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ABSTRACT 
This article introduces the Complexity of Interaction Sequences model (CIS). CIS describes the structure of interaction 
techniques and predicts their performance in the context of an interaction sequence. The model defines the complexity of an 
interaction technique as a measure of its effectiveness within a given context. We tested CIS to compare three interaction 
techniques: fixed unimanual palettes, fixed bimanual palettes and toolglasses. The model predicts that the complexity of both 
palettes depends on interaction sequences, unlike toolglasses. CIS also predicts that fixed bimanual palettes outperform the 
other two techniques. Predictions were tested empirically with a controlled experiment and contrast with previous studies. 
We argue that, in order to be generalisable, experimental comparisons of interaction techniques should include the concept of 
context sensitivity. 

RÉSUMÉ 
Cet article introduit le modèle Complexity of Interaction Sequences CIS). CIS décrit la structure des techniques d’interaction 
et prédit leur performance dans le contexte d’une séquence d’interaction. Le modèle définit la complexité d’une technique 
d’interaction comme la mesure de son efficacité dans un contexte donné. Nous avons testé CIS pour comparer trois 
techniques d’interaction : les palettes fixes unimanuelles, les palettes fixes bimanuelles et les toolglasses. Le modèle prédit 
que, contrairement aux toolglasses, la complexité des deux types de palette dépend des séquences d’interaction. CIS prédit 
également que les palettes fixes bimanuelles sont toujours plus efficaces que les deux autres techniques. Les prédictions ont 
été vérifiées empiriquement par une expérimentation contrôlée et contrastent avec les résultats des précédentes études. Nous 
argumentons que, afin d’être généralisables, les comparaisons expérimentales entre techniques d’interaction doivent prendre 
en compte le concept de sensibilité au contexte. 
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INTRODUCTION 
Research in HCI has produced many novel interaction 
techniques aimed at improving the usability of graphical 
applications. Yet very few make it into real products. This 
may be due to the difficulty of assessing the actual value of 
a technique before it is integrated into a real interface. 
Researchers often evaluate new interaction techniques with 
usability studies. However, the results from these studies 
are often specific to the software and setting, making them 
hard to generalise. An alternative is a controlled experiment 
that measures the performance of the technique using a 
benchmark task. However the choice of the task is crucial: 
the designers of the technique have an incentive to create 
test tasks that optimize performance of the technique, as 
opposed to evaluating its actual performance in context. 

How can we capture the context of use to better evaluate an 
interaction technique? We introduce a new model, 
Complexity of Interaction Sequences (CIS), that addresses 
context through the notion of an interaction sequence. CIS 
can describe the structure of interaction techniques and 
analyze them through a set of criteria, it can also predict the 
complexity of an interaction technique, i.e. measure its 
effectiveness given a particular interaction sequence. The 
goal of CIS is to complement other evaluation techniques 
by helping researchers understand the effect of context on 
the performance of interaction techniques.  

After a review of related work and an illustration of the 
problems with controlled experiments, we present the CIS 
model and apply it to three techniques: fixed unimanual 
palettes, fixed bimanual palettes and toolglasses. We show 
the different ways these techniques are sensitive to context, 
test these predictions with a controlled experiment and 
compare them to previously published results. We conclude 
with directions for future work. 

RELATED WORK 
Formal models of interaction are too numerous to be 
reviewed exhaustively here. We focus on those that address 
interaction at a level of abstraction similar to CIS. 

Card et al [5] introduce a taxonomy of input devices, 
described as translators from physical properties to logical 
parameters of an application. Input devices are evaluated by 
their expressivity and efficiency, as measured by pointing 
speed and precision, footprint, etc. The Model Human 
Processor [8] classifies interactions into elementary tasks 
such as selection and evaluates their execution with human 
factors such as memory load or learning time. CIS analyzes 
interaction at a higher level than input devices and 
elementary tasks by focusing on interaction techniques. 

