Experimental design and analysis Inferential statistics

https://www.lri.fr/~appert/eval/

Caroline Appert

Inferential statistics use a sample to describe the whole population (with some uncertainty)

Experiment & inferential statistics

inferential statistics use the sample to provide a description of the whole population that can be trusted only with a given probability

one observation (e.g., time for completing a pointing task)

Level of statistical significance

Inferential statistics uses the probability theory

A test based on inferential statistics outputs a p value. This p value provides an estimate of how often we would get the obtained statistic by chance, if in fact the null hypothesis were true.

How can we decide to reject a hypothesis? We decide on a level of significance, *i.e.*, the cutoff (α) before running the test. We reject the null hypothesis when $p < \alpha$.

Usually, the cutoff is set to 0.05 (as proposed by statistician Fisher)

Null Hypothesis Significance Test

State the null hypothesis based on your research hypothesis (H₀: the factor does not impact the measure value)

Decide the level of statistical significance α (usually 0.05, i.e. 5%)

A Null Hypothesis Significance Test proceeds as follows:

- we know what the distribution of the value of a statistic (e.g., t, F, ...) (*) is when the null hypothesis is true

- we compute this statistic for our sample of observations (e.g., t, F, ...) (*)

- we use the known distribution to estimate the probability (p value) of observing this statistic if the null hypothesis were true for our sample

- If this probability is very low ($p < \alpha$), we reject the null hypothesis (based on the fact that there is very little chance to observe such a result if there was actually no difference).

(*) the specific statistic to consider depends on the type of your measure, the assumption about the distribution, and the type of design

Null Hypothesis Significance Test

State the null hypothesis based on your research hypothesis (H₀: the factor does not impact the measure value)

Decide the level of statistical significance α (usually 0.05, i.e. 5%)

A Null Hypothesis Significance Test proceeds as follows:

- we know what the distribution of the value of a statistic (e.g., t, F, ...) (*) is when the null hypothesis is true

- we compute this statistic for our sample of observations (e.g., t, F, ...) (*)

- we use the known distribution to estimate the probability (p value) of observing this statistic if the null hypothesis were true for our sample

- If this probability is very low ($p < \alpha$), we reject the null hypothesis (based on the fact that there is very little chance to observe such a result if there was actually no difference).

(*) the specific statistic to consider depends on the type of your measure, the assumption about the distribution, and the type of design

Null Hypothesis Significance Test

State the null hypothesis based on your research hypothesis (H₀: the factor does not impact the measure value)

Decide the level of statistical significance α (usually 0.05, i.e. 5%)

A Null Hypothesis Significance Test proceeds as follows:

- we know what the distribution of the value of a statistic (e.g., r, t, F, ...) (*) is when the null hypothesis is true

In red: values for our statistic that we are unlikely to observe if the null hypothesis is true (less than 5% of the cases if $\alpha = 0.05$). We decide to reject the null hypothesis in these cases (for example, if t = 1.9).

Experiment that we use as an example

Pointing performance of different types of magnifying lenses

2 factors (5 x 5 design) - 10 participants

Lens type (5 levels):

ML (Manhattan Lens),

BL (Blending Lens)

Lens' magnification (5 levels): 2, 4, 6, 10, 14

target acquisition

Measure

Pointing time (in ms)

Experiment that we use as an example

Pointing performance of different types of magnifying lenses

2 factors (5 x 5 design) - 10 participants

Collected data

(log file lens_experiment.csv)

Note: When we analyze collected results, all logs are in a single file (\neq one file per participant)

Participant	Block	Trial	Lens	Magnification	ID	PointingTime
1	4	0	FL	6	6.0035549	2297
1	4	0	FL	6	6.0035549	1485
1	4	0	FL	6	6.0035549	2000
1	4	0	FL	6	6.0035549	1843
1	4	0	FL	6	6.0035549	1813

2 Factors

1 Measure

10	2	9	SCF	6	6.0035549	2375
10	2	9	SCF	6	6.0035549	2359
10	2	9	SCF	6	6.0035549	2313
10	2	9	SCF	6	6.0035549	2453
10	2	9	SCF	6	6.0035549	2187
10	2	9	SCF	6	6.0035549	2875
10	2	9	SCF	6	6.0035549	2688

Inferential statistics

Testing the effect of nominal factor(s) on a continuous measure

t-test (Student test)

When should we use a t-test?

