
Experimental design
and analysis

Intro to Jupyter and descriptive statistics

Caroline Appert

https://www.lri.fr/~appert/eval/

Using Jupyter for
analyzing data

Experiment that we use as an example
Pointing performance of different types of magnifying lenses

12

3

4

5

6

7

8

Task

ML (Manhattan Lens) FL (Fisheye Lens)

Lens type (5 levels):
BL (Blending Lens)

2 factors (5 x 5 design) - 10 participants

Pointing time (in ms)Measure

Lens’ magnification (5 levels): 2, 4, 6, 10, 14

target acquisition

, , SCF SCB, ,

2 factors (5 x 5 design) - 10 participants

…

Collected data
(log file lens_experiment.csv)

2 Factors 1 Measure

Experiment that we use as an example
Pointing performance of different types of magnifying lenses

Note: When we analyze
collected results, all logs
are in a single file (one
file per participant)

≠

Creating a Jupyter notebook

Notebook = web-based interactive computing platform
Two types of cell:

Jupyter notebook

Interpret
(Shift+Enter)

Set cell type
to markdown

Markdown cells Code cells
(default type)

Interpret
(Shift+Enter)

https://www.markdownguide.org/basic-syntax/

Markdown

https://www.markdownguide.org/basic-syntax/

Markdown in Jupyter
includes HTML

Interpret
(Shift+Enter)

Descriptive statistics

Descriptive statistics

Useful libraries

Pandas
import pandas as pd

The pandas library facilitates working with tabular data in Python with
functions for reading, writing and manipulating those data.

A pandas DataFrame is a 2-dimensional labeled data structure with
columns of potentially different types. You can think of it as a
spreadsheet.

pd.read_csv

pd.DataFrame.dtypes

pd.DataFrame.describe

pd.DataFrame.query

pd.DataFrame.groupby

...

Pandas

From CSV
To DataFrame
data = pd.read_csv('lens_experiment/lens_experiment.csv', sep=';')
data

Participant Block Trial Lens Magnification ID PointingTime

0 1 4 0 FL 6 6.003555 2297

1 1 4 0 FL 6 6.003555 1485

2 1 4 0 FL 6 6.003555 2000

...

11997 10 2 9 SCF 6 6.003555 2187

11998 10 2 9 SCF 6 6.003555 2875

11999 10 2 9 SCF 6 6.003555 2688

12000 rows × 7 columns

Participant;Block;Trial;Lens;Magnification;ID;PointingTime
1;4;0;FL;6;6.0035549;2297
1;4;0;FL;6;6.0035549;1485
1;4;0;FL;6;6.0035549;2000
1;4;0;FL;6;6.0035549;1843
1;4;0;FL;6;6.0035549;1813
...
10;2;9;SCF;6;6.0035549;2313
10;2;9;SCF;6;6.0035549;2453
10;2;9;SCF;6;6.0035549;2187
10;2;9;SCF;6;6.0035549;2875
10;2;9;SCF;6;6.0035549;2688

lens_experiment/lens_experiment.csv

data.dtypes

Participant int64
Block int64
Trial int64
Lens object
Magnification int64
ID float64
PointingTime int64
dtype: object

columns in a dataframe can
have different types

Pandas

Types
data.dtypes

Participant int64
Block int64
Trial int64
Lens object
Magnification int64
ID float64
PointingTime int64
dtype: object

Participant should not be int. It is actually an identifier.
Let's turn it into str.
data['Participant'] = data['Participant'].astype('str')
data.dtypes

Participant object
Block int64
Trial int64
Lens object
Magnification int64
ID float64
PointingTime int64
Condition: Lens, Magnification, ID object
dtype: object

Pandas

DataFrame - Access

data['Participant']
0 1
1 1
2 1
3 1
4 1
 ..
11995 10
11996 10
11997 10
11998 10
11999 10
Name: Participant, Length: 12000, dtype: int64

Access column

Participant 1
Block 4
Trial 0
Lens FL
Magnification 6
ID 6.003555
PointingTime 2000
Name: 2, dtype: object

Access row
data.iloc[2]

data_fl = data.query('Lens == \'FL\'') # filter out data to get only data for the Lens=FL condition
data_fl

Access rows that satisfy a given criterion

Participant Block Trial Lens Magnification ID PointingTime
0 1 4 0 FL 6 6.003555 2297
1 1 4 0 FL 6 6.003555 1485
...

11038 10 3 9 FL 6 6.003555 1312
11039 10 3 9 FL 6 6.003555 2282

2400 rows × 7 columns

Pandas

DataFrame - Adding columns

d = {'id':[1,3,4],'starttime': [124, 357, 489], 'endtime': [202, 476, 604]}
df = pd.DataFrame(data=d)
df

id starttime endtime
0 1 124 202
1 3 357 476
2 4 489 604

df['completiontime'] = df['endtime'] - df['starttime']

df.loc[df['id'] <= 3, 'difficulty'] = 'easy'
df.loc[df['id'] > 3, 'difficulty'] = 'medium'

df

id starttime endtime completiontime difficulty

0 1 124 202 78 easy

1 3 357 476 119 easy

2 4 489 604 115 medium

Building a dataframe example

Adding columns Adding a column "completiontime"
whose value is endtime-starttime

Adding a column "difficulty" whose
value is 'easy' if ID <= 3, 'medium'
otherwise

Descriptive statistics

Pandas

DataFrame - Aggregating

Pandas proposes several functions for aggregating data:
mean, min, max, sum, ...

data.PointingTime.mean()

The describe function provides descriptive statistics of a
dataframe

data.describe(include = 'all')