Goals, Operators, Methods and Selection rules (GOMS) 
[12, 13] is a family of descriptive and predictive models 
based on task analysis. Keystroke-Level Model (KLM) and 
CMN-GOMS analyze interaction as a sequence of 

elementary tasks and predict its execution time. NGOMSL 
and CPM-GOMS are more elaborate models based on 
cognitive theories. GOMS tends to focus on cognitive 
aspects of interaction rather than the articulatory level. CIS 
is closer to the sensory-motor aspects of interaction. It 
models the state of the interface to better analyze the 
sensitivity of interaction techniques to the context of use. 

In the Cognitive Dimensions Framework, Green [9]  
defines six types of activities such as transcription and 
incrementation and a set of dimensions such as viscosity 
and visibility to evaluate information artifacts. He shows 
that users adapt their behaviour to the type of activity and 
identifies the most important dimensions for each activity. 
CIS is influenced by this framework, as well as approaches 
such as Activity Theory [3], that address the interplay 
between the task at hand and the properties of the available 
interaction techniques.  

DANGERS OF CONTROLLED EXPERIMENTS 
Controlled experiments are considered by many as the most 
scientific way to evaluate interaction techniques. However 
several known threats to validity must be addressed. A 
technique may be evaluated with a task too simple to reflect 
its use in situ. For example, marking menus [15] are radial 
pop-up menus where an item can be selected by a mark 
without displaying the menu. In a simple item selection 
task, they were up to 3.5 times faster than other menus. 
However, in real use, menu selections would be 
interspersed with other interactions such as pointing or 
dragging an object in the direction opposite of the item just 
selected. Such evaluations may show the technique's peak 
performance rather than its performance in normal use. 

Similarly, interaction techniques are often compared with 
other techniques on a task that favors the tested technique. 
For example, toolglasses [4] are semi-transparent movable 
tool palettes used with two hands. To apply a tool to an 
object, the user clicks through the tool onto the object. 
Kabbash & Buxton [14] report that toolglasses are faster 
than other palettes, based on a controlled experiment using 
the “connect the dots” task: colored dots appear one at a 
time; users must connect the last dot to the new one with a 
line matching the color of the new dot (Fig. 1). This task 
favors toolglasses because successive dots always have 
different colors: with a palette, selecting a new color 
requires a round trip to the palette, while the toolglass is 
always at hand. Even though the experiment was properly 
controlled and the results carefully reported, it is not clear 
that the results can be generalized. 

 
Figure 1: “connect the dots” (after [14]) 



Few controlled studies have attempted to explicitely take 
context of use into account. Mackay [16] compares the 
efficiency of three interaction techniques (toolglasses, 
floating palettes and marking menus) used in  the CPN2000 
interface [2] according to two cognitive contexts: copy and 
problem solving, similar to Green's transcription and 
incrementation. She observes that the use of a tool varies 
according to the context as well as users' preference. Users 
preference and efficiency are higher with floating palettes 
in a copy context and with marking menus and toolglasses 
in a problem solving context. In a copy context, users tend 
to create objects of the same type in sequence whereas in a 
problem solving context, they create objects according to 
their thought processes. In other words, which technique is 
"best" depends on the context of use. 

Even though it is important to evaluate the limit 
performance of interaction techniques, it is dangerous to 
overgeneralize the results of such evaluations. Since 
controlled experiments are costly, it would not be practical 
to test all possible tasks. What is needed is a model that can 
describe interaction techniques and predict their 
comparative performance in realistic settings. The CIS 
model attempts to address these goals. 

CIS: A DESCRIPTIVE AND PREDICTIVE MODEL 
Defining an interaction technique 
CIS describes an interface as a set of objects that users can 
manipulate. Some objects are work objects, e.g. drawing 
shapes, while others are tool objects, e.g. menu items and 
toolbars. The state of the interface is defined by the set of 
work and tool objects and the values of their attributes. 

The set of possible manipulations, called the interaction 
space, is described by a set of tuples: 
• Creation tuples: (t: T, v1: type(att1), ..., vn: type(attn)) 

T is the set of object types. This tuple creates an object 
of type t with attributes v1, .. vn ; 

• Modification tuples: (o: O, att, v: type(att)) 
O is the set of objects. This tuple assigns the value v to 
attribute att of object o; 

• Destruction tuples: (o: O, destroy). 