When comparing two groups (i.e., when testing the effect of a nominal factor that has two levels)

A t-test consists of computing the *t* statistic (a function of the difference between the two means), and watching where our computed *t* (t_{obs} in figure below) lies in the theoretical t-distribution when the null hypothesis is true

If our computed *t* is unlikely to happen (p < 0.05) if there was no difference between the two groups (*t* lies in the tails of the theoretical distribution), we reject the null hypothesis.

Theoretical t-distribution

A t-distribution shows the probability of observing a given t-value when the null hypothesis is true

There are several t distributions. The particular form of a t distribution is determined by its degrees of freedom (*df*)

x is the value of t-ratio

Paired vs. unpaired t-test

paired t-test (or "repeated measures" t-test)

if the two groups are correlated. For example, participants have been measured under the two technique conditions (within-subject design)

unpaired t-test

if the two groups are independent. For example, two groups of participants have been measured under the two different technique conditions (between-subject design)

additional assumption for unpaired t-test:

the variances of the population of the two groups are equal

Degrees of freedom

Paired t-test

size group 1 = size group 2 = size group

df = size group - 1

= number of participants - 1

Unpaired t-test

df = size group 1 + size group 2 - 2

t-test explained again

https://www.youtube.com/watch?v=5Dnw46eC-0o

t-test and effect size

The *t* statistic allows you to tell if the difference in means is significant or not but does not give the size of the difference

Two kinds of effect size metrics for a t-test

Cohen's *d* (paired and unpaired)

Pearson's r (unpaired only)

	small size	medium size	large size
Cohen's d	0.2	0.5	0.8
Pearson's r	0.1	0.3	0.5

Effect size for a paired t-test

Cohen's d for a paired t test

$d = \frac{|M|}{SD}$

where *M* is the mean of differences, and *SD* is the standard deviation of differences

It represents the difference in terms of standard deviations (normalized)

Effect size for an unpaired t-test

Pearson's r for an unpaired t test

$$r = \sqrt{\frac{t^2}{t^2 + df}}$$

where *t* is the value of the test (t-ratio), and *df* is the number of degrees of freedom.

t-test and ANOVA in practice

t-test with pingouin

We believe that the more occlusion lenses cause, the higher the pointing time. In particular, we make the following research hypothesis:

- H: Pointing Time is greater with ML lenses than with FL lenses.
- Null hypothesis: Pointing Time is the same with ML and FL.
- We are in the context of a within-subject design (paired groups), we run a paired t-test using the pingouin library.

t-test with pingouin

A paired t-test takes as input two vector of data points. There is one vector per condition (in our case: **FL** and **ML**), and each vector contains the mean measure value for each participant (in our case, 10 mean pointing times as we have 10 participants):

```
data_fl = data.query('Lens == "FL"')
data_fl = data_fl.groupby('Participant', as_index=False)['PointingTime'].mean()
display(data_fl)
data_ml = data.query('Lens == "ML"')
data_ml = data_ml.groupby('Participant', as_index=False)['PointingTime'].mean()
display(data_ml)
```

	Participant	PointingTime
0	1	2234.900000
1	10	2349.350000
2	2	2401.108333
3	3	2721.108333
4	4	2412.704167
5	5	2171.679167
6	6	2359.762500
7	7	2586.983333
8	8	2482.025000
9	9	2278.516667

data fl

t-test with pingouin

We use function ttest from library pingouin

ttest = pg.ttest(data_fl['PointingTime'], data_ml['PointingTime'], paired=True)
ttest

	т	dof	alternative	p-val	CI95%	cohen-d	BF10	power
T-test	-7.490894	9	two-sided	0.000037	[-1430.59, -766.96]	2.669193	664.76	1.0

