target Errors: number of clicks out of red target

4. Iterate on your design

Is there any bias in my design? In particular, what about the internal/external validity?

For a pointing experiment, we could add two factors, movement amplitude (A) and target width (W), to represent different pointing difficulties and thus increase the external validity of our observations.

Experiment storyboard

4. Detail how the different tasks will be presented, and what actions participants will do

Formalizing your design

TouchStone 2 [Eiselmayer et al., CHI '19]


```
Blocked by Technique
     T Technique
        Mouse
        Touch
  Latin square of 1 replication(s) not serial
        ID Index of Difficulty
           2
           3
           5
     Latin square of 1 replication(s) not serial
Suitable for a multiple of 4 Participant(s)
I plan to recruit 7 Participant(s)
Order effect coverage 75%
Average duration per trial 2 sec
Delay after each trial 1 sec
Delay after each block 0 sec
```

TouchStone 2 offers a visual language based on interactive bricks to specify your factors, blocking and replication strategies

Launch

Got to https://www.touchstone2.org/

Click Try it out online

TouchStone 2

Design in TouchStone 2

TouchStone 2 export/save

Medium

Large

Participant 3

High

Large Large

I plan to recruit 18 Participant(s)
Order effect coverage 100%

Average duration per trial 2 sec
Delay after each trial 2 sec
Delay after each block 10 sec
Each session takes 00:05:34 per participant

Participant 2

ith Distractors

Large

Low

Saves the design as a xml or tsl file so you can reload it in TouchStone2 and visualize and edit it if needed.

TouchStone 2 export/save

I plan to recruit 18 Participant(s)
Order effect coverage 100%

Average duration per trial 2 sec
Delay after each trial 2 sec
Delay after each block 10 sec
Each session takes 00:05:34 per participant

DesignName, ParticipantID, TrialID, Block1, Block2, D, A, W
Pointing_with_Distractors, 1, 1, 1, 1, Medium, Large, Small
Pointing_with_Distractors, 1, 2, 1, 1, Medium, Large, Small
Pointing_with_Distractors, 1, 3, 1, 1, Medium, Large, Small
Pointing_with_Distractors, 1, 4, 1, 2, Medium, Large, Large
Pointing_with_Distractors, 1, 5, 1, 2, Medium, Large, Large
Pointing_with_Distractors, 1, 6, 1, 2, Medium, Large, Large
...
Pointing_with_Distractors, 18, 1456, 3, 9, Medium, Large, Small
Pointing_with_Distractors, 18, 1457, 3, 9, Medium, Large, Small
Pointing_with_Distractors, 18, 1458, 3, 9, Medium, Large, Small

Saves the design as a csv trial table that will serve as input for the experiment program

TouchStone 2 next steps

experiment design (TouchStone csv output)

```
DesignName, ParticipantID, TrialID, Block1, Block2, D, A, W
Pointing_with_Distractors, 1, 1, 1, 1, Medium, Large, Small
Pointing_with_Distractors, 1, 2, 1, 1, Medium, Large, Small
Pointing_with_Distractors, 1, 3, 1, 1, Medium, Large, Small
Pointing_with_Distractors, 1, 4, 1, 2, Medium, Large, Large
Pointing_with_Distractors, 1, 5, 1, 2, Medium, Large, Large
Pointing_with_Distractors, 1, 6, 1, 2, Medium, Large, Large
...
Pointing_with_Distractors, 18, 1456, 3, 9, Medium, Large, Small
Pointing_with_Distractors, 18, 1457, 3, 9, Medium, Large, Small
Pointing_with_Distractors, 18, 1458, 3, 9, Medium, Large, Small
```

log file (csv file for your statistical analyses)

```
DesignName, ParticipantID, TrialID, Block1, Block2, D, A, W, PointingTime, ErrorCount Pointing_with_Distractors, 1, 1, 1, 1, Medium, Large, Small, 1632, 0
Pointing_with_Distractors, 1, 2, 1, 1, Medium, Large, Small, 1552, 1
Pointing_with_Distractors, 1, 3, 1, 1, Medium, Large, Small, 1402, 0
Pointing_with_Distractors, 1, 4, 1, 2, Medium, Large, Large, 1272, 1
Pointing_with_Distractors, 1, 5, 1, 2, Medium, Large, Large, 1153, 0
Pointing_with_Distractors, 1, 6, 1, 2, Medium, Large, Large, 1202, 0
...
```

Our project:)

Project

We will design, run and analyze an experiment whose goal is:

Test whether two visual variables are preattentive or not

Examples of visual variables

Preattentive processing

Things that "pop out" from their surroundings

A thing that will be much likely noticed after a very brief exposure (no need for sequential scanning)

e.g., find the 3

87957452562594075 94037509697950427 69540276059476599 44040647645278924

sequential scanning

87957452562594075 94037509697950427 69540276059476599 44040647645278924 pop out

(Color is preattentive)

Preattention is a complex phenomenon

In particular, all preattentive variables cannot be easily combined

visual variable: color

The gray circle pops out

visual variable: color

+

visual variable: shape

It takes time to find the gray square

Project: hypotheses to test

Pick two visual variables of your choice (e.g., color, size, shape, shadow, etc.). Let's call them VV1 and VV2.

Research hypotheses to test:

H₁: VV1 is preattentive

Example: A difference in color is preattentive

H₂: VV2 is preattentive

Example: A difference in shape is preattentive

H₃: VV1 and VV2 combined are less preattentive than VV1 or VV2 in isolation

Example: Spotting a difference in both color and shape takes more time that spotting a difference in color only or in shape only