For example, consider a simple interface that can: 
• create rectangles, ellipses and triangles of a predefined 

size with a fixed unimanual palette (FP) and a toolglass 
(TG) each with three creation tools;  

• modify the fill and line color of a shape with tools 

similar to the Microsoft Office tools:  and ;  
• delete a shape by selecting it and pressing the ‘del’ key.  

The three types of work objects and their attributes are: 
• Rectangle, Ellipse, Triangle:   
  {p: position, line: color, fill: color} 
The eight types of tool objects and their attributes are: 
• FP:   {on: {tri, rect, ell}, p_tri: position, 

  p_rect: position, p_ell: position, s: size} 
• TG_rect, TG_ell, TG_tri: 

   {p: position, s: size} 
• Fill, Line:  {activated: color, p: position,  

  pcolor: position}, color ∈ color 
• Del:  {p: position} 
• Cursor:  {p: position} 

The interaction space is the set of tuples defined by the 
following types: 
• Creation: (t: {Rectangle, Ellipse, Triangle}, p: position) 
• Modification: (r: Rectangle, {fill, line}, c: color) 

   (e: Ellipse, {fill, line}, c: color) 
   (t: Triangle, {fill, line}, c: color) 

• Destruction: (r: Rectangle, destroy) 
   (e: Ellipse, destroy) 
   (s: Triangle, destroy) 

An interaction step is a sequence of actions that 
progressively reduces the set of all possible tuples to a 
single tuple. We distinguish two types of actions: 
• A selection identifies a subset of the current set of 

tuples; it is usually achieved by moving an object, 
typically the cursor, over a tool or work object; 

• A validation confirms the subset identified by a 
selection, which becomes the current set of tuples; it is 
usually achieved by clicking a button or typing a key. 

An interaction technique is a set of interaction steps that 
have the same structure, i.e. that consist of similar actions. 
Two selections are similar if they involve objects of the 
same type; Two validations are similar if they confirm 
tuples of the same type. 

In our example, if the current state of the interface contains 
the set WO of work objects, the interaction technique to 
change the fill- and line-color of objects is as follows: 

S1: move cursor to obj ∈ WO  
selects S1 = {(obj, att, c) | att ∈ {fill, line}, c ∈ color } ∪ 
{(obj, destroy)}, i.e. tuples that modify or destroy obj. 
V1: left click validates S1 
S2: move cursor to tool ∈ {Fill, Line}  
selects S2 = {(obj, tool, c) ∈ S1 | c ∈ color }, i.e. tuples 
that apply a fill or line color to obj. 
V2: left click validates S2 
S3: move cursor to tool.pcol, col ∈ color 
selects S3 = { (obj, tool, col) ∈ S2 }, i.e. the single tuple 
that applies color col to the fill or line style of obj. 
V3: left click validates S3 and executes it. 

The process of reducing the set of all possible tuples to a 
single one can also be seen as a progressive instantiation of 
a tuple: starting from a void tuple, each selection/validation 
assigns a value to an element of the tuple: (*, *, *) become 
(obj, *, *), then (obj, tool, *) and finally (obj, tool, col). CIS 
uses this constructive approach to describe interaction 
techniques. 

Describing an interaction technique 
CIS describes a technique with an oriented graph, called the 
interaction graph. The root is labelled with the technique 



name. Each arc is a selection action, labelled by the object 
being moved and its target. Each node (except the root) is a 
validation action, labelled by the element(s) of the tuple it 
instantiates and the duration of the physical action. Nodes 
can have side effects that describe the change of state of the 
interface other than the partial instantiation of the tuple. For 
example, selecting a tool in a palette activates this tool for 
future actions. Arcs can have preconditions; when true, the 
selection and validation actions are skipped. For example, 
once a tool is selected in a palette, it can be reused without 
selecting it again. Figure 2 shows the interaction graphs of 
unimanual fixed palettes and toolglasses.  

The sequence graph describes the overall interface. It is 
constructed by merging together the roots of all the 
interaction graphs and adding arcs from each leaf to the 
new root. An interaction sequence is a sequence of tuples 
that can be instantiated by a path starting and ending at the 
root of the sequence graph. It is a set of valid interactions. 