The *t* value for our observations is -7.49. This value is very unlikely to happen if the null hypothesis were true (p = 0.000037). We thus reject the null hypothesis : the difference between the two groups is significant. Moreover, this difference is large (d=2.6)

```
mean_fl = data_fl['PointingTime'].mean()
mean_ml = data_ml['PointingTime'].mean()
print('Mean pointing time for Lens=FL: ', mean_fl)
print('Mean pointing time for Lens=ML: ', mean_ml)
Mean pointing time for Lens=FL: 2399.813750000003
Mean pointing time for Lens=ML: 3498.588750000003
```

Final report:

We found a significant effect of factor Lens on PointingTime (t(9) = -7.5, p < 0.001, *Cohen's d=2.6*), with lens FL (*2399ms* on average) outperforming lens ML (*3498ms* on average).

import pingouin as pg

t-test with pingouin

p-value reporting

If **the effect is not significant**, do not report the p-value, just say that it is not significant.

If **the effect is significant**, report one of the three cases:

p < 0.001
p < 0.01
p < 0.05

Analysis of Variance (anova)

When should we use an anova?

When comparing more than two groups (i.e., when testing the effect of a nominal factor that has three levels or more, or when testing the effect of more than one factor)

An anova test consists of computing the *F* statistic (a function of the difference between the means), and watching where our computed *F* lies in the theoretical F-distribution when the null hypothesis is true (i.e., no difference between any pair of groups)

ANOVA test

ANOVA generalizes the t-test to an arbitrary number of groups

Why not multiple t-tests? Combining the results of t-tests between pairs of groups does not give correct results as it increases the chance of making a Type I error

Group 1 ≠ Group 2 (95% confidence) Group 1 ≠ Group 3 (95% confidence) => Group 1 ≠ Groups 2 and 3 (90% confidence)

ANOVA and df (degrees of freedom)

The *F* statistic is a function of how much of the total observed variance is due to the variance between groups (*i.e.*, ANOVA separates the internal variability in each group and the variability between groups)

ANOVA and effect size

The *F* statistic allows you to tell if there is at least one pair of groups that significantly differs but it says how large the difference is

Effect size for an anova is computed with η^2 (eta squared)

$$\eta^2 = \frac{SS_{effect}}{SS_{total}}$$

where SS_{effect} is the sum of square for the factor and SS_{total} is the total sum of square

	small size	medium size	large size
eta squared	0.01	0.06	0.14

ANOVA test

The computation of *F* depends on your design

If the groups are paired (e.g., a within-subject design), use a <u>repeated measures</u> ANOVA test

One-way ANOVA

analyze one factor

n-way ANOVA

analyze two or more factors

One-way anova-test with pingouin

Five different lenses:

ML (Manhattan Lens),

FL (Fisheye Lens), SCF, SCB,

BL (Blending Lens)

We believe that, because of their different design properties, their pointing time differs.

H: Pointing Time differs depending on the type of Lens used.

Null hypothesis: Pointing Time is the same regardless of the Lens used.

We test one factor (Lens) in the context of a within-subject design (paired groups), we run a repeated measures anova test using the pingouin library.

One-way anova-test with pingouin

We use function **rm_anova** from library **pingouin**

aovrm1way = pg.rm_anova(data=data, dv='PointingTime', within='Lens', subject='Participant')
aovrm1way

	Source	ddof1	ddof2	F	p-unc	p-GG-corr	ng2	eps	sphericity	W-spher	p-spher
0	Lens	4	36	62.408495	1.077454e-15	0.000001	0.794287	0.337259	False	0.004401	0.000011

The *F* value for our observations is 62. This value is very unlikely to happen if the null hypothesis were true (p = 1.077454e-15). We thus reject the null hypothesis : the difference between at least two groups is significant. Moreover, this difference is large ($\eta^2=0.79$)

Final report:

We found a significant effect of factor Lens on PointingTime ($F(4,36) = 62, p < 0.001, \eta^2 = 0.79$).

+ chart (cf. next slides)

One-way anova-test with pingouin

We found a significant effect of factor Lens on PointingTime ($F(4,36) = 62, p < 0.001, \eta^2 = 0.79$).

