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Inferential statistics 
use a sample to describe the 
whole population (with some 
uncertainty)
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Experiment

inferential statistics use 
the sample to provide 
a description of the 

whole population that 
can be trusted only 

with a given probability

whole population

one observation (e.g., time for completing a pointing task)

data sample 
(e.g., times for completing a pointing task)

Experiment & inferential statistics



Level of statistical significance

Inferential statistics uses the probability theory 

A test based on inferential statistics outputs a p value. This 
p value provides an estimate of how often we would get 
the obtained statistic by chance, if in fact the null 
hypothesis were true. 

How can we decide to reject a hypothesis? We decide on 
a level of significance, i.e., the cutoff (α) before running the 
test. We reject the null hypothesis when p < α. 

Usually, the cutoff is set to 0.05 (as proposed by statistician Fisher) 
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Null Hypothesis Significance Test
State the null hypothesis based on your research hypothesis  
(H0: the factor does not impact the measure value) 

Decide the level of statistical significance α (usually 0.05, i.e. 5%) 

A Null Hypothesis Significance Test proceeds as follows:  

- we know what the distribution of the value of a statistic (e.g., t, F, ...) (*) is when 
the null hypothesis is true 
- we compute this statistic for our sample of observations (e.g., t, F, ...) (*)  
- we use the known distribution to estimate the probability (p value) of observing 
this statistic if the null hypothesis were true for our sample 
- If this probability is very low (p < α) , we reject the null hypothesis (based on 
the fact that there is very little chance to observe such a result if there was 
actually no difference).
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(*) the specific statistic to consider depends on the type of your measure, the 
assumption about the distribution, and the type of design
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Null Hypothesis Significance Test
State the null hypothesis based on your research hypothesis  
(H0: the factor does not impact the measure value) 

Decide the level of statistical significance α (usually 0.05, i.e. 5%) 

A Null Hypothesis Significance Test proceeds as follows:  

- we know what the distribution of the value of a statistic (e.g., r, t, F, ...) (*) is 
when the null hypothesis is true 
- we compute this statistic for our sample of observations (e.g., t, F, ...) (*)  
- we use the known distribution to estimate the probability (p value) of observing 
this statistic if the null hypothesis were true for our sample 
- If this probability is very low (p < α) , we reject the null hypothesis (based on 
the fact that there is very little chance to observe such a result if there was 
actually no difference).

(*) the specific statistic to consider depends on the type of your measure, the 
assumption about the distribution, and the type of design

In red: values for our statistic that we are unlikely to observe  
if the null hypothesis is true (less than 5% of the cases if α = 0.05). 

We decide to reject the null hypothesis in these cases (for example, if t = 1.9). 

the distribution of our 
statistic (t in that example) 

that we know:



Experiment that we use as an example 
Pointing performance of different types of magnifying lenses
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Task 

ML (Manhattan Lens) FL (Fisheye Lens)

Lens type (5 levels):
BL (Blending Lens)

2 factors (5 x 5 design) - 10 participants

Pointing time (in ms)Measure

Lens’ magnification (5 levels): 2, 4, 6, 10, 14

target acquisition 

, , SCF SCB, ,



2 factors (5 x 5 design) - 10 participants

…

Collected data 
(log file lens_experiment.csv)

2 Factors 1 Measure

Note: When we analyze 
collected results, all logs 
are in a single file (  one 
file per participant)

≠

Experiment that we use as an example 
Pointing performance of different types of magnifying lenses



Testing the effect of nominal 
factor(s) on a continuous measure

t-test 
anova

Inferential statistics 



t-test (Student test)
When should we use a t-test?  

When comparing two groups (i.e., when testing the effect of a nominal 
factor that has two levels) 

A t-test consists of computing the t statistic (a function of the 
difference between the two means), and watching where our 
computed t (tobs in figure below) lies in the theoretical t-
distribution when the null hypothesis is true 
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If our computed t is unlikely to 
happen (p<0.05) if there was no 
difference between the two groups 
(t lies in the tails of the theoretical 
distribution), we reject the null 
hypothesis.