Descriptive power: properties of interaction techniques 
Interaction graphs can describe a large variety of interaction 
techniques. We have found the following set of criteria both 
easy to apply and it is useful to compare them qualitatively: 

• Order and Parallelism 
An interaction technique imposes a sequential and/or 
parallel organization of its constituent actions, visualized by 
the shape of the interaction graph and the use of the parallel 
construct. For example, a toolglass is highly parallel while a 
traditional palette is highly sequential. 
• Persistance 

Interaction techniques may have side effects such as setting 
attributes of tool objects. These side effect may affect how 
the interaction technique is used the next time, as described 
by the pre-conditions in the interaction graphs. For 
example, the tool selected when using a traditional palette is 
persistent, so, for example, creating two rectangles in a row 
only requires selecting the rectangle tool once. Toolglasses 
on the other hand, do not have such persistance. 
• Fusion 

Some tools can instantiate multiple tuples at once. For 
example, many drawing tools allow selection of several 
shapes by pressing the SHIFT key and modifying them all 
at once. Other tools use integrality principles [11] to 
manipulate multiple attributes of an object at once, such as 
the style and thickness of lines in a drawing editor. 

• Development 
Some interfaces allow the user to create several copies of a 
tool with different values for its attributes. For example, in 
HabilisDraw [1], multiple ink wells can be used to color 
objects. This is more efficient than using a single color tool 
and changing its color, but uses more screen real estate. 

 

 
Figure 2: interaction graphs of Fixed Palette and Toolglass 

Predictive power: the complexity measure 
In order to measure the efficiency of an interaction 
technique, we introduce a measure of complexity, inspired 
by the measure of complexity used in evaluating 
algorithms. We define a problem to be solved as a state to 
be reached using an interaction sequence. The size of the 
problem is the length of the sequence. The actions are the 
selection and validation actions used in an interaction 
sequence that solves the problem, i.e. that instantiates the 
tuples in the sequence. The complexity of an interaction 
technique for the given sequence measures the cost of the 
actions relative to the size of the problem when using this 
interaction technique. We use two measures: the number of 
actions to solve the problem and the execution time of these 
actions. Figure 3 shows how several interaction sequences 
can solve the same problem, i.e. reach the same state. As 
with algorithms, we can explore the best- and worst-case 
complexities, i.e. the interaction sequences that solve the 
problem with the lowest and highest measures. 

We have developed an application, SimCIS, that simulates 
the use of an interaction technique and predicts its 
complexity. It takes as input : 
• the initial state of the interface, Sinit.  
• the interaction graph of a technique, IGtech. 
• the interaction sequence, Seq.  
SimCIS constructs the sequence graph, computes the path P 
that instantiates the sequence of tuples Seq and evaluates 
the action and time complexity (Figure 4). 

 



 
Figure 3: Two sequences leading to the same state 

 
Figure 4: the CIS Model 

   
Sequence (size = 12) S1 S2 

Time 13 056 7 015 
Number of actions 44 30 

Figure 5: OMD and palette complexity for S1 (left) & S2 (right) 
Action complexity is computed as the number of nodes and 
the number of arcs in the path P. When a pre-condition is 
true, the corresponding arc and end node are not counted. 
Time complexity is computed by summing the time taken 
by each arc and node in P. The time taken by an arc is the 
sum of the time taken to choose that arc at the parent node 
and the time taken by the pointing action. The former is 
estimated by Hick's law [10]: k log2(1+n) for n arcs; the 
latter is estimated by Fitts’ law [7]: a + b log2(1+D/W) for a 
target of size W at distance D. The time taken by a node is 
the constant time that labels the node. When the pre-
condition of an arc is true, the time of the arc and its end 
node are ignored. 