+ pairwise comparisons and charts for identifying and visualizing where these differences are (cf. next slides)

Post-hoc tests

ANOVA says that there are significant effects

BUT does not say which group significantly differs from which other group

Post-hoc tests are used to find where the differences between groups are

The most common post hoc tests used in HCI are the Tukey's test and the multiple pairwise t-test (with potentially some correction method like Holm or Bonferroni)

import pingouin as pg

Post-hoc tests with pingouin

We use function pairwise_tests from library pingouin

posthoc = pg.pairwise_tests(data=data, dv='PointingTime', within=['Lens'], subject='Participant',
parametric=True, padjust='fdr_bh', effsize='hedges')
posthoc

	Contrast	Α	в	Paired	Parametric	т	dof	alternative	p-unc	p-corr	p-adjust	BF10	hedges	
0	Lens	BL	FL	True	True	4.345090	9.0	two-sided	1.863562e-03	2.070625e-03	fdr_bh	24.371	1.552562	
1	Lens	BL	ML	True	True	-5.614069	9.0	two-sided	3.283107e-04	4.103884e-04	fdr_bh	104.046	-1.936085	
2	Lens	BL	SCB	True	True	31.577207	9.0	two-sided	1.572325e-10	1.572325e-09	fdr_bh	3.503e+07	5.194532	
3	Lens	BL	SCF	True	True	6.595215	9.0	two-sided	9.982369e-05	1.426053e-04	fdr_bh	285.907	1.777954	
4	Lens	FL	ML	True	True	-7.490894	9.0	two-sided	3.728208e-05	7.456416e-05	fdr_bh	664.76	-2.556411	p=0.53 (> 0.05)
5	Lens	FL	SCB	True	True	9.341874	9.0	two-sided	6.287323e-06	1.571831e-05	fdr_bh	3096.594	3.432268	-> the difference
6	Lens	FL	SCF	True	True	0.645461	9.0	two-sided	5.347356e-01	5. 3508-01	lai_bii	0.308	0.231850	
7	Lens	ML	SCB	True	True	9.851450	9.0	two-sided	4.052381e-06	1.350794e-05	fdr_bh	4536.747	3.832725	between FL and SCF is
8	Lens	ML	SCF	True	True	6.786651	9.0	two-sided	8.025315e-05	1.337553e-04	fdr_bh	344.493	2.647644	not significant
9	Lens	SCB	SCF	True	True	-11.895149	9.0	two-sided	8.297272e-07	4.148636e-06	fdr_bh	1.812e+04	-3.151003	Het significant

Each line presents the comparison between a pair of groups. A low *p-value* (p-corr) indicates that groups in the pair significantly differ. We can see here that all *p-values* are low (<0.05) except for the pair (FL, SCF). So all pairs significantly differ, except (FL, SCF).

Final report:

We found a significant effect of factor Lens on PointingTime ($F(4,36) = 62, p < 0.001, \eta^2 = 0.79$). All pairs of lenses significantly differ (all p's < 0.05), except FL and SCF (p = 0.5).

+ chart for identifying and visualizing where these differences are (cf. next slide)

Visualizing descriptive stats for the groups that we compare

We compute some descriptive stats for visualizing our dataset (function summarizeDF is provided in the notebook example on the website)

import math

```
def summarizeDF(df, factors, measure):
    [...]
    return summary
```

```
stats = summarizeDF(data, ['Lens'], 'PointingTime')
stats
```

	Lens	Mean	Count	Std	ci95_hi	ci95_lo	errory_hi	errory_lo
0	BL	2666.405417	2400	1400.267213	2722.426743	2610.384090	56.021327	56.021327
1	FL	2399.813750	2400	1266.792679	2450.495081	2349.132419	50.681331	50.681331
2	ML	3498.588750	2400	3156.100429	3624.856745	3372.320755	126.267995	126.267995
3	SCB	1881.055417	2400	658.170719	1907.387246	1854.723588	26.331829	26.331829
4	SCF	2359.847083	2400	1162.838646	2406.369464	2313.324703	46.522380	46.522380