Theoretical t-distribution

A t-distribution shows the 
probability of observing a given 
t-value when the null 
hypothesis is true 

There are several t 
distributions. The particular 
form of a t distribution is 
determined by its degrees of 
freedom (df)

x is the value of t-ratio



Paired vs. unpaired t-test

paired t-test (or "repeated measures" t-test)  
if the two groups are correlated. For example, participants 
have been measured under the two technique conditions 
(within-subject design)  

unpaired t-test  
if the two groups are independent. For example, two groups of 
participants have been measured under the two different 
technique conditions (between-subject design) 

additional assumption for unpaired t-test:  
the variances of the population of the two groups are equal
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Degrees of freedom

Paired t-test 
size group 1 = size group 2 = size group 

df = size group - 1 

    = number of participants - 1 

Unpaired t-test 
df = size group 1 + size group 2 - 2
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t-test explained again

Explain that if we were picking two random 
samples in a population where the null hypothesis 
is true (i.e., no diff between the two samples), we 
would get a t-value. 

Doing this picking operation many times allows us 
to get the theoretical distribution of this t-value 

Then, if, for the samples that we consider (our two 
experimental groups), we observe a t-value that is 
unlikely (tails of the distribution), we can reject the 
null hypotheis (with a given level of confidice as 
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https://www.youtube.com/watch?v=5Dnw46eC-0o



t-test and effect size

The t statistic allows you to tell if the 
difference in means is significant or not but 
does not give the size of the difference 
Two kinds of effect size metrics for a t-test 

Cohen's d (paired and unpaired) 

Pearson's r (unpaired only) 
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small size medium size large size

Cohen’s d 0.2 0.5 0.8

Pearson’s r 0.1 0.3 0.5



Effect size for a paired t-test

Cohen's d for a paired t test 

where M is the mean of differences, and SD is the 
standard deviation of differences 

It represents the difference in terms of standard 
deviations (normalized)
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d = M
SD



Effect size for an unpaired t-test

Pearson's r for an unpaired t test 

where t is the value of the test (t-ratio), and 
df is the number of degrees of freedom.
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r = t 2

t 2 + df



t-test with pingouin

We believe that the more occlusion lenses cause, the higher the 
pointing time. In particular, we make the following research 
hypothesis: 

H: Pointing Time is greater with ML lenses than with FL lenses. 

Null hypothesis: Pointing Time is the same with ML and FL. 

We are in the context of a within-subject design (paired groups), 
we run a paired t-test using the pingouin library.

import pingouin as pg

ML (Manhattan Lens) FL (Fisheye Lens)vs



t-test with pingouin

A paired t-test takes as input two vector of data points. There is one vector 
per condition (in our case: *FL* and *ML*), and each vector contains the 
mean measure value for each participant (in our case, 10 mean pointing 
times as we have 10 participants): 

import pingouin as pg

data_fl = data.query('Lens == "FL"') 
data_fl = data_fl.groupby('Participant', as_index=False)['PointingTime'].mean() 
display(data_fl) 
data_ml = data.query('Lens == "ML"') 
data_ml = data_ml.groupby('Participant', as_index=False)['PointingTime'].mean() 
display(data_ml)

data_fl data_ml



t-test with pingouin
We use function ttest from library pingouin

import pingouin as pg

ttest = pg.ttest(data_fl['PointingTime'], data_ml['PointingTime'], paired=True) 
ttest

The t value for our observations is -7.49. This value is very unlikely to happen if the null 
hypothesis were true (p = 0.000037). We thus reject the null hypothesis : the difference 
between the two groups is significant. Moreover, this difference is large (d=2.6)

We found a significant effect of factor Lens on PointingTime (t(9) = -7.5, p < 
0.001, Cohen's d=2.6), with lens FL (2399ms on average) outperforming lens ML 
(3498ms on average).

Final report:

mean_fl = data_fl['PointingTime'].mean() 
mean_ml = data_ml['PointingTime'].mean() 
print('Mean pointing time for Lens=FL: ', mean_fl) 
print('Mean pointing time for Lens=ML: ', mean_ml)



t-test with pingouin
import pingouin as pg

We found a significant effect of factor Lens on PointingTime (t(9) = -7.5, p < 
0.001, Cohen's d=2.6), with lens FL (2399ms on average) outperforming lens ML 
(3498ms on average).

Final report:

dft

p
Cohen's d



Analysis of Variance (anova)
When should we use an anova?  

When comparing more than two groups (i.e., when testing the effect of a 
nominal factor that has three levels or more, or when testing the effect of more 
than one factor) 

An anova test consists of computing the F statistic (a function of 
the difference between the means), and watching where our 
computed F lies in the theoretical F-distribution when the null 
hypothesis is true (i.e., no difference between any pair of groups)



ANOVA test

ANOVA generalizes the t-test to an arbitrary number 
of groups 

Making Student tests between pairs of groups does not give correct 
results as it increases the chance of making a Type I error 

Group 1 ≠ Group 2 (95% confidence) 
Group 1 ≠ Group 3 (95% confidence) 
=> Group 1 ≠ Groups 2 and 3 (90% confidence)
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ANOVA and df (degrees of freedom)
The F statistic is a function of how much of the 
total observed variance is due to the variance 
between groups (i.e., ANOVA separates the 
internal variability in each group and the 
variability between groups) 
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dfbg = k-1

dfwg = size group - k

group means are set

also called dferror or dfresiduals



ANOVA and effect size

Effect size for an anova is computed with    (eta squared) 

where SSeffect is the sum of square for the factor and 
SStotal is the total sum of square

⌘2 =
SSeffect

SStotal

small size medium size large size

eta squared 0.01 0.06 0.14

The F statistic allows you to tell if there is at least 
one pair of groups that significantly differs but it 
says how large the difference is

⌘2 =
SSeffect

SStotal



ANOVA test

The computation of F depends on your design 
If the groups are paired (e.g., a within-subject design), 
use a repeated measures ANOVA test 

One-way ANOVA 
analyze one factor 

n-way ANOVA 
analyze two or more factors



One-way anova-test with pingouin

We believe that, because of their different design properties, their 
pointing time differs. 

H: Pointing Time differs depending on the type of Lens used. 

Null hypothesis: Pointing Time is the same regardless of the Lens 
used. 

We test one factor (Lens) in the context of a within-subject design 
(paired groups), we run a repeated measures anova test using the 
pingouin library.

import pingouin as pg

ML (Manhattan Lens) FL (Fisheye Lens)
BL (Blending Lens), , SCF SCB, ,

Five different lenses:



We use function rm_anova from library pingouin

import pingouin as pg

aovrm1way = pg.rm_anova(data=data, dv='PointingTime', within='Lens', subject='Participant') 
aovrm1way

The F value for our observations is 62. This value is very unlikely to happen if the null 
hypothesis were true (p = 1.077454e-15). We thus reject the null hypothesis : the 
difference at least two groups is significant. Moreover, this difference is large ( =0.79)η2

We found a significant effect of factor Lens on PointingTime (F(4,36) = 62, p < 
0.001, =0.79).η2

Final report:

+ chart (cf. next slides)

One-way anova-test with pingouin



import pingouin as pg

We found a significant effect of factor Lens on PointingTime (F(4,36) = 62, p < 
0.001, =0.79).η2

Final report:

+ pairwise comparisons and charts for identifying and visualizing where these 
differences are (cf. next slides)

df Fp
η2

One-way anova-test with pingouin



Post-hoc tests

ANOVA says that there are significant effects 

BUT does not say which group significantly differs from 
which other group 

Post-hoc tests are used to find where the differences 
between groups are 

The most common post hoc tests used in HCI are the 
Tukey’s test and the multiple pairwise t-test  
(with potentially some correction method like Holm or 
Bonferroni)
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Final report:

We use function pairwise_tests from library pingouin

import pingouin as pg

posthoc = pg.pairwise_tests(data=data, dv='PointingTime', within=['Lens'], subject='Participant', 
parametric=True, padjust='fdr_bh', effsize='hedges') 
posthoc

Post-hoc tests with pingouin

Each line presents the comparison between a pair of groups. A low p-value (p-corr) indicates that groups in the 
pair significantly differ. We can see here that all p-values are low (<0.05) except for the pair (FL, SCF). So all pairs 
significantly differ, except (FL, SCF).

We found a significant effect of factor Lens on PointingTime (F(4,36) = 62, p < 
0.001, =0.79). All pairs of lenses significantly differ (all p's < 0.05), except FL 
and SCF (p = 0.5).

η2

+ chart for identifying and visualizing where these differences are (cf. next 
slide)

p=0.53 (> 0.05) 
=> the difference 

between FL and SCF is 
not significant



We compute some descriptive stats for visualizing our 
dataset (function summarizeDF is provided in the 
notebook example on the website)

import plotly.express as pxVisualizing descriptive stats for 
the groups that we compare

import math 

def summarizeDF(df, factors, measure): 
    [...] 
    return summary 

stats = summarizeDF(data, ['Lens'], 'PointingTime') 
stats



We use function bar from library plotly.express to 
produce a bar chart depicting the different groups 

import plotly.express as pxVisualizing descriptive stats for 
the groups that we compare

nice_color_palette = ['#66c2a5', '#fc8d62', '#8da0cb', '#e78ac3', '#a6d854'] 

fig = px.bar(stats, x='Lens', y='Mean', error_y="errory_hi", error_y_minus="errory_lo", color='Lens', 
color_discrete_sequence=nice_color_palette) 

fig.update_layout({ 
    'plot_bgcolor' : 'rgba(0,0,0,0)' 
}) 
fig.update_yaxes(showgrid=True, gridwidth=1, gridcolor='LightGray') 

fig.show() 

See documentation for customizing your chart 
https://plotly.com/python/bar-charts/

https://plotly.com/python/bar-charts/


nice_color_palette = ['#66c2a5', '#fc8d62', '#8da0cb', '#e78ac3', '#a6d854'] 

fig = px.bar(stats, x='Lens', y='Mean', error_y="errory_hi", error_y_minus="errory_lo", color='Lens', 
color_discrete_sequence=nice_color_palette) 

fig.update_layout({ 
    'plot_bgcolor' : 'rgba(0,0,0,0)' 
}) 
fig.update_yaxes(showgrid=True, gridwidth=1, gridcolor='LightGray') 

fig.show() 

import plotly.express as pxVisualizing descriptive stats for 
the groups that we compare



Error bars on bar charts usually represent Confidence Intervals (CI). A CI is a 
range of plausible values for the population mean, calculated from a sample 
e.g., a CI with a 95% confidence level has a 95% chance of capturing the  
population mean. (This also means that our confidence interval might not  
include the population mean...) 

A confidence interval is a function of the Standard Error of the mean (SE), i.e., 
the estimate of the standard deviation that would be obtained from the means 
of a large number of samples drawn from that population

Confidence Intervals

{sample mean

plausible values for the population mean

source: http://www.theusrus.de/blog/happy-holidays/

http://www.theusrus.de/blog/happy-holidays/


Two-way anova-test
A two-way anova test analyzes the effect of two factors at the 
same time. 

Why analyzing the effect of more than one factor at the same 
time? 

Because of possible interaction effects



Interaction effect: a simple example

Satisfaction = Food x Condiment 
Experiment: ask participants “How much do 
you appreciate condiment X on food Y?” 

 
“It depends on the  
type of food!”
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from http://statisticsbyjim.com/regression/interaction-effects/

factor 1 factor 2measure

interaction effect between  
food and condiment

Satisfaction

Food
Ice cream Hot dog

Chocolate sauce
Mustard



Simple and Interaction effects: 
many possible situations

Effect of Lens:  YES 
Effect of Zoom: NO 
Interaction: NO

Lens
Lens1  1.0
Lens2  5.0

Zoom
Low    3.0
High   3.0

Lens
Lens1  3.0
Lens2  3.0

Zoom
Low    1.0
High   5.0

Effect of Lens:  NO 
Effect of Zoom: YES 
Interaction: NO

Lens
Lens1  1.5
Lens2  4.5

Zoom
Low    2.5
High   3.5

Effect of Lens:  YES 
Effect of Zoom: YES 
Interaction: NO

Lens
Lens1  3.0
Lens2  3.0

Zoom
Low    3.0
High   3.0

Effect of Lens: NO 
Effect of Zoom: NO 
Interaction: NO

Effect of Lens:  YES 
Effect of Zoom: NO 
Interaction: YES

Lens
Lens1  2.0
Lens2  4.0

Zoom
Low    3.0
High   3.0

Effect of Lens: NO  
Effect of Zoom: YES 
Interaction: YES

Lens
Lens1  3.0
Lens2  3.0

Zoom
Low    2.0
High   4.0

Effect of Lens: YES  
Effect of Zoom: YES 
Interaction: YES

Lens
Lens1  1.0
Lens2  3.0

Zoom
Low    1.0
High   3.0

Effect of Lens: NO 
Effect of Zoom: NO 
Interaction: YES

Lens
Lens1  3.0
Lens2  3.0

Zoom
Low    3.0
High   3.0



We use function rm_anova from library pingouin

import pingouin as pg

aovrm2way = pg.rm_anova(data=data, dv='PointingTime', within=['Lens', 'Magnification'], subject='Participant') 
aovrm2way

We get a table with both simple and interaction effects. One line per effect where we can 
read all relevant information (degrees of freedom, p-value, F, effect size )η2

An ANOVA test revealed a significant effect of Lens on PointingTime (F(4,36) = 
62, p < 0.001, η2=0.68), a significant effect of Magnification on PointingTime 
(F(4,36) = 666, p < 0.001, η2=0.91), as well as a significant Lens x Magnification 
interaction effect (F(16,144) = 88, p < 0.001, η2=0.74).