SimCIS also generates a diagram illustrating the different 
object movements for the sequence, called the Object 
Movement Diagram (OMD). The vertical axis represents 
time (downward) while the horizontal axis approximates 
the distances between objects. Movable objects and 
positions of interest are represented by vertical lines, static 
objects by  double vertical lines. When objects are linked 
together, such as the tools of a palette, they are linked by a 
double horizontal line. Object movements are depicted by 
diagonal lines. When two objects move together, such as 

the cursor and a dragged object, the two lines are linked by 
a simple horizontal bar. Figure 5 shows the OMD for the 
sequences in figure 3 and the fixed unimanual palette. 
Sequence S1 is more complex than S2 for this interaction 
technique. The diagrams clearly illustrate why: S1 requires 
many round trips to the palette while S2 does not. 

TESTING THE MODEL 
In order to achieve a goal, defined as a desired state of the 
interface, users can choose among multiple interaction 
techniques and interaction sequences. This choice is 
informed by the state of the interface, their knowledge of 
the available interaction techniques, and the amount they 
can plan their actions. Some tasks, such as copying, allow 
users to plan long in advance while others, such as problem 
solving, are more incremental [16]. We define interaction 
context as the combination of the current state of the 
interface and the amount users can plan. The former 
depends on the user's past actions while the latter depends 
on the task at hand and the next identified goal to be 
reached. We assume that the choice of interaction sequence 
is driven by the perceived efficiency of each possible path: 
once they know what they want to do, users try to do it as 
fast as possible based on their knowledge of the interface.  

We next use CIS to predict the complexity of three 
interaction techniques and submit these predictions to a 
controlled experiment. The techniques are: Fixed 
Unimanual Palette (FP), Toolglass (TG), and Fixed 
Bimanual Palette (BP). BP, implemented in the CPN2000 
interface [2], uses two hands and two cursors. Each hand 
controls one cursor: the non-dominant hand is typically 
used to select tools in the palette while the dominant hand 
selects work objects. We chose these techniques because of 
their physical similarity but different profiles when 
analyzed using parallelism and persistance criteria (Table 
1). 

 FP BP TG 
Persistance Yes Yes No 
Parallelism No Yes Yes 

Table 1: characteristics of the three techniques 
We used SimCIS to compare these techniques on a variety 
of sequences. We report here the results for sequences S1 
and S2 (fig. 3). S1 minimizes distances between work 
objects, while S2 minimizes the number of tool switches. 
These sequences operationalize to some extent the problem 
solving and copy contexts defined by Mackay [16]: in 
problem solving, users tend to create objects according to 
their thought process and exhibit more locality, i.e. create 
objects of different types that are close together (as in S1);  
In a copy context, users can plan ahead more and tend to 
create objects of the same type together to minimize tool 
switches (as in S2).  
Figure 6 summarizes the predictions computed by SimCIS:  
FP is highly sensitive to context for both time and action 
complexity; BP has the same action complexity as FP but 
time complexity is much less sensitive to context; TG 
shows no sensitivity to context in action complexity, and 
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very little in time complexity. FP and BP are more efficient 
for S2 while TG is more efficient on S1. Finally, SimCIS 
predicts that BP is more efficient in time than both FP and 
TG. We observed the same patterns when testing the 
techniques on other sequences. These results are interesting 
because they confirm some of the experimental results 
reported in earlier work but challenge others (see below). 
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Figure 6: comparing the complexity measures 

EXPERIMENT 
In order to test the validity of these predictions and of our 
hypothesis that users tend to optimize for time when given a 
task, we ran a controlled experiment comparing the three 
interaction techniques on different sequences. 
Task 
A set of shapes (green squares, blue triangles and red 
circles) was displayed. A trial consisted of deleting all the 
shapes, one after the other, as fast as possible. Each 
interaction technique contained three tools that matched the 
three shape types. To delete a shape, the subject applied the 
tool with the shape's type onto that shape. 
Experimental factors 
We used a 3x2x2x3 within-subject design. Factors were: 
• Technique: FP, TG, BP 
• Length: 6, 18 
• Grouping: G, D 
• Order: R, S, F 

We included two interaction sequence lengths to test the 
effect of ability to plan the action sequence. Table 2 shows 
the four different screen layouts associated with Grouping 
and Order. In all cases, shapes are organized radially along 
3 lines of 2 shapes (length=6) or 6 lines of length 3 
(length=18). When shapes are grouped (G), all the shapes 
along a line have the same type. When they are distributed 
(D), all the shapes along a line are different. This factor was 
used in combination with order (below) to operationalize 
the context of use. 