Visualizing descriptive stats for the groups that we compare

We use function bar from library plotly.express to produce a bar chart depicting the different groups

```
nice_color_palette = ['#66c2a5', '#fc8d62', '#8da0cb', '#e78ac3', '#a6d854']
fig = px.bar(stats, x='Lens', y='Mean', error_y="errory_hi", error_y_minus="errory_lo", color='Lens',
color_discrete_sequence=nice_color_palette)
fig.update_layout({
    'plot_bgcolor': 'rgba(0,0,0,0)'
})
fig.update_yaxes(showgrid=True, gridwidth=1, gridcolor='LightGray')
fig.show()
```

See documentation for customizing your chart https://plotly.com/python/bar-charts/

import plotly.express as px

Visualizing descriptive stats for the groups that we compare

```
nice_color_palette = ['#66c2a5', '#fc8d62', '#8da0cb', '#e78ac3', '#a6d854']
fig = px.bar(stats, x='Lens', y='Mean', error_y="errory_hi", error_y_minus="errory_lo", color='Lens',
color_discrete_sequence=nice_color_palette)
fig.update_layout({
    'plot_bgcolor': 'rgba(0,0,0,0)'
})
fig.update_yaxes(showgrid=True, gridwidth=1, gridcolor='LightGray')
```

fig.show()

Confidence Intervals

Error bars on bar charts usually represent *Confidence Intervals (CI). A CI* is a range of plausible values for the population mean, calculated from a sample

e.g., a CI with a 95% confidence level has a 95% chance of capturing the population mean. (This also means that our confidence interval *might not* include the population mean...)

plausible values for the population mean

A confidence interval is a function of the *Standard Error of the mean (SE)*, i.e., the estimate of the standard deviation that would be obtained from the means of a large number of samples drawn from that population

Two-way anova-test

A two-way anova test analyzes the effect of two factors at the same time.

Why analyzing the effect of more than one factor at the same time?

Because of possible interaction effects

Interaction effect: a simple example

measure factor 1 factor 2

- Satisfaction = Food x Condiment
- Experiment: ask participants "How much do you appreciate condiment X on food Y?"

from http://statisticsbyjim.com/regression/interaction-effects/

Simple and Interaction effects: many possible situations

Pointing Time in ms

Effect of Lens: **YES** Effect of Zoom: NO Interaction: NO

Pointing Time in ms

Effect of Lens: **YES** Effect of Zoom: NO Interaction: **YES**

Effect of Lens: NO Effect of Zoom: **YES** Interaction: NO

Lens1

Effect of Lens: NO

Interaction: YES

Effect of Zoom: YES

Lens1 3.0

Lens2 3.0

Lens

Lens2

Zoom

Low

High

2.0

4.0

LensZoomLens11.5Low2.5Lens24.5High3.5

Effect of Lens: **YES** Effect of Zoom: **YES** Interaction: NO

Effect of Lens: NO Effect of Zoom: NO Interaction: NO

Effect of Lens: **YES** Effect of Zoom: **YES** Interaction: **YES**

Effect of Lens: NO Effect of Zoom: NO Interaction: **YES**

Two-way anova-test with pingouin

We use function rm_anova from library pingouin

aovrm2way = pg.rm_anova(data=data, dv='PointingTime', within=['Lens', 'Magnification'], subject='Participant')
aovrm2way

	Source	SS	ddof1	ddof2	MS	F	p-unc	p-GG-corr	ng2	eps
0	Lens	7.094755e+07	4	36	1.773689e+07	62.408495	1.077454e-15	1.464553e-06	0.685343	0.337259
1	Magnification	3.302858e+08	4	36	8.257145e+07	666.205094	3.309458e-33	6.874744e-14	0.910230	0.381525
2	Lens * Magnification	9.525647e+07	16	144	5.953529e+06	88.046197	6.510501e-66	6.160824e-09	0.745180	0.108297

We get a table with both simple and interaction effects. One line per effect where we can read all relevant information (degrees of freedom, p-value, *F*, effect size η^2)

Final report:

An ANOVA test revealed a significant effect of Lens on PointingTime ($F(4,36) = 62, p < 0.001, \eta 2 = 0.68$), a significant effect of Magnification on PointingTime ($F(4,36) = 666, p < 0.001, \eta 2 = 0.91$), as well as a significant Lens x Magnification interaction effect ($F(16,144) = 88, p < 0.001, \eta 2 = 0.74$).

+ post-hoc tests (see notebook) and charts (cf. next slides)

Visualizing descriptive stats for the groups that we compare

We use function **bar** from library **plotly.express** to produce a bar chart depicting the different groups

```
nice_color_palette = ['#fleef6', '#bdc9e1', '#74a9cf', '#2b8cbe', '#045a8d']
stats['Magnification'] = stats['Magnification'].astype('str')
```

```
fig = px.bar(stats, x='Lens', y='Mean', error_y="errory_hi", error_y_minus="errory_lo", color='Magnification', barmode='group',
color_discrete_sequence=nice_color_palette)
```

fig.update_layout({

```
'plot_bgcolor' : 'rgba(0,0,0,0)'
```

})

fig.update_yaxes(showgrid=True, gridwidth=1, gridcolor='LightGray')

fig.show()

Inferential statistics

An alternative to null-hypothesis reasoning: confidence intervals

The null hypothesis reasoning: critics

Dichotomy regarding how to accept or reject the null hypothesis on an arbitrary cut-off can be criticized (and actually is criticized)

p = 0.051 => reject, p = 0.049 => accept, mmm...

Some analysts prefer to focus on confidence intervals regarding the difference in means to look at their data and make more nuanced conclusions.

The confidence interval for the difference between these two conditions is *close to* 0 => some (weak) evidence

The confidence interval for the difference between these two conditions includes 0 => inconclusive

Confidence Intervals of the Mean Difference between two conditions

See section Confidence Intervals of the Mean Difference between two conditions in notebook to get details about how to produce such a chart

Comparisons between Pairs of Conditions:

Inferential statistics

Non-parametric tests

Reminder

Parametric and non-parametric statistics

Reminder

Experiment & parametric statistics

parametric statistics assumes that the data sample comes from **a population that follows a probability distribution** based on a fixed set of parameters (for example, a normal distribution)

Parametric tests and the normal distribution

t-test, ANOVA test, Post-hoc tests

They all test the effect of nominal factors on a continuous measure. The assumption is that the continuous measure follows a normal distribution

Normal distribution: The "bell curve" (Mean = Median = Mode)

This graphics uses the standard deviation to scale the distribution: one unit on the x-axis is equal to one standard deviation.

Reminder

Parametric and <u>non-parametric</u> statistics

	Descriptive describe, show or summarize a <u>data sample</u>	Inferential make generalization about the <u>whole population</u> based on one data sample
Parametric make <u>assumption</u> <u>about the data</u> <u>distribution</u> for the whole population	Descriptive parametric statistics	Inferential parametric statistics
Non param <mark>ediast</mark> no assump clist about the data distribution	assumption abou ribution for the p statistics	t the data optication-parametric statistics

Reminder

Experiment & non-parametric statistics

we assume nothing about the population

Non-parametric: when?

In many cases, you can assume the normality for the population and use parametric tests

When should you go for non-parametric then?

Case 1: If the type of measure is not ratio (continuous),

Example: results from Likert-scale questions

Case 2: An assumption of a parametric test is violated

largely unbalanced data (number of observations largely varies among groups), non normal distribution, ...

Note that many parametric tests remain fairly robust against the non-normality assumption so <u>Case 1 is the most common</u>.

Chi-square test

When should we use a Chi-square test?

When comparing two groups with regard to a categorical (nominal) measure

Example: We want to test whether young and old people differ in the system they use. We have one factor age (i.e., two groups {young, old}) and the measure is the answer to question "which system do you use?"