Pandas

DataFrame - Aggregating

Combined with the aggregate function, we can specify elaborate
aggregating strategies:
data.groupby('Lens').aggregate({'Trial': 'sum', 'PointingTime': 'mean'})

Combined with the groupby function, we can get a breakdown per group:
data.groupby('Lens').PointingTime.mean()

type of result: series

Counts
When designing an experiment, a good sanity check consists of
looking at the number of observations (trials) per experimental
condition to double check that we actually have the same number of
observations per condition (i.e., our design is properly balanced).

make a copy of column Magnification and change its type from int to str
magAsStr = data['Magnification'].copy().astype('str')
now that we have strings, we can concatenate them using function 'cat'
data['Condition: Lens, Magnification'] = data['Lens'].str.cat(magAsStr, sep=", ")
data

Counts
When designing an experiment, a good sanity check consists of
looking at the number of observations (trials) per experimental
condition to double check that we actually have the same number of
observations per condition (i.e., our design is properly balanced).

data.groupby('Participant').count()

Each participant
completed 1200 tasks
in each experimental
condition

Function histogram from library plotly visualizes
distributions. (https://plotly.com/python/histograms/)

We can use it to visualize our counts:

Distribution
nominal/ordinal variables

fig = px.histogram(data, x='Condition: Lens, Magnification', color='Participant')
fig.show()

https://plotly.com/python/histograms/

Distribution
nominal/ordinal variables

Function histogram from library plotly visualizes
distributions. (https://plotly.com/python/histograms/)

We can use it to visualize the distribution of PointingTime:
fig = px.histogram(data, x='PointingTime')
fig.show()

https://plotly.com/python/histograms/

Distribution
nominal/ordinal variables

We can add a box plot:
fig = px.histogram(data, x='PointingTime', marginal='box')
fig.show()

Distribution
nominal/ordinal variables

And even get a breakdown per group:
fig = px.histogram(data, x='PointingTime', color='Lens', marginal='box')
fig.show()

If needed (e.g., for inclusion in a report), we can save the last plot as a PDF file
fig.write_image('images/pointingtime_distribution_with_box_per_lens.pdf')

Distribution
nominal/ordinal variables

We can also spread the histogram by using a logarithimc
scale to better visualize what happens for low values
where most observations lie in our case:

fig = px.histogram(data, x='PointingTime', color='Lens', marginal='box', log_x=True)
fig.show()

The correlation coefficient is a simple descriptive statistic
that measures the strength of the linear relationship
between two ratio (continuous) variables

We use it to test if there is a relationship between two
ratio variables.

The linear regression analysis then identifies what this
linear relationship is.

Correlation / Linear Regression
ratio (continuous) variables

Correlation (r statistics)

The Pearson’s correlation coefficient, r, measures how
linear a relationship between two ratio variables is

Usually, X is a factor, Y is a measure

r2 is interpreted as the proportion of the variability of Y that is
associated with the variability of X

1 - r2 is the residual variance (not explained)

26

 (-1 ≤ r ≤ 1)r =
(xi − x)

i=1

n

∑ × (yi − y)

(xi − x)
i=1

n

∑
2

(yi − y)
i=1

n

∑
2

Correlation

Pearson’s correlation coefficient (r) tells how much
one variable tends to change when the other one
does

r = 0, there is no relationship
r > 0, there is a trend that one variable goes up
as the other one goes up
r < 0, there is a trend that one variable goes up
as the other one goes down

correlation is a measure of dependence

correlation ≠ causality

Correlation with pingouin

Hypothesis: Pointing Time linearly goes up when Magnification
factor goes up

correlation_table = pg.pairwise_corr(data['Magnification'], data['PointingTime'])
correlation_table

import pingouin as pg

r2 = correlation_table['r'] * correlation_table['r']
r2

We observe a positive relationship between variables PointingTime
and Magnification with r(12000) = 0.62 (r2=0.39).

Correlation and aggregation
It is also common practice to look at the correlation between two variables after
having aggregated observations within experimental conditions. For example, we
can consider only one mean PointingTime per LensxMagnification for each
participant (i.e., aggregating replications).

Aggregating removes variance and thus mechanically increases the correlation
coefficient. There is no best solution between aggregating and not aggregating.
What is important is to make it clear if data were aggregated or not by reporting
the number of observations (n).

data_agg = data.groupby(['Participant', 'Lens', 'Magnification'], as_index=False)['PointingTime'].mean()
correlation_table = pg.pairwise_corr(data_agg, columns=['Magnification','PointingTime'])
correlation_table

After having aggregated observations per Participant x Lens x Magnification, we
found r(250) = 0.78 (r2=0.61) so there is a positive relation between variables
PointingTime and Magnification.

r2 = correlation_table['r'] * correlation_table['r']
r2

Linear regression

Computing linear regression means
defining the regression line that best fits
the bivariate distribution of data points
(Makes the squared vertical distances
between the data points and regression line
as small as possible)

30

Linear regression can be used as a predictive model
when your experiment design is sound enough and the
result of statistical tests is significant to support a cause-
effect relation

Linear regression with pingouin

lm = pg.linear_regression(data_agg['Magnification'], data_agg['PointingTime'])
lm

import pingouin as pg

After having aggregated observations per ParticipantxLensxMagnification, we
found r(250) = 0.78 (r2=0.61) so there is a positive relation between variables
PointingTime and Magnification. Predicted PointingTime in ms is equal to  
657 + 264 x Magnification.

Final report:

Linear regression and visualization

Linear regression must be interpreted with caution

Needs to be visualised

Famous example: Anscombe's quartet (above)
same linear regression line but very different datasets…

Linear regression and visualization

fig = px.scatter(
 data_agg, x='Magnification', y='PointingTime', opacity=0.65,
 trendline='ols'
)
fig.show()

