
Experimental design
and analysis

Experiment programming

Caroline Appert

https://www.lri.fr/~appert/eval/

Project: hypotheses to test

Pick two visual variables of your choice (e.g.,
color, size, shape, shadow, etc.). Let's call
them VV1 and VV2.

Research hypotheses:
H1: VV1 is preattentive

H2: VV2 is preattentive

H3: VV1 and VV2 combined are less preattentive than VV1
or VV2 in isolation

2

Operationalization

We refine what preattentive means:
A visual variable is preattentive when the
visual search time for the only object that
differs from a collection because of this
visual variable is not affected by the
number of objects in the collection.

We identify factors and measures
Sketching the charts you would like to report helps a lot

Operationalization

Visual search time

Object count (*)

(*) Number of objects in the collection

Low Medium Large

Hypothesis H1: VV1 is preattentive

H1 would be supported by a chart like this one
(considering observations for tasks where the
difference is along VV1)

Operationalization

Visual search time

Object count (*)

(*) Number of objects in the collection

Low Medium Large

Measure

Factor

Hypothesis H1: VV1 is preattentive

We hypothesize that the factor ObjectCount
does not have an effect on the measure
VisualSearchTime.

We identify factors and measures
Sketching the charts you would like to report helps a lot

Operationalization

Visual search time

Difference Type
VV1 VV2 VV1VV2

Hypothesis H3: VV1 and VV2 combined are less
preattentive than VV1 or VV2 in isolation

(It takes more time to spot a difference when the
difference is along two visual variables than
when it is along a single variable)

An additional
Factor

Measure (which we had already
identified for the first two hypotheses)

Operationalization

Visual search time

Difference Type
VV1 VV2 VV1VV2

Hypothesis H3: VV1 and VV2 combined are less
preattentive than VV1 or VV2 in isolation

We hypothesize that the factor
DifferenceType has an effect on the measure
VisualSearchTime.

Operationalization
Factors:
OC: ObjectCount

{Low, Medium, Large}
DT: Difference Type

{VV1, VV2, VV1VV2}

Measure:
Visual Search Time

Task?

Operationalization - task
Stimulus: present a collection of objects where
only one object is different from all the other
objects

DT=VV1 DT=VV2 DT=VV1VV2

Example with VV1=Size and VV2=Color

Operationalization - task
Response: the participant finds the different object

How to measure visual search time?

Only visual search: stop timer at pointing (no!), stop
timer at key press (yes!)

Make sure the participant spots the right object: 2-step
task with first key press then click on placeholders

Avoid an "animation effect" by using placeholders that
are clearly different from all objects in the collection

Experiment storyboard

Enter
Key

Space
Key

Click

Enter
Key

Space
Key

Click

...

Operationalization - task
Make sure that you give all the necessary details to
ensure replicability of your experiment by others

Participants must identify the object with a unique
appearance as quickly as possible. They press
'Enter' when ready, and a scene with multiple
shapes appears, starting the timer. As soon as they
spot the distinct object, they press 'Space',
stopping the timer. All objects are thus turned into
generic square placeholders at their original
locations... etc.

Make the design formal with
TouchStone 2 (20')

Two constraints:

You need at least 30 measures per condition overall
to run inferential statistics

You have access to 6 participants

14

TouchStone 2

Design description
Here again, make sure that you give all the necessary
details to ensure replicability of your experiment.

The experiment tests two factors (DT and OC) according
to a within-subject design.

Trials are blocked by DifferenceType (DT), and then by
ObjectCount (OC). Presentation order of DT blocks and
OC sub-blocks are counterbalanced using a LatinSquare.
Each sub-block contains 6 replications of the task in the
corresponding DTxOC condition.

In total, we collect:

6 participants x 3 DT x 3 OC x 6 replications = 324 trials

Experiment
programming

16

experiment program

DesignName,ParticipantID,TrialID,Block1,Block2,DT,OC,visualSearchTime,ErrorCount
PreattentionExperiment,1,1,1,1,Color,Medium,1632,0
PreattentionExperiment,1,2,1,1,Color,Medium,1552,1
PreattentionExperiment,1,3,1,1,Color,Medium,2030,0
...