We organize observations into a contingency table (count of answers per category)

	windows	mac	linux
young	16	11	3
old	21	8	I

Chi-square test / McNemar's test

It computes the statistics χ^2 (and watches where it lies in the theoretical χ^2 distribution)

Effect size (ϕ or Cramer's V):

$$\phi = \sqrt{\frac{\chi^2}{N(k-1)}}$$

where *N* is the number of observation and *k* is the smallest number of rows r or of columns c

If groups are paired (i.e., the factor is tested according to a within-subject design), use a McNemar's test

Friedman test

When should we use a Friedman test?

When comparing more than two groups with regard to an ordinal measure

This is a case that typically occurs when we collect qualitative appreciations using Likert scales. For example, we want to test whether people find some lenses easier to use than others. We have one factor Lens (i.e., five groups for five types of lens that we had in our experiment) and we ask participants:

How much do you agree (from -2 to 2) with the following statement: **This Lens is easy to use** (-2: Strongly Disagree, -1: Disagree, 0: Neutral, 1: Agree, 2: Strongly Agree)

We want to compare five groups (the five lenses) with regard to their score on ease of use (ordinal measure).

Firedman test with pingouin

Five different lenses:

ML (Manhattan Lens) ,

FL (Fisheye Lens), SCF, SCB,

BL (Blending Lens)

We believe that, because of their different design properties, users will give different scores for ease of use.

H: User scores differ depending on the type of Lens.

Null hypothesis: User scores are the same regardless of Lens.

We test one nominal factor (Lens) according to a within-subject design (paired groups) on an ordinal measure (score), we thus run a Friedman test using the **pingouin** library.

import pingouin as pg

Friedman test with pingouin

The Friedman test works with a **wide-format** dataframe where there is one column per factor level. Each line contains the measure value for each of the factor level. (In a **long-format** dataframe, there are columns for participant, factor(s), and measure and each line is a trial that contains the value for all these columns).

data_likert_full = pd.read_csv('lens_experiment/easy_scores.csv', sep=';')
data_likert_full

	Participant	Easy_ML	Easy_FL	Easy_BL	Easy_SCF	Easy_SCB	Unnamed: 6
0	1	-2	0	-1	1	0	NaN
1	2	-1	-2	0	1	1	NaN
2	3	-2	-1	0	0	1	NaN
3	4	-1	0	-1	1	2	NaN
4	5	-2	-2	-1	1	0	NaN
5	6	-2	0	0	1	2	NaN
6	7	-1	-2	-2	0	0	NaN
7	8	-2	0	0	1	2	NaN
8	9	-1	0	0	2	1	NaN
9	10	-1	-1	-1	1	2	NaN

Factor Lens has 5 levels: {ML, FL, BL, SCF, SCB}

import pingouin as pg

Firedman test with pingouin

<pre>data_likert = data_likert_full.drop('Unnamed: 6',axis = 1) data_likert = data_likert.drop('Participant',axis = 1) data_likert = data_likert.rename(columns={'Easy_ML': 'ML', 'Easy_FL': 'FL', 'Easy_BL': 'BL', 'Easy_SCF': 'SCF', 'Easy_SCB': 'SCB'})</pre>				BL	SCF	SCB
				-1	1	0
				0	1	1
data_likert	2	-2	-1	0	0	1
		-1	0	-1	1	2
				-1	1	0
			0	0	1	2
			-2	-2	0	0
				0	1	2
ng friedman(data likent)			0	0	2	1
py. II reuman (uata_trkert)				-1	1	2

	Source	w	ddof1	Q	p-unc
Friedman	Within	0.803763	4	32.150538	0.000002

Final report:

We found a significant effect of factor Lens on Easy scores (Q(4) = 32, p < 0.001).

- + post-hoc tests
- + chart (see notebook)

Inferential statistics

Choosing the right test

Which test when?

This class does not cover all possible statistical tests

In order to choose the right test, consider:

the experiment design:

within-subject / between-subject

the type of your variables:

number and types of independent variables (factors) and type of dependent variable (measure)

A decision tree to help choose the right statistical test

A decision tree to help choose the right statistical test

Non-parametric

Adapted from:

https://www.fabriziomusacchio.com/teaching/python_course_neuropractical/01_statistical_data_analysis_with_pandas_and_pingouin