Final report:

+ post-hoc tests (see notebook) and charts (cf. next slides)

Two-way anova-test with pingouin



We use function bar from library plotly.express to 
produce a bar chart depicting the different groups 

import plotly.express as pxVisualizing descriptive stats for 
the groups that we compare

nice_color_palette = ['#f1eef6', '#bdc9e1', '#74a9cf', '#2b8cbe', '#045a8d'] 
stats['Magnification'] = stats['Magnification'].astype('str') 

fig = px.bar(stats, x='Lens', y='Mean', error_y="errory_hi", error_y_minus="errory_lo", color='Magnification', barmode='group', 
color_discrete_sequence=nice_color_palette) 

fig.update_layout({ 
    'plot_bgcolor' : 'rgba(0,0,0,0)' 
}) 
fig.update_yaxes(showgrid=True, gridwidth=1, gridcolor='LightGray') 

fig.show()



An alternative to null-hypothesis 
reasoning: confidence intervals 

Inferential statistics 



Dichotomy regarding how to accept or reject the null hypothesis on an 
arbitrary cut-off can be criticized (and actually is criticized) 

p = 0.051 => reject, p = 0.049 => accept, mmm... 

Some analysts prefer to focus on confidence intervals regarding the 
difference in means to look at their data and make more nuanced 
conclusions.

The null hypothesis reasoning: critics

The confidence interval for the 
difference between these two 
conditions includes 0  
=> inconclusive

The confidence interval for the 
difference between these two 
conditions is close to 0  
=> some (weak) evidence

The confidence interval for 
the difference between these 
two conditions is far from 0  
=> strong evidence



See section Confidence Intervals of the Mean Difference 
between two conditions in notebook to get details about 
how to produce such a chart 

Confidence Intervals of the Mean 
Difference between two conditions



Non-parametric tests

Inferential statistics 



Descriptive
describe, show or summarize 

a data sample

Inferential
make generalization about 

the whole population based 
on one data sample

Parametric
make assumption 

about the data 
distribution for the 
whole population

Descriptive parametric 
statistics

Inferential parametric 
statistics

Non parametric
no assumption 
about the data 

distribution 

Descriptive non-parametric 
statistics

Inferential non-parametric 
statistics

Parametric and non-parametric statistics

46

assumption about the data 
distribution for the population

Reminder



Experiment &  
parametric statistics

47

Experiment

data sample

parametric statistics 
assumes that the data 
sample comes from a 

population that follows a 
probability distribution 
based on a fixed set of 

parameters 
(for example, a normal 

distribution)

whole population

time for completing a pointing task

Reminder



Parametric tests and the normal 
distribution
t-test, ANOVA test, Post-hoc tests 

They all test the effect of nominal factors on a 
continuous measure. The assumption is that the 
continuous measure follows a normal distribution 

Normal distribution: The "bell curve" (Mean = Median = Mode)

This graphics uses the standard deviation to scale the distribution:  
one unit on the x-axis is equal to one standard deviation.



Descriptive
describe, show or summarize 

a data sample

Inferential
make generalization about 

the whole population based 
on one data sample

Parametric
make assumption 

about the data 
distribution for the 
whole population

Descriptive parametric 
statistics

Inferential parametric 
statistics

Non parametric
no assumption 
about the data 

distribution 

Descriptive non-parametric 
statistics

Inferential non-parametric 
statistics

Parametric and non-parametric statistics
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no assumption about the data 
distribution for the population

Reminder



Experiment &  
non-parametric statistics
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Experiment

data sample
we assume nothing 

about the population

Distribution of answers to a Likert scale

whole population

Strongly  
agree

Agree Strongly  
disagree

DisagreeNeutral

Reminder



Non-parametric: when?
In many cases, you can assume the normality for the population 
and use parametric tests 

When should you go for non-parametric then? 

Case 1: If the type of measure is not ratio (continuous), 

Example: results from Likert-scale questions 

Case 2: An assumption of a parametric test is violated 

largely unbalanced data (number of observations largely varies among groups), non 
normal distribution, … 

Note that many parametric tests remain fairly robust against the 
non-normality assumption so Case 1 is the most common.