We imposed the order in which subjects had to delete the 
shapes for the R and S trials, so as to test the validity of the 
predictions computed by SimCIS. The order was free in F 
trials, to test the hypothesis that subjects minimize 
execution time. For imposed-order conditions, subjects 
were asked to follow a black line showing the required 
deletion sequence. In the radial imposed order (R), shapes 
had to be deleted along each line; in the spiral imposed 
order (S), shapes had to be deleted along a spiral. 

The combination of grouping (G, D) and imposed order (R, 
S) defines four types of interaction sequences, classified as 
having a low or high number of tool switches ('Lo' and 'Hi'), 
and a short or long distance between successive objects 
('Near' and 'Far') (Table 3). These factors correspond to a 
typical trade-off when planning a task: is it more efficient to 
optimize for distance between work objects at the expense 
of more tool switches, or to optimize for tool switches at the 
expense of a longer distance between work objects. 

 R S 
 

 

G 

 
Lo – Near 

 
Hi – Far 

 

 

D 

 
Hi – Near 

 
Lo – Far 

Table 2: the four types of interaction sequences 
Predictions 
Table 4 shows the time complexity predictions for these 
sequences as computed by SimCIS. We extract four 
predictions from this data: 
• (P1) FP and BP are highly sensitive to the number of 

context switches ('Lo' vs. 'Hi').  
• (P2) BP is as fast or faster than the other two techniques.  
• (P3) Techniques are sensitive to object distance (‘Near’ 

vs. ‘Far’).  
• (P4) A longer sequence length exacerbates the difference 

between the worst and best cases.  

Although this task seems similar to the connect-the-dots 
task [14], it has one important difference: the whole task is 
displayed at once rather than being revealed successively, 
allowing the subject to plan ahead and decide the order to 
do the task. In the free condition (F), we expect subjects to 
optimize for time, i.e., given a technique T, to plan their 
interactions in a sequence that is favourable to T (PFree). 
Subjects 
Twelve adult volunteers, 10 males and two females, all 
right-handed, signed up for 45 minutes time slots. Ages 
ranged from 20 to 56 (mean=29.41, sd=9.73).  
Apparatus 
The training room contained one HP workstation XW4000 
running Windows XP Professional, equipped with two 
WACOM tablets with one puck each for two-handed input. 
The right tablet was 145x125mm, the left was 456x361mm. 
The program was written in Java and ICON [6]. 

Procedure 
The experiment consisted of 36 conditions grouped in three 
blocks, one block per technique. Each block consisted of 



three sub-blocks: a training sub-block to get familiar with 
the technique, a sub-block with free (F) trials, and a sub-
block with imposed order (R and S) trials. The training sub-
block was always first. The order of blocks and non-
training sub-blocks within a block were counterbalanced 
across subjects using a 3x2 Latin square. The order of trials 
in a sub-block was counterbalanced within subjects. Each 
subject completed a total of 108 non-training trials (36 trials 
per technique, i.e. 3 repeated measures). 
In the training sub-block, the subject had to delete shapes 
appearing one by one in the main window and clicked a 
button when they felt familiar with the technique. The next 
shape was always displayed at the top-right corner. At the 
end of the experiment, each subject filled out a survey. 
They were asked if they had previous knowledge of each 
technique, whether they had a preferred a technique during 
the experiment and the cases in which each technique was 
preferred. They were also shown four free-order trials and 
asked to rank their preferred techniques to complete them. 

