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Using Jupyter for 
analyzing data



Experiment that we use as an example 
Pointing performance of different types of magnifying lenses
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Task 

ML (Manhattan Lens) FL (Fisheye Lens)

Lens type (5 levels):
BL (Blending Lens)

2 factors (5 x 5 design) - 10 participants

Pointing time (in ms)Measure

Lens’ magnification (5 levels): 2, 4, 6, 10, 14

target acquisition 

, , SCF SCB, ,



2 factors (5 x 5 design) - 10 participants

…

Collected data 
(log file lens_experiment.csv)

2 Factors 1 Measure

Experiment that we use as an example 
Pointing performance of different types of magnifying lenses

Note: When we analyze 
collected results, all logs 
are in a single file (  one 
file per participant)

≠



Creating a Jupyter notebook



Notebook = web-based interactive computing platform 
Two types of cell: 

Jupyter notebook

Interpret  
(Shift+Enter)

Set cell type 
to markdown

Markdown cells Code cells 
(default type)

Interpret  
(Shift+Enter)



https://www.markdownguide.org/basic-syntax/ 

Markdown

https://www.markdownguide.org/basic-syntax/


Markdown in Jupyter 
includes HTML

Interpret  
(Shift+Enter)

# <span style='color:blue'>Descriptive statistics</span>

Descriptive statistics



Useful libraries



Pandas 
import pandas as pd

The pandas library facilitates working with tabular data in Python with 
functions for reading, writing and manipulating those data. 

A pandas DataFrame is a 2-dimensional labeled data structure with 
columns of potentially different types. You can think of it as a 
spreadsheet. 

pd.read_csv

pd.DataFrame.dtypes

pd.DataFrame.describe

pd.DataFrame.query

pd.DataFrame.groupby

...



Pandas

From CSV 
To DataFrame
data = pd.read_csv('lens_experiment/lens_experiment.csv', sep=';') 
data

Participant Block Trial Lens Magnification ID PointingTime

0 1 4 0 FL 6 6.003555 2297

1 1 4 0 FL 6 6.003555 1485

2 1 4 0 FL 6 6.003555 2000

... ... ... ... ... ... ... ...

11997 10 2 9 SCF 6 6.003555 2187

11998 10 2 9 SCF 6 6.003555 2875

11999 10 2 9 SCF 6 6.003555 2688

12000 rows × 7 columns

Participant;Block;Trial;Lens;Magnification;ID;PointingTime
1;4;0;FL;6;6.0035549;2297
1;4;0;FL;6;6.0035549;1485
1;4;0;FL;6;6.0035549;2000
1;4;0;FL;6;6.0035549;1843
1;4;0;FL;6;6.0035549;1813
...
10;2;9;SCF;6;6.0035549;2313
10;2;9;SCF;6;6.0035549;2453
10;2;9;SCF;6;6.0035549;2187
10;2;9;SCF;6;6.0035549;2875
10;2;9;SCF;6;6.0035549;2688

lens_experiment/lens_experiment.csv

data.dtypes

Participant        int64 
Block              int64 
Trial              int64 
Lens              object 
Magnification      int64 
ID               float64 
PointingTime       int64 
dtype: object

columns in a dataframe can 
have different types



Pandas

Types
data.dtypes

Participant        int64 
Block              int64 
Trial              int64 
Lens              object 
Magnification      int64 
ID               float64 
PointingTime       int64 
dtype: object

Participant should not be int. It is actually an identifier. 
Let's turn it into str.
data['Participant'] = data['Participant'].astype('str') 
data.dtypes

Participant                            object 
Block                                   int64 
Trial                                   int64 
Lens                                   object 
Magnification                           int64 
ID                                    float64 
PointingTime                            int64 
Condition: Lens, Magnification, ID     object 
dtype: object



Pandas

DataFrame - Access

data['Participant']
0         1
1         1
2         1
3         1
4         1
         ..
11995    10
11996    10
11997    10
11998    10
11999    10
Name: Participant, Length: 12000, dtype: int64

Access column

Participant             1
Block                   4
Trial                   0
Lens                   FL
Magnification           6
ID               6.003555
PointingTime         2000
Name: 2, dtype: object

Access row
data.iloc[2]

data_fl = data.query('Lens == \'FL\'') # filter out data to get only data for the Lens=FL condition 
data_fl

Access rows that satisfy a given criterion

Participant Block Trial Lens Magnification ID PointingTime
0 1 4 0 FL 6 6.003555 2297
1 1 4 0 FL 6 6.003555 1485
... ... ... ... ... ... ... ...

11038 10 3 9 FL 6 6.003555 1312
11039 10 3 9 FL 6 6.003555 2282

2400 rows × 7 columns



Pandas

DataFrame - Adding columns

d = {'id':[1,3,4],'starttime': [124, 357, 489], 'endtime': [202, 476, 604]} 
df = pd.DataFrame(data=d) 
df

id starttime endtime
0 1 124 202
1 3 357 476
2 4 489 604

df['completiontime'] = df['endtime'] - df['starttime'] 

df.loc[df['id'] <= 3, 'difficulty'] = 'easy' 
df.loc[df['id'] > 3, 'difficulty'] = 'medium' 

df

id starttime endtime completiontime difficulty

0 1 124 202 78 easy

1 3 357 476 119 easy

2 4 489 604 115 medium

Building a dataframe example

Adding columns Adding a column "completiontime" 
whose value is endtime-starttime

Adding a column "difficulty" whose 
value is 'easy' if ID <= 3, 'medium' 
otherwise



Descriptive statistics



Pandas

DataFrame - Aggregating

Pandas proposes several functions for aggregating data:
mean, min, max, sum, ...

data.PointingTime.mean()

The describe function provides descriptive statistics of a 
dataframe

data.describe(include = 'all')



Pandas

DataFrame - Aggregating

Combined with the aggregate function, we can specify elaborate 
aggregating strategies:
data.groupby('Lens').aggregate({'Trial': 'sum', 'PointingTime': 'mean'}) 

Combined with the groupby function, we can get a breakdown per group:
data.groupby('Lens').PointingTime.mean()

type of result: series



Counts
When designing an experiment, a good sanity check consists of 
looking at the number of observations (trials) per experimental 
condition to double check that we actually have the same number of 
observations per condition (i.e., our design is properly balanced). 

# make a copy of column Magnification and change its type from int to str 
magAsStr = data['Magnification'].copy().astype('str') 
# now that we have strings, we can concatenate them using function 'cat' 
data['Condition: Lens, Magnification'] = data['Lens'].str.cat(magAsStr, sep=", ") 
data



Counts
When designing an experiment, a good sanity check consists of 
looking at the number of observations (trials) per experimental 
condition to double check that we actually have the same number of 
observations per condition (i.e., our design is properly balanced). 

data.groupby('Participant').count()

Each participant 
completed 1200 tasks 
in each experimental 
condition



Function histogram from library plotly visualizes 
distributions. (https://plotly.com/python/histograms/) 

We can use it to visualize our counts:

Distribution 
nominal/ordinal variables

fig = px.histogram(data, x='Condition: Lens, Magnification', color='Participant') 
fig.show()

https://plotly.com/python/histograms/


Distribution 
nominal/ordinal variables

Function histogram from library plotly visualizes 
distributions. (https://plotly.com/python/histograms/) 

We can use it to visualize the distribution of PointingTime:
fig = px.histogram(data, x='PointingTime') 
fig.show()

https://plotly.com/python/histograms/


Distribution 
nominal/ordinal variables

We can add a box plot:
fig = px.histogram(data, x='PointingTime', marginal='box') 
fig.show()



Distribution 
nominal/ordinal variables

And even get a breakdown per group:
fig = px.histogram(data, x='PointingTime', color='Lens', marginal='box') 
fig.show() 