Chi-square test

When should we use a Chi-square test?  
When comparing two groups with regard to a categorical 
(nominal measure) 

Example: We want to test whether young and old people differ in the 
system they use. We have one factor age (i.e., two groups {young, old}) 
and the measure is the answer to question “which system do you use?” 

We organize observations into a contingency table (count of answers per 
category) 

windows mac linux

young 16 11 3

old 21 8 1



Chi-square test / McNemar’s test

It computes the statistics     (and watches where it lies 
in the theoretical    distribution) 

Effect size (   or Cramer's V): 

where N is the number of observation  
and k  is the smallest number of rows r or of columns c 

If groups are paired (i.e., the factor is tested according 
to a within-subject design), use a McNemar’s test

χ 2

φ = χ 2

N(k −1)

φ

χ 2



Friedman test

When should we use a Friedman test?  
When comparing more than two groups with regard to an 
ordinal measure 

This is a case that typically occurs when we collect qualitative appreciations using 
Likert scales. For example, we want to test whether people find some lenses easier 
to use than others. We have one factor Lens (i.e., five groups for five types of lens 
that we had in our experiment) and we ask participants: 

How much do you agree (from -2 to 2) with the following statement: 
This Lens is easy to use
(-2: Strongly Disagree, -1: Disagree, 0: Neutral, 1: Agree, 2: Strongly Agree) 

We want to compare five groups (the five lenses) with regard to their score on ease 
of use (ordinal measure).



Firedman test with pingouin

We believe that, because of their different design properties, users will 
give different scores for ease of use. 

H: User scores differ depending on the type of Lens. 

Null hypothesis: User scores are the same regardless of Lens. 

We test one nominal factor (Lens) according to a within-subject design 
(paired groups) on an ordinal measure (score), we thus run a 
Friedman test using the pingouin library.

import pingouin as pg

ML (Manhattan Lens) FL (Fisheye Lens)
BL (Blending Lens), , SCF SCB, ,

Five different lenses:



The Friedman test works with a wide-format dataframe where there is one 
column per factor level. Each line contains the measure value for each of 
the factor level. (In a long-format dataframe, there are columns for 
participant, factor(s), and measure and each line is a trial that contains the 
value for all these columns).

import pingouin as pg

data_likert_full = pd.read_csv('lens_experiment/easy_scores.csv', sep=';') 
data_likert_full

Firedman test with pingouin

Factor Lens has 5 levels:  
{ML, FL, BL, SCF, SCB}



import pingouin as pg

data_likert = data_likert_full.drop('Unnamed: 6',axis = 1) 
data_likert = data_likert.drop('Participant',axis = 1) 
data_likert = data_likert.rename(columns={'Easy_ML': 'ML', 'Easy_FL': 
'FL', 'Easy_BL': 'BL', 'Easy_SCF': 'SCF', 'Easy_SCB': 'SCB'}) 
data_likert

Firedman test with pingouin

pg.friedman(data_likert)

Final report:

We found a significant effect of factor Lens on Easy scores (Q(4) = 32, p < 
0.001).
+ post-hoc tests 
+ chart (see notebook)



Choosing the right test

Inferential statistics 



Which test when?

This class does not cover all possible statistical tests 

In order to choose the right test, consider: 

the experiment design: 
within-subject / between-subject 

the type of your variables:  
number and types of independent variables (factors) and 
type of dependent variable (measure)
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A decision tree to help choose the right statistical test
Is my measure of 

type ratio?

How many factors 
do I have?

NO
YES

Is my factor tested 
with a within-subject 
design (i.e. are my 

groups paired)?

One-way ANOVA

NO

One-way repeated 
measures ANOVA

1

Are my factors tested with a 
within-subject design (i.e. are 

my groups paired)?

n-way ANOVA

NO

n-way repeated 
measures ANOVA

YES

How many levels does 
my factor have?

n >= 3

Is my factor tested 
with a within-subject 
design (i.e. are my 

groups paired)?

t-test

NO

paired t-test

2

n >= 2

YES YES



A decision tree to help choose the right statistical test

Adapted from: 
https://www.fabriziomusacchio.com/teaching/python_course_neuropractical/01_statistical_data_analysis_with_pandas_and_pingouin

https://www.fabriziomusacchio.com/teaching/python_course_neuropractical/01_statistical_data_analysis_with_pandas_and_pingouin