RESULTS 
Data was recorded at the trial level: time between first click 
and disappearance of the last shape, number of switches, 
and number of errors. Tukey HSD test is used for pairwise 
comparisons. Unless otherwise specified, data for the 
Length condition (6 or 18) is analyzed separately. 
Non-significant effects 
Subjects made more errors with TG (length=6: 1.06; 
length=18: 2.49) and BP (length=6: 0.84; length=18: 2.62) 
than with FP (length=6: 0.68; length=18: 2.17). This is 
probably due to lack of experience: no subject had ever 
used either the TG or BP. Despite these differences, the 
technique had no significant effect on number of errors 
(length=6: F2, 33 = 1.42, p = 0.25; length=18: F2, 33 = 0.58, p 
= 0.56).  This means that differences between techniques 
cannot be explained by the number of errors, which is 
important since SimCIS does not take errors into account.  
Presentation order of the three techniques had no significant 
effect on execution time (length=6: F2, 33 = 0.47, p = 0.63; 
length=18: F2, 33 = 0.58, p = 0.94).  
Comparisons between empirical data and CIS predictions 
Calculations here are based on the data for trials in which 
order was imposed (R and S). Technique had a significant 
effect on execution time  (F2, 33 = 8.67, p = 0.0009). Only 
pairs (BP, FP) and (BP, TG) are significantly different 
(Table 3), so BP < TG ≈ FP. As predicted by CIS, BP is 
more efficient than TG and FP (P2). 

 TG BP FP 

length=6 7972 7134 8812 

length=18 23142 18903 23100 

Table 3: Mean execution times (ms) 
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Table 4: Complexity in time on imposed order trials  

Compare the empirical observations for Order×Grouping 
(Table 6) to the SimCIS predictions (Table 4). Order 
interacts significantly with grouping on execution time for 
both palettes (length=6: F2, 132 = 9.63, p = 0.0001; 
length=18: F2, 132 = 105.13, p < 0.0001).  

As predicted, palettes are faster in conditions S×D and 
R×G (‘Lo’) than in conditions S×G and R×D (‘Hi’). Also, 
BP is less context sensitive than FP (Table 5): differences 
between minimal mean time and maximal mean time are 
significantly larger for FP than for BP (P1). Finally, for 
each technique, mean execution time is shorter in 
conditions ‘Lo’×‘Near’ and ‘Hi’×‘Near’ than in 
‘Lo’×‘Far’ and ‘Hi’×‘Far’ respectively, except for FP 
between Lo×Near and Lo×Far when length=18 but SimCIS 
also predicts this exception, however differences do not 
reach significance (P3). 

Differences between techniques are larger for length=18 
trials than for length=6 trials (Table 5). On length=18 trials, 
pairs (S×G, R×D) and (R×G, R×D) (pairs (‘Hi’, ‘Hi’) and 
(‘Lo, ‘Lo’)) are not significantly different while pairs 
(‘Hi’,‘Lo’) are all significantly different for both FP and 
BP. On length=6 trials, differences are smaller: for BP, only 
pairs (S×G, R×G) are significantly different (P4). 
Users optimize for execution time 
The combination of imposed order and grouping was 
designed so that, for each technique, one was close to the 
optimal time. Subjects approach or even beat this time 
(Tables 7 & 8) when they are asked to delete all shapes as 
fast as possible in the free condition. Analyses of the effect 
of technique on number of tool switches is not significant 
for length=6 trials (F2, 33 = 2.67, p = 0.0836) but is on 
length=18 trials (F2, 33 = 64.56, p < 0.0001, pairs (TG, BP) 
and (TG, FP) are significantly different). 

 FP BP 
length=6 3 347 2 727 
length=18 18 469 10 849 

Table 5: Differences between minimal mean execution time 
and maximal mean execution time for palettes 
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Table 6: Empirical mean time on imposed order trials 

FP BP TG 6 
D G D G D G 

R 10116 6846 7529 5722 7986 7187 
F   7128 6633 5946 5479 7907 7389 
S   8093 10194 6834 8450 8403 8312 

 
FP BP TG 18 

D G D G D G 
R 31181 14542 23539 13711 23476 21385 
F  15796 14379 16224 13754 24095 21710 
S  14105 32570 13802 24560 23075 24632 

Tables 7 & 8: Mean execution times (ms) 
 TG BP FP 

length=6 3.23 3.12 2.80 
length=18 8.40 3.11 2.00 

Table 9: Mean number of switches in free order (F) trials 
We verified that there was no learning effect when the 
imposed order trials (R/S) were presented before the free 
ones (F) (length=6: F1, 22 = 3.82, p = 0.0633; length=18: F1, 

22 = 0.28, p = 0.6013). The overhead of having to follow the 
black line in imposed-order trials may explain why free 
trials sometimes beat the best imposed-order trials. 