# If needed (e.g., for inclusion in a report), we can save the last plot as a PDF file 
fig.write_image('images/pointingtime_distribution_with_box_per_lens.pdf')



Distribution 
nominal/ordinal variables

We can also spread the histogram by using a logarithimc 
scale to better visualize what happens for low values 
where most observations lie in our case: 

fig = px.histogram(data, x='PointingTime', color='Lens', marginal='box', log_x=True) 
fig.show()



The correlation coefficient is a simple descriptive statistic 
that measures the strength of the linear relationship 
between two ratio (continuous) variables 

We use it to test if there is a relationship between two 
ratio variables. 

The linear regression analysis then identifies what this 
linear relationship is.

Correlation / Linear Regression 
ratio (continuous) variables



Correlation (r statistics)

The Pearson’s correlation coefficient, r, measures how 
linear a relationship between two ratio variables is 

Usually, X is a factor, Y is a measure  

r2 is interpreted as the proportion of the variability of Y that is 
associated with the variability of X 

1 - r2 is the residual variance (not explained)
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Correlation

Pearson’s correlation coefficient (r) tells how much 
one variable tends to change when the other one 
does 

r = 0, there is no relationship 
r > 0, there is a trend that one variable goes up  
as the other one goes up 
r < 0, there is a trend that one variable goes up  
as the other one goes down 

correlation is a measure of dependence 

correlation ≠ causality



Correlation with pingouin

Hypothesis: Pointing Time linearly goes up when Magnification 
factor goes up

correlation_table = pg.pairwise_corr(data['Magnification'], data['PointingTime']) 
correlation_table

import pingouin as pg

r2 = correlation_table['r'] * correlation_table['r'] 
r2

We observe a positive relationship between variables PointingTime 
and Magnification with r(12000) = 0.62 (r2=0.39).



Correlation and aggregation
It is also common practice to look at the correlation between two variables after 
having aggregated observations within experimental conditions. For example, we 
can consider only one mean PointingTime per LensxMagnification for each 
participant (i.e., aggregating replications). 

Aggregating removes variance and thus mechanically increases the correlation 
coefficient. There is no best solution between aggregating and not aggregating. 
What is important is to make it clear if data were aggregated or not by reporting 
the number of observations (n).

data_agg = data.groupby(['Participant', 'Lens', 'Magnification'], as_index=False)['PointingTime'].mean() 
correlation_table = pg.pairwise_corr(data_agg, columns=['Magnification','PointingTime']) 
correlation_table

After having aggregated observations per Participant x Lens x Magnification, we 
found r(250) = 0.78 (r2=0.61) so there is a positive relation between variables 
PointingTime and Magnification.

r2 = correlation_table['r'] * correlation_table['r'] 
r2



Linear regression

Computing linear regression means 
defining the regression line that best fits 
the bivariate distribution of data points  
(Makes the squared vertical distances 
between the data points and regression line 
as small as possible)
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Linear regression can be used as a predictive model 
when your experiment design is sound enough and the 
result of statistical tests is significant to support a cause-
effect relation 



Linear regression with pingouin

lm = pg.linear_regression(data_agg['Magnification'], data_agg['PointingTime']) 
lm

import pingouin as pg

After having aggregated observations per ParticipantxLensxMagnification, we 
found r(250) = 0.78 (r2=0.61) so there is a positive relation between variables 
PointingTime and Magnification. Predicted PointingTime in ms is equal to  
657 + 264 x Magnification. 

Final report:



Linear regression and visualization

Linear regression must be interpreted with caution 

Needs to be visualised

Famous example: Anscombe's quartet (above) 
same linear regression line but very different datasets…



Linear regression and visualization

fig = px.scatter( 
    data_agg, x='Magnification', y='PointingTime', opacity=0.65, 
    trendline='ols' 
) 
fig.show()