Experiment programming I/O

DesignName,ParticipantID,TrialID,Block1,Block2,DT,OC
PreattentionExperiment,1,1,1,1,Color,Medium
PreattentionExperiment,1,2,1,1,Color,Medium
PreattentionExperiment,1,3,1,1,Color,Medium
...
PreattentionExperiment,6,268,3,3,Color,Medium
PreattentionExperiment,6,269,3,3,Color,Medium
PreattentionExperiment,6,270,3,3,Color,Medium

experiment design (TouchStone csv output)

log file (csv file for your statistical analyses)

experiment_touchstone2.csv

Getting started

18

Download JavaScript code
skeleton on class website

Getting started
experiment_touchstone2_test.csv is just an
excerpt from a TouchStone2 design file. You have to
replace it with your own design.

19

At page loading time, function createScene is called.

createScene then calls loadData.

Two main files: experiment.html and experiment.js

We will modify experiment.js only

loadData needs to access the CSV design file output by
TouchStone, which is a local file on your system

Use a (local) Web server to serve local files with HTTP
Option 1

Launch an HTTP server in the TD’s directory
> cd experiment_js/

> python -m http.server 8888 (python 3) or > python -m SimpleHTTPServer 8888 (python 2)
Access the page from your browser

http://localhost:8888/experiment.html

Option 2

Use a plugin for your code editor
e.g., Live Server for Visual Studio Code, or atom-live-server for Atom, etc.

http://localhost/8888:experiment.html

22

Open Inspector
and Console

Check cache is
disabled in your
browser settings

loadData function reads experiment_touchstone2_test.csv and turns
it into an array of trials.

d3.csv is a function from the d3 library
that creates an array for a csv table. The
array contains one array per line. Values in
these arrays can be accessed using the
column header name.

For example, ctx.trials[3]["DT"]
returns the value in column "DT" of the fourth
line in the csv file (⚠ as a string).

Clicking button GO calls function startExperiment

var startExperiment = function(event) {
 ...

 // start first trial
 console.log("start experiment at "+ctx.cpt);
 nextTrial();

}

ctx.cpt is now the index just before the first trial to
run in the trial table ctx.trials.

nextTrial function is called.

nextTrial calls displayInstructions

25

26

experiment.js

experiment.html

We use library d3 to make DOM selections and
manipulations easy. For example,
 d3.select("#instructionsCanvas")
 .append("div")
 .attr("id", "instructions")
 .classed("instr", true);

selects element whose id is instructionsCanvas,
in the HTML document, adds a new div child to
this element, sets id of this new div to
instructions and adds CSS class instr to it.

Function keyListener gets called when a key
is pressed

Keyboard events

When Enter key is pressed while instructions
are displayed, we remove instructions and display
the scene of shapes instead (function
displayShapes)

We use library d3 to make DOM
manipulations easy. For example,
d3.select("#instructions").remove();

removes element whose id is
instructions

Function displayShapes does the job

Display grid of shapes

Access factor values for this trial

We will add all shapes to a group
whose id is shapes so that we can
remove all shapes later on with the
single following line of code:
d3.select("#shapes").remove();

TODO step 1-a
Update function keyListener to remove shapes
and display placeholders instead when participant
presses Space bar in state state.SHAPES.

Space

Function displayPlaceholders is provided

TODO step 1-b
Update function displayPlaceholders to remove
placeholders and progress to next trial (call nextTrial) when
participant clicks a placeholder. Ignore errors for now, progress to
next trial in all cases.

var displayPlaceholders = function() {
...

 placeholder.on("click",
 function() {
 // TODO
 }
);
 }
}

Click

Code called when a click occurs on a
placeholder

var displayShapes = function() {
...