Subjects minimize the number of tool switches when they 
use a palette (FP or BP) in ‘Lo’ condition, but not when 
they use TG (Table 9). This shows that subjects understood 
how each technique was sensitive to the context and 
optimized its use accordingly.  

In the post-hoc survey, only three subjects were able to 
describe in which trials a technique would be most efficient. 
One subject always preferred TG, three BP, and five FP, the 
latter arguing that they were more used to it and that it was 
one-handed. The answers to the final question contrast with 
these preferences yet are consistent with the quantitative 
data: BP always scored better than the other two techniques, 
FP was better than TG on trials in condition G and TG was 
slightly better than FP on the 6-length trial in condition D.  

Altogether, these results show that users are able to 
optimize their use of an interaction technique and adapt it to 
the context at hand. Although they are not always able to 
articulate the properties of interaction techniques, they are 

also able to identify the most efficient technique for a given 
task. This both validates our hypothesis (at least on the 
techniques we have tested) and opens up new developments 
for the CIS model and the SimCIS tool. 

Differences with previously published results 
Kabbash & Buxton (K&B) compared toolglasses to three 
other palettes, including R-tearoff menus (floating uni-
manual palettes) and L-tearoff menus (floating bimanual 
palettes) [14]. We were surprised by the poor performance 
of K&B's equivalent to BP (TG < FP ≈ BP). This 
difference is not due to their use of floating rather than 
fixed palette, since  subjects moved the BP in only 2.9% of 
trials. Our results place BP on a par with TG (BP ≈ TG < 
FP) when we consider trials with 'Hi' tool switches, which 
force users to switch tools at each step, as in the connect-
the-dot task.  

If we consider trials with 'Lo' tool switches, our results 
show that TG is the worst: BP  ≈ FP < TG. This is because 
FP becomes more efficient with fewer tool switches. K&B's 
connect-the-dots task avoided this condition by forcing 
successive dots to differ in color.  

In summary, there is no such thing as a "best" interaction 
technique. Showing the advantages of a new technique is 
legitimate, but it is as important to study "worst-case" 
scenarios, to obtain more generalizable results. 

CONCLUSION AND FUTURE WORK 
We have presented the CIS model that describes the 
structure of interaction techniques and predicts the 
difference between their efficiencies in a given interaction 
sequence. We used it to predict differences of efficiency 
between three interaction techniques: fixed palettes (FP), 
bimanual palettes (BP), and toolglasses (TG). We 
conducted a controlled experiment to test these predictions: 
the efficiency of FP and BP is indeed more context-
dependant than TG, and BP outperforms both FP and TG. 
The experiment also showed that subjects take advantage of 
this sensitivity to optimize execution time. 

We intend to develop CIS in several directions. First, we 
can improve the time complexity predictions by refining the 
model. For example, the largest difference between figures 
7 and 8 are due to toolglasses because we lack a proper 
model of double pointing. Second, some techniques, such 
as those using continuous control, must be accounted for. 
Finally, we plan to extend SimCIS to cover combinations of 
interaction techniques and automatic identification of best- 
and worse-cases. This is challenging due to the combin-
atorial explosion of the number of sequences to explore. 

CIS is not intended to replace empirical evaluation but 
rather acts as a tool to help test multiple alternatives and 
design experiments. It can help explain the sensitivity of 
interaction techniques to context and identify best- and 
worse-case scenarios. We argue that, in order to be 
generalisable, experimental comparisons of interaction 
techniques should include the concept of context sensitivity. 



REFERENCES 
[1] Amant, R. St. & Horton, T. E. (2002). Caracterizing Tool 

Use in an Interactive Environment. Int. Symp. On Smart 
Graphics, p. 86-93 

[2] Beaudouin-Lafon, M. & Mackay, W.E. CPN2000: A Post-
WIMP Graphical Application. (2000). Proc. ACM 
Symposium on User Interface Software and Technology 
(UIST’00). p. 181-190 

[3] Bertelsