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INnferential statistics

use a sample to describe the
whole population (with some
uncertainty)



Experiment & inferential statistics

data sample inferential statistics use
(e.g., times for completing a pointing task) the sample to provide

a description of the
> whole population that
can be trusted only

A\ 7
Experiment with a given probability

® one observation (e.g., time for completing a pointing task)
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L evel of statistical significance

Inferential statistics uses the probability theory

A test based on inferential statistics outputs a p value. This
p value provides an estimate of how often we would get
the obtained statistic by chance, if in fact the null
hypothesis were true.

How can we decide to reject a hypothesis? We decide on
a level of significance, i.e., the cutoff (a) before running the
test. We reject the null hypothesis when p < a.

Usually, the cutoff is set to 0.05 (as proposed by statistician Fisher)



Null Hypothesis Significance Test

State the null hypothesis based on your research hypothesis
(Ho: the factor does not impact the measure value)

Decide the level of statistical significance a (usually 0.05, i.e. 5%)

A Null Hypothesis Significance Test proceeds as follows:

- we know what the distribution of the value of a statistic (e.g., ¢, F, ...) () is when
the null hypothesis is true

- we compute this statistic for our sample of observations (e.g., t, F, ...) ()

- we use the known distribution to estimate the probability (p value) of observing
this statistic if the null hypothesis were true for our sample

- If this probability is very low (p < a) , we reject the null hypothesis (lbased on
the fact that there is very little chance to observe such a result it there was
actually no difference).

() the specific statistic to consider depends on the type of your measure, the
assumption about the distribution, and the type of design
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Null Hypothesis Significance Test

State the null hypothesis based on your research hypothesis
(Ho: the factor does not impact the measure value)

Decide the level of statistical significance a (usually 0.05, i.e. 5%)

A Null Hypothesis Signiticance Test proceeds as follows:

- we know what the distribution of the value of a statistic (e.g., r, t, F, ...)Ois
when the null hypothesis is true

t=-1.70 (LOS) B=+1.70 (.05)

the distribution of our
statistic (£ i that example)
Ehat we khow:

t=-2.05 (.025)0 £= +2.05 (.025)

In red: values for our statistic that we are unlikely to observe
i the null hypothesis is true (less than 8% of the cases if a = 0.08).

We decide to reject the null hypothesis in these cases (for example, if £ = 1.9).



Experiment that we use as an example

Pointing performance of different types of magnifying lenses

2 factors (5 x 5 design) - 10 participants
Lens type (5 levels):

:4 FL (Fisheye Lens) ; SCF, SCB,

= "X74 BL (Blending Lens)

g =
KL
AN ML (Manhattan Lens) ,

Lens’ magnification (5 levels): 2, 4, 6, 10, 14

\H
A1

Y\

Task e | target acquisition

\\
LAY

Measure Pointing time (in ms)



Experiment that we use as an example

Pointing performance of different types of magnitying lenses

2 factors (5 x 5 design) - 10 participants

2 Factors 1 Measure
Participant Block Trial Lens Magnification ID PointingTime
1 4 0 FL 6 6.0035549 2297
CO”eCted data 1 4 0 FL 6 6.0035549 1485
. ) 1 4 0 FL 6 6.0035549 2000
(log file 1lens experiment.csv) . o I le e 0035549 | 1643
1 4 0 FL 6 6.0035549 1813
Note: When we analyze
collected results, all logs o
are in a single file (# one
\ \ \ 10 2 9 SCF 6 6.0035549 2375
flle per part|C|pant) 10 2 9 SCF 6 6.0035549 2359
10 2 9 SCF 6 6.0035549 2313
10 2 9 SCF 6 6.0035549 2453
10 2 9 SCF 6 6.0035549 2187
10 2 9 SCF 6 6.0035549 2875
10 2 9 SCF 6 6.0035549 2688



INnferential statistics

Testing the effect of nominal
factor(s) on a continuous measure

{-test
danova



t-test (Student test)

When should we use a t-test?

When comparing two groups (i.e., when testing the effect of a nominal
factor that has two levels)

A t-test consists of computing the ¢ statistic (a function of the
difference between the two means), and watching where our
computed ¢ (tps In figure below) lies in the theoretical t-
distribution when the null hypothesis is true

If our computed ¢ is unlikely to
: el e happen (p<0.05) if there was no
t=-2.05 (.025)  t= 4205 (.029) difference between the two groups
(¢ lies in the tails of the theoretical
i distribution), we reject the null
-3 -2 -1 0 1 % 3 .
t hypothesis.

t= -1.70 (.05)




Theoretical t-distribution

A t-distribution shows the
probability of observing a given
t-value when the null
hypothesis is true

0.40

0.35
0.30
0.25

There are several t =
distributions. The particular 019
form of a t distribution Is 0.00=

determined by its degrees of
freedom (df)

x is the value of t-ratio



Paired vs. unpaired t-test

paired t-test (or "repeated measures’ t-test)

If the two groups are correlated. For example, participants
have been measured under the two technigue conditions

(within-subject design)

unpaired t-test

if the two groups are independent. For example, two groups of
participants have been measured under the two different
technigue conditions (between-subject design)

additional assumption for unpaired t-test:
the variances of the population of the two groups are equal



Degrees of freedom

Paired t-test
Size group 1 = size group 2 = size group
df = size group - 1
= number of participants - 1
Unpaired t-test
df = size group 1 + size group 2 - 2



t-test explained again

hitps://www.youtube.com/watch?v=5Dnw46eC-00



t-test and effect size

The t statistic allows you to tell if the

difference in means is S|gn|f|cart or not but
does not give the size of the difference

Two kinds of effect size metrics for a t-test
Cohen's d (paired and unpaired)

Pearson's r (unpaired only)

small size

medium size

large size

Cohen’s d

0.2

0.5

0.8

Pearson’s r

0.1

0.3

0.5




Effect size for a paired t-test

Cohen's d for a paired t test

1M
SD

where M I1s the mean of differences, and SD Is the
standard deviation of differences

It represents the difference in terms of standard
deviations (normalized)



Effect size for an unpaired t-test

Pearson's r for an unpaired t test

t2

\ t* +df

where t IS the value of the test (t-ratio), and
df 1s the number of degrees of freedom.

=




import pingouin as pg

t-test with pingouin

We believe that the more occlusion lenses cause, the higher the
pointing time. In particular, we make the following research
hypothesis:

H: Pointing Time is greater with ML lenses than with FL lenses.
Null hypothesis: Pointing Time is the same with ML and FL.

We are in the context of a within-subject design (paired groups),
we run a paired t-test using the pingouin library.



import pingouin as pg

t-test with pingouin

A paired t-test takes as input two vector of data points. There is one vector
per condition (in our case: *FL*and *ML*), and each vector contains the
mean measure value for each participant (in our case, 10 mean pointing
times as we have 10 participants):

data_f1l = data.query('Lens == "FL"")

data_f1l = data_fl.groupby('Participant', as_index=False) ['PointingTime"'].mean()
display(data_f1)

data_ml = data.query('Lens == "ML"")

data_ml = data_ml.groupby('Participant', as_index=False) ['PointingTime"'].mean()
display(data_ml)

Participant PointingTime Participant PointingTime

0 1 2234.900000 0 1 3091.016667
1 10 2349.350000 1 10 3899.479167
2 2 2401108333 2 3429.166667
3 3 2721108333 3 4932.154167
data_fl 4 4  2412.704167 data_ml 4 3533.025000
5 5 2171.679167 5 3261.845833
6 6 2359.762500 6 3284.375000
7 7 2586.983333 T 3277.541667
8 8 2482.025000 8 3205.920833
9 9 2278.516667 9 3071.362500



t-test with pingouin

We use function ttest from library pingouin

ttest = pg.ttest(data_fl['PointingTime'], data_ml['PointingTime'], paired=True)
ttest