// 1. Decide on the visual appearance of the target
 // In my example, it means deciding on its size (large or small) and its color (light or dark)
 var randomNumber1 = Math.random();
 var randomNumber2 = Math.random();
 var targetSize, targetColor;
 if(randomNumber1 > 0.5) {
 targetSize = 25; // target is large
 } else {
 targetSize = 15; // target is small
 }
 if(randomNumber2 > 0.5) {
 targetColor = "DarkGray"; // target is dark gray
 } else {
 targetColor = "LightGray"; // target is light gray
 }

In order to avoid participants
look for a specific object as
opposed to look for the different
object (i.e., threat to internal
validity), we introduce some
variation on the target appearance
by setting it randomly to one of the
four possible object appearances:

Scene of objects
Let's take a closer look at function displayShapes

We decide on the target's appearance

var displayShapes = function() {
...

 // 2. Set the visual appearance of all other objects now that the target appearance is
decided
 // Here, we implement the case DT = "Size" so all other objects are large (resp. small)
if target is small (resp. large) but have the same color as target.
 var objectsAppearance = [];
 for (var i = 0; i < objectCount-1; i++) {
 if(targetSize == 25) {
 objectsAppearance.push({
 size: 15,
 color: targetColor
 });
 } else {
 objectsAppearance.push({
 size: 25,
 color: targetColor
 });
 }
 }

Scene of objects
Let's take a closer look at function displayShapes

Target Other objects

...

...

...

...

We generate the list of other objects depending on the target's appearance

Scene of objects
Let's take a closer look at function displayShapes

var displayShapes = function() {
...

 // 3. Shuffle the list of objects (useful when there are variations regarding both visual
variable) and add the target at a specific index
 shuffle(objectsAppearance);
 // draw a random index for the target
 ctx.targetIndex = Math.floor(Math.random()*objectCount);
 // and insert it at this specific index
 objectsAppearance.splice(ctx.targetIndex, 0, {size:targetSize, color:targetColor});

We shuffle (*) the list of other objects and then insert the target
at a specific index

(*) explanation for shuffling later on

var displayShapes = function() {
...

 // 4. We create actual SVG shapes and lay them out as a grid
 // compute coordinates for laying out objects as a grid
 var gridCoords = gridCoordinates(objectCount, 60);
 // display all objects by adding actual SVG shapes
 for (var i = 0; i < objectCount; i++) {
 group.append("circle")
 .attr("cx", gridCoords[i].x)
 .attr("cy", gridCoords[i].y)
 .attr("r", objectsAppearance[i].size)
 .attr("fill", objectsAppearance[i].color);
 }

Scene of objects
Let's take a closer look at function displayShapes

We use SVG shapes

We actually display shapes as a SVG shapes laid out as a grid.
We use d3 library to manipulate the DOM structure (add elements and
set their attributes' values)

TODO step 2-a
For now, function displayShapes ignores the actual value
of DT and simply implements the case DT = "Size"

Adapt the code to your visual variable VV1
(i.e., handle your own case DT= VV1)

SVG and visual variables
I used circles with Size and Color visual variables, but SVG
provides you with different types of graphical shape and various
graphical attributes

• SVG code can be included directly in HTML documents
• Shapes: rect, circle, ellipse, line, text, path
• Styling: fill, stroke, stroke-width, opacity, font-family, font-size
• or use CSS rules
• Transparency can be controlled with opacity or rgba(r,g,b,a) color tuples

<svg width="100" height="100">
 <circle cx="50" cy="50" r="22" fill="blue" stroke="gray" stroke-width="4"/>
</svg>

adapted from Emmanuel Pietriga's slide

SVG - Scalable Vector Graphics

<svg width="400" height="260">
 <!-- blue circle with a 5px-gray border-->
 <circle cx="50" cy="50" r="40" fill="blue" stroke="gray" stroke-width="5"/>
 <!-- ellipse with a 4px redish border and no fill color-->
 <ellipse cx="100" cy="70" rx="30" ry="20" fill="none" stroke="#FF2244" stroke-width="4"/>
 <!-- two rectangles partially overlapping, the one above (which us red) is semi-transparent-->
 <rect x="200" y="20" width="150" height="50" fill="#0F0"/>
 <rect x="220" y="30" width="150" height="50" fill="#F00" opacity=".5"/>
 <!-- simple black line -->
 <line x1="50" y1="120" x2="150" y2="220" stroke="black"/>
 <!-- simple text element -->
 <text x="200" y="180">Sample text</text>
 <!-- a quadratic bézier curve -->
 <path fill="none" stroke="#999" stroke-width="3" d="M10,250 Q380,250 380,120" />
</svg>