T dof alternative p-val Cl95% cohen-d BF10 power
T-test -7.490894 9  two-sided 0.000037 [-1430.59, -766.96] 2.669193 664.76 1.0

The t value for our observations is -7.49. This value is very unlikely to happen if the null
hypothesis were true (p = 0.000037). We thus reject the null hypothesis : the difference
between the two groups is significant. Moreover, this difference is large (d=2.6)

mean_f1l = data_fl['PointingTime'].mean()
mean_ml = data_ml['PointingTime"'].mean()

print('Mean pointing time for Lens=FL: ', mean_f1l)
print('Mean pointing time for Lens=ML: ', mean_ml)

Mean pointing time for Lens=FL: 2399.8137500000003
Mean pointing time for Lens=ML: 3498.5887500000003

Final report:

We found a significant effect of factor Lens on PointingTime (#9) = -7.5,p <

0.001, Cohen's d=2.6), with lens FL (2399ms on average) outperforming lens ML
(3498ms on average).



import pingouiln as pg

t-test with pingouin

T dof alternative p-val Cl95% cohen-d BF10 power
T-test -7.490894 9 two-sided 0.000037 [-1430.59, -766.96] 2.669193 664.76 1.0

t df

1% ™\

Cohen's d

Mean pointing tip€ for Lens=FL: 2399.81373500000003
Mean pointing ¥Ame for Lens=ML: 3498.5837500000003

Final Yeport:

We/found a significant effect of factor Lens on PointingTime (#(9) = -7.5,p <

0.001, Cohen's d=2.6), with lens FL (2399ms on average) outperforming lens ML
(3498ms on average).



Analysis of Variance (anova)

When should we use an anova?

When comparing more than two groups (i.e., when testing the effect of a

nominal factor that has three levels or more, or when testing the effect of more
than one factor)

An anova test consists of computing the F statistic (a function of
the difference between the means), and watching where our
computed F lies in the theoretical F-distribution when the null
hypothesis is true (i.e., no difference between any pair of groups)



ANOVA test

ANOVA generalizes the t-test to an arbitrary number
of groups

Making Student tests between pairs of groups does not give correct
results as it increases the chance of making a Type | error

Group 1 = Group 2 (95% confidence)
Group 1 = Group 3 (95% confidence)
=> Group 1 = Groups 2 and 3 (90% confidence)

24



ANOVA and df (degrees of freedom)

The F statistic is a function of how much of the
total observed variance is due to the variance
between groups (/.e., ANOVA separates the
internal variability in each group and the
variability between groups)

R dfbg — k'l
L4
a measure of the aggregate differences k
Msbg among the means of the k groups
F = =
Mswg a measure of the amount of random

variability that exists inside the k groups ¥~

"~ dfwg = size group - k
A H

group means are set

aISO Ca.”ed dferror Or dfresiduals
25



ANOVA and effect size

The F statistic allows you to tell if there is at least

one pair of groups that signiticantly differs but it
says how large the difference is

Effect size for an anova is computed with 772(eta squared)

772 _ SSeffect
SStOtal

where SS.4.: 1S the sum of square for the tactor and
SSiorar 1S the total sum of square

small size medium size large size

eta squared 0.01 0.06 0.14




ANOVA test

he computation of F depends on your design

If the groups are paired (e.g., a within-subject design),
use a repeated measures ANOVA test

One-way ANOVA

analyze one factor

n-way ANOVA

analyze two or more factors




import pingouin as pg

One-way anova-test with pingouin

Five different lenses:

I :,';.L-g‘}t,ctu e
), e
et Carsica gl vanidha

We believe that, because of their different design properties, their
pointing time ditfers.

H: Pointing Time differs depending on the type of Lens used.

Null hypothesis: Pointing Time is the same regardless of the Lens
used.

We test one factor (Lens) in the context of a within-subject design
(paired groups), we run a repeated measures anova test using the

pingouin library.



One-way anova-test with pingouin

We use function rm anova from library pingouin

aovrmlway = pg.rm_anova(data=data, dv='PointingTime', within='Lens', subject='Participant')

aovrmlway
Source ddof1 ddof2 F p-unc p-GG-corr ng2 eps sphericity W-spher p-spher
0 Lens 4 36 62.408495 1.077454e-15 0.000001 0.794287 0.337259 False 0.004401 0.0000M

The F value for our observations is 62. This value is very unlikely to happen if the null
hypothesis were true (p = 1.077454e-15). We thus reject the null hypothesis : the
difference at least two groups is significant. Moreover, this difference is large (n2=0.79)

Final report:

We found a significant effect of factor Lens on PointingTime (F(4,36) = 62, p <
0.001, n*=0.79).

+ chart (cf. next slides)



import pingouin as pg

One-way anova-test with pingouin

Source ddof1 ddof2 F p-unc p-GG-corr ng2 eps sphericity W-spher p-spher
0 Lens 4 36 62.408495 1.077454e-15 0.000001 0.794287 0.337259 False 0.004401 0.0000M

Final report:

We ftound a significant effect of factor Lens on PointingTime (F(4,36) = 62, p <
0.001, n*=0.79).

+ pairwise comparisons and charts for identifying and visualizing where these
differences are (cf. next slides)



Post-noc tests

ANOVA says that there are significant effects

BUT does not say which group signiticantly differs from
which other group

Post-hoc tests are used to find where the differences
between groups are

The most common post hoc tests used in HCI are the
Tukey’s test and the multiple pairwise t-test

(with potentially some correction method like Holm or
Bonferroni)

31



Post-noc tests with pingouin

We use function pairwise tests from library pingouin

posthoc = pg.pairwise_tests(data=data, dv='PointingTime', within=['Lens'], subject='Participant’,
parametric=True, padjust='fdr_bh', effsize='hedges')

posthoc
Contrast A B Paired Parametric T dof alternative p-unc p-corr p-adjust BF10 hedges
0 Lens BL FL True True 4345090 9.0 two-sided 1.863562e-03 2.070625e-03 fdr_bh 24.371 1.552562
1 lens BL ML  True True -5.614069 9.0  two-sided 3.283107e-04 4.103884e-04  fdr_bh 104.046 -1.936085
2 lens BL SCB  True True 31577207 9.0  two-sided 1572325e-10 1.572325e-09  fdr_bh 3.503e+07  5.194532
3 Lens BL SCF  True True 6595215 9.0  two-sided 9.982369e-05 1.426053e-04  fdr_bh 285.907 1777954
4 lens FL ML  True True -7.490894 9.0  two-sided 3.728208e-05 7.456416e-05  fdr_bh 664.76 -2.556411 p =0.53 ( > 0. 05)
5 lens FL SCB  True True  9.341874 9.0  two-sided 6.287323e-06 1.571831e-05  fdr_bh  3096.594 3.432268 :
6 lens FL SCF  True True  0.645461 9.0  two-sided : - : => the difference
7 lens ML SCB  True True 9851450 9.0 two-sided 4.052381e-06 1.350794e-05  fdr_bh 4536747 3.832725 between FL and SCF is
8 Lens ML SCF  True True 6786651 9.0  two-sided 8.025315e-05 1.337553e-04  fdr_bh  344.493 2647644 not s | g N If I cant
9 Lens SCB SCF  True True -11.895149 9.0  two-sided 8.297272e-07 4.148636e-06  fdr_bh 1.812e+04 -3.151003

Each line presents the comparison between a pair of groups. A low p-value (p-corr) indicates that groups in the
pair significantly differ. We can see here that all p-values are low (<0.05) except for the pair (FL, SCF). So all pairs
significantly differ, except (FL, SCF).

Final report:
We found a significant effect of factor Lens on PointingTime (F(4,36) = 62, p <
0.001, n*=0.79). All pairs of lenses significantly differ (all p's < 0.05), except FL
and SCF (p = 0.5).
+ chart for identifying and visualizing where these differences are (cf. next
slide)



Visualizing descriptive stats for

the groups that we compare

import plotly.express as px

We compute some descriptive stats for visualizing our
dataset (function summarizeDF is provided in the

notebook example on the website)

import math

def summarizeDF(df, factors, measure):

stats = summarizeDF(data,

[ec

.1

return summary

stats
Lens
0 BL
1 FL
2 ML
3 SCB
4 SCF

Mean
2666.405417
2399.813750
3498.588750
1881.055417
2359.847083

Count
2400
2400
2400
2400
2400

['Lens'],

Std
1400.267213
1266.792679
3156.100429

658.170719
1162.838646

'PointingTime")

ci95_hi
2722.426743
2450.495081
3624.856745
1907.387246
2406.369464

ci95_lo
2610.384090
2349.132419
3372.320755
1854.723588
2313.324703

errory_hi
56.021327
50.681331
126.267995
26.331829
46.522380

errory_lo
56.021327
50.681331
126.267995
26.331829
46.522380



Visualizing descriptive stats for
the groups that we compare

We use function bar from library plotly.express to

produce a bar chart depicting the different groups

nice_color_palette = ['#66c2a5', '#fc8d62', '#8dalOcb', '#e78ac3', '#a6d854']

fig = px.bar(stats, x='Lens', y='Mean', error_y="errory_hi", error_y_minus="errory_lo", color='Lens',

color_discrete_sequence=nice_color_palette)

fig.update_layout({

'plot_bgcolor' : 'rgba(0,0,0,0)'

)

fig.update_yaxes(showgrid=True, gridwidth=1, gridcolor='LightGray"')

fig.show()
3500 I
3000

I

2500 I

2000
1500

1000

See documentation for customizing your chart
https://plotly.com/python/bar-charts/

500

SCB

SCF

import plotly.express as px

BL
FL

SCB
SCF


https://plotly.com/python/bar-charts/

Visualizing descriptive stats for
the groups that we compare

nice_color_palette = ['#66c2a5', '#fc8d62', '#8dalOcb', '#e78ac3', '#a6d854']

E1!Illlllllllllllllllllllli ll lI Il Il II Il Il II Il ||IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII ]IIIIIIIIIIIIIII|I
= _ _ tte

fig

fig.

})
fig.

fig.

= px.bar(stats
color_discrete_seq

update_layout ({
'plot_bgcolor' : 'rgba(0,0,0,0)'

update_yaxes(showgrid=True, gridwidth=1, gridcolor='LightGray"')

show()

Mean

3500

3000

2500

2000

1500

1000

500

import plotly.express as px

(%]

BL
FL
ML
SCB
SCF

)
EEEENRS

ML SCB SCF

Lens



Confidence Intervals

Error bars on bar charts usually represent Confidence Intervals (Cl). A Clis a
range of plausible values for the population mean, calculated from a sample

e.g., a Cl with a 95% confidence level has a 95% chance of capturing the sample mean
population mean. (This also means that our confidence interval might not /
include the population mean...) ) e—

N

plausible values for the population mean

A confidence interval is a function of the Standard Error of the mean (SE), i.e.,
the estimate of the standard deviation that would be obtained from the means
of a large number of samples drawn from that population

’ ' Lens
3500 H I : BL

3
¥ . FL
. et ML
3000 e \ .
! ' o=~ T SCB
[} L4
v Iy b S N SCF
2500 '8 ' T '
.. “ L] ] I
- l‘ ‘ \ . ’
' A\ S
§ 2000 et ' L Sa.
[J] ==
[
= . 5
1500 -

1000

500

A -] C D 3

BL FL ML SCB SCF source: http://www.theusrus.de/blog/happy-holidays/

Lens


http://www.theusrus.de/blog/happy-holidays/

Two-way anova-test

A two-way anova test analyzes the effect of two factors at the
same time.

Why analyzing the effect of more than one tactor at the same
time”

Because of possible interaction effects



Interaction effect: a simple example

measure factor 1 factor 2

Satisfaction = Food x Condiment

—Xperiment: ask participants *
you appreciate condiment X o

How much do

n food Y?"

Satisfaction B Chocolate sauce

A

‘It depends on the
type of food!”

interaction effect between
food and condiment

Mustard

l -  Food

lce cream  Hot dog

from http://statisticsbyjim.com/regression/interaction-effects/
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Simple and Interaction effects:

many possible situations

6
4
2
0 I
Lens1 Lens2
Lens Zoom

Lensl 1.0 Low

3.0
Lens2 5.0 High 3.0

Effect of Lens: YES
Effect of Zoom: NO
Interaction: NO

o N B O

Lens1 Lens2

Lens Zoom
Lensl 2.0 Low

3.0
Lens2 4.0 High 3.0

Effect of Lens: YES
Effect of Zoom: NO
Interaction: YES

Lens1 Lens2

Lens Zoom
Lensl 3.0 Low 1.
Lens2 3.0 High 5.

0
0
Effect of Lens: NO
Effect of Zoom: YES
Interaction: NO

Lens1 Lens2

Lens Zoom
Lensl 3.0 Low 2.
Lens2 3.0 High 4.

0
0
Effect of Lens; NO
Effect of Zoom: YES
Interaction: YES

Lens1 Lens2

Lens Zoom
Lensl 1.5 Low 2.
Lens2 4.5 High 3.

5
5

Effect of Lens; YES
Fffect of Zoom: YES
Interaction: NO

Lens1 Lens2

Lens Zoom
Lensl 1.0 Low 1.0
Lens2 3.0 High 3.0

Effect of Lens: YES
Effect of Zoom: YES
Interaction: YES

/o0m

Low
I I B High
Lens1 Lens2

Lens Zoom
Lensl 3.0 Low

3.0
Lens2 3.0 High 3.0

Effect of Lens; NO
Effect of Zoom: NO
Interaction: NO

oom
Low

] B High
Lens1 Lens2

Lens Zoom
Lensl 3.0 Low 3.0
Lens2 3.0 High 3.0

Effect of Lens; NO
Effect of Zoom: NO
Interaction: YES



Two-way anova-test with pingouin

We use function rm anova from library pingouin

aovrm2way = pg.rm_anova(data=data, dv='PointingTime', within=['Lens', 'Magnification'], subject='Participant')
aovrm2way

Source SS ddofl ddof2 MS F p-unc p-GG-corr ng2 eps
0 Lens 7.094755e+07 4 36 1.773689e+07 62.408495 1.077454e-15 1.464553e-06 0.685343 0.337259
1 Magnification 3.302858e+08 4 36 8.257145e+07 ©666.205094 3.309458e-33 6.874744e-14 0.910230 0.381525
2 Lens * Magnification 9.525647e+07 16 144 5.953529e+06 88.046197 6.510507e-66 6.160824e-09 0.745180 0.108297

We get a table with both simple and interaction effects. One line per effect where we can
read all relevant information (degrees of freedom, p-value, F, effect size n?)

Final report:

An ANOVA test revealed a significant effect of Lens on PointingTime (F(4,36) =
62, p < 0.001,n2=0.68), a significant effect of Magnification on PointingTime
(F(4,36) = 666, p < 0.001,n2=0.91), as well as a significant Lens x Magnification
interaction effect (F(16,144) = 88, p < 0.001, n2=0.74).

+ post-hoc tests (see notebook) and charts (cf. next slides)



import plotly.express as px

Visualizing descriptive stats for
the groups that we compare

We use function bar from library plotly.express to
produce a bar chart depicting the different groups

nice_color_palette = ['#fleef6', '#bdc9el', '#74a9cf', '#2b8cbe', '#045a8d']
stats['Magnification'] = stats['Magnification'].astype('str"')

fig = px.bar(stats, x='Lens', y='Mean', error_y="errory_hi", error_y_minus="errory_1lo", color='Magnification', barmode='group',
color_discrete_sequence=nice_color_palette)

fig.update_layout({
'plot_bgcolor' : 'rgba(0,0,0,0)'
})

fig.update_yaxes(showgrid=True, gridwidth=1, gridcolor='LightGray"')

fig.show()

8000 _
Magnification
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4

6
B 10
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7000
6000

5000

4000
3000
I
= T
=
2000 = - .
- == -
- = -
1000 =
0
BL FL ML SCB SCF
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INnferential statistics

An alternative to null-hypothesis
reasoning: confidence intervals



The null hypothesis reasoning: critics

Dichotomy regarding how to accept or reject the null hypothesis on an
arbitrary cut-off can be criticized (and actually is criticized)

o = 0.051 => reject, p = 0.049 => accept, mmm...

Some analysts prefer to focus on confidence intervals regarding the
difference in means to look at their data and make more nuanced

conclusions.
Comparisons between Pairs of Conditions: The confidence interval for the
------ . difference between these two
BL-SCF o e B il <> . .
------ ’ conditions is close to O
ML-SCF —_—— )
=> some (weak) evidence
ML-BL S |
§ SCB-SCF i
% SCB-BL ke . .
S The confidence interval for the
S SCB-ML S S | .
2 e , difference between these two
- - £ (R M ditions includes 0
The confidence interval for el . Con, ! s
e bl e => inconclusive
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Confidence Intervals of the Mean
Difference between two conditions

See section Confidence Intervals of the Mean Difference
between two conditions in notebook to get details about
how to produce such a chart
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INnferential statistics

Non-parametric tests



Reminder

Parametric and non-parametric statistics

assumption about the data
distribution for the population
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Reminder

Experiment &
parametric statistics

whole population

eting a pointing task

parametric statistics
assumes that the data

data sample sample comes from a
population that follows a
R R @ probability distribution
S | based on a fixed set of
Experiment parameters

(for example, a normal
distribution)
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Parametric tests and the normal
distribution

t-test, ANOVA test, Post-hoc tests

They all test the effect of nominal tactors on a
continuous measure. The assumption Is that the
continuous measure follows a normal distribution

Normal distribution: The "bell curve" (vean = Median = Mode)
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This graphics uses the standard deviation to scale the distribution:

one unit on the x-axis is equal to one standard deviation.



Reminder

Parametric and non-parametric statistics

no assumption about the data
distribution for the'population

49



Reminder

Experiment &
non-parametric statistics

Stro gly Neutral Disagree Strongly ISistri | answers to a Likert scale
disa

opulation

data sample
we assume nothing
" about the population
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Non-parametric: when??

In many cases, you can assume the normality for the population
and use parametric tests

When should you go for non-parametric then”
Case 1: If the type of measure is not ratio (continuous),

Example: results from Likert-scale questions

Case 2: An assumption of a parametric test is violated

largely unbalanced data (number of observations largely varies among groups), non
normal distribution, ...

Note that many parametric tests remain fairly robust against the
non-normality assumption so Case 1 is the most common.




Chi-square test

When should we use a Chi-square test?

When comparing two groups with regard to a categorical
(nominal measure)

Example: We want to test whether young and old people differ in the
system they use. We have one factor age (i.e., two groups {young, old})
and the measure is the answer to question “which system do you use”?”

We organize observations into a contingency table (count of answers per
category)

windows

mac

linux

young

|6

old

21




Chi-square test

2
It computes the staztistics X (and watches where it lies
in the theoretical X distribution)

Effect size (Qor Cramer's V):

2
R
\N(k—-1)
where N is the number of observation

and k is the smallest number of rows r or of columns c

It groups are paired (i.e., the factor is tested according
to a within-subject design), use a McNemar’s test



Friedman test

When should we use a Friedman test?

When comparing more than two groups with regard to an
ordinal measure

This is a case that typically occurs when we collect qualitative appreciations using
Likert scales. For example, we want to test whether people find some lenses easier
to use than others. We have one factor Lens (i.e., five groups for five types of lens
that we had in our experiment) and we ask participants:

How much do you agree (from -2 to 2) with the following statement:
This Lens is easy to use
(-2: Strongly Disagree, -1: Disagree, O: Neutral, 1: Agree, 2: Strongly Agree)

We want to compare five groups (the five lenses) with regard to their score on ease
of use (ordinal measure).



import pingouin as pg

Firedman test with pingouin

Five different lenses:

fom .
), e
- Carsica g8} vanidh

We believe that, because of their different design properties, users will
give different scores for ease of use.

H: User scores differ depending on the type of Lens.
Null hypothesis: User scores are the same regardless of Lens.

We test one nominal factor (Lens) according to a within-subject design
(paired groups) on an ordinal measure (score), we thus run a
Friedman test using the pingouin library.



import pingouin as pg

Firedman test with pingouin

The Friedman test works with a wide-format dataframe where there is one
column per factor level. Each line contains the measure value for each of
the factor level. (In a long-format dataframe, there are columns for
participant, factor(s), and measure and each line is a trial that contains the
value for all these columns).

data_likert_full = pd.read_csv('lens_experiment/easy_scores.csv', sep=';")
data_likert_full

Participant Easy ML Easy_FL Easy_BL Easy SCF Easy _SCB Unnamed:6
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Factor Lens has 5 levels:
(ML, FL, BL, SCF, SCB}



import pingouiln as pg

Firedman test with pingouin

data_likert_full.drop('Unnamed: 6',axis = 1) ML
data_likert.drop('Participant',axis = 1)

data_likert
data_likert

m
-

BL SCF SCB

data_likert = data_likert.rename(columns={'Easy ML': 'ML', 'Easy FL': R 1 0
'FL', 'Easy BL': 'BL', 'Easy SCF': 'SCF', 'Easy SCB': 'SCB'}) T -1 -2 0 1 1
data_likert 2 -2 -1 0 0 1
3 -1 0 -1 1 2

4 -2 -2 -1 1 0

5 -2 0 0 1 2

6 -1 -2 -2 0 0

7 -2 0 0 1 2

pg.friedman(data_likert) : 1 2 (: i ;

Source W ddof1 Q p-unc
Friedman  Within 0.803763 4 32150538 0.000002

Final report:

We found a significant effect of factor Lens on Easy scores (Q(4) = 32, p <
0.001).

a0

+ post-hoc tests
+ chart (see notebook)

; " -
! _ |
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Cumulative percontage



INnferential statistics

Choosing the right test



Which test when?

his class does not cover all possible statistical tests
In order to choose the right test, consider:

the experiment design:
within-subject / between-subject

the type of your variables:

number and types of independent variables (factors) and
type of dependent variable (measure)
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A decision tree to help choose the right statistical test

Is my measure of
type ratio?

How many factors
do | have?

Non-parametric

Are my factors tested with a
within-subject design (i.e. are
my groups paired)?

How many levels does
my factor have?

n-way repeated
measures ANOVA

n-way ANOVA

Is my factor tested
with a within-subject
design (i.e. are my
groups paired)?

Is my factor tested
with a within-subject
design (i.e. are my
groups paired)?

NO YES

One-way repeated

t-test paired t-test One-way ANOVA measures ANOVA




A decision tree to help choose the right statistical test

Non-parametric

Number

of groups?

TWO THREE OR MORE N
Paired? Paired?
(repeated measures) (repeated measures)
YES NO YE

Kruskal-Wallis

kruskal()

Binary measure?
(Oor1)

Binary measure?
(Oor1i)

Binary measure?
(Oor1)

Post-hoc tests

Mc Nemar Wilcoxon signed-rank
chiZ mcnemar ()

wv pairwise_ttests(
' parametric=False)
Chi-square Mann-Whitney AR Friedman

chi? independence () -
—HEEETEeEEEe mwu () cochran() friedman()

wilcoxon()

Adapted from:
https://www.fabriziomusacchio.com/teaching/python_course neuropractical/01_statistical_data_analysis_with_pandas_and_pingouin



https://www.fabriziomusacchio.com/teaching/python_course_neuropractical/01_statistical_data_analysis_with_pandas_and_pingouin