(0,0)

(400,260)

source: Emmanuel Pietriga

SVG - Scalable Vector Graphics

<rect x="10" y="10" width="100" height="50" style="fill:red"/>
<rect x="0" y="0" width="100" height="50" style="fill:green"
 transform="translate(10,80)" />
<rect x="0" y="0" width="100" height="50" style="fill:blue"
 transform="translate(10,150) scale(1.5) rotate(45 180 150)"/>

Affine Transforms

source: Emmanuel Pietriga

https://developer.mozilla.org/en-US/docs/Web/SVG/Element

SVG - Scalable Vector Graphics

Detailed SVG documentation:

Many more possibilities, including, e.g., filters:

<svg width="200" height="150">
 <defs>
 <filter id="ds" x="0" y="0" width="200%" height="200%">
 <feOffset result="offOut" in="SourceAlpha" dx="20" dy="20" />
 <feGaussianBlur result="blurOut" in="offOut" stdDeviation="10" />
 <feBlend in="SourceGraphic" in2="blurOut" mode="normal" />
 </filter>
 </defs>
 <rect x="10" y="10" width="90" height="90" fill="yellow" stroke="#333"
 filter="url(#ds)" />
</svg>

source: Emmanuel Pietriga

https://developer.mozilla.org/en-US/docs/Web/SVG/Element

var svgElement = d3.select("svg");
var group = svgElement.append("g")
 .attr("id", "shapes")
 .attr("transform", "translate(100,100)");

group.append("circle")
 .attr("cx", 50)
 .attr("cy", 50)
 .attr("r", 20)

 .attr("fill", "red");

Manipulating the DOM of a web page
with d3

40

Select first svg element and
insert a g element as a child
whose attr id is shapes

<svg>
<g id="shapes" transform="translate(100,100)">
<circle cx=50 cy=50 r=20 fill="red" />

</g>
...

<svg>

TODO step 2-b
Complement the code to make it work for your second visual
variable (i.e., handle case DT= VV2)

TODO step 2-c
Complement the code to make it work for the combination of your
two visual variables (i.e., handle case DT= VV1VV2)

Other objects (generated by series of objects that have the three possible apperances)

Shuffle other objects

insert target at a specific index Target

example for DT="ColorSize" with a target

This is where shuffling other objects in displayShapes
makes sense

TODO step 3

Log measures by adding an array with values
each time a trial ends at the end of the
ctx.loggedTrials array which contains one line
for each trial that has been run until now.

43

ctx.loggedTrials = [
["DesignName","ParticipantID","TrialID","Block1","Block2","DT","OC","visualSearchTime","ErrorCount"]];
...
ctx.loggedTrials.push(

["Preattention-experiment",1,1,1,1,"Size","Medium",1582,0]
)

TODO step 3
Button download log file calls function
downloadLogs which turns
ctx.loggedTrials into a csv that you can
download
program the experiment engine for presenting
trials and responding to user input

log measured data (error count, completion time)

TODO step 3-a

a) Log measure visualSearchTime, the function
Date.now() can be useful for handling the timer. It
returns the current time in ms.

45

TODO step 3-b

b) Log measure ErrorCount: In case of error
(wrong element clicked), just count an error but do
not log anything. Restart a trial in the same
condition (restart the timer as well...). We want to
have one correct completion time measure for
each experimental condition.
DesignName,ParticipantID,TrialID,Block1,Block2,DT,OC,visualSearchTime,ErrorCount
...
PreattentionExperiment,1,2,1,1,Color,Medium,1582,2
...

The successful trial in this condition
took 1582 ms. It was preceded by two
incorrect selections.

TODO step 4
Make sure that your program stops when all
trials for this participant are completed
(i.e., when ctx.trials[ctx.cpt]["ParticipantID"]
is no longer the same value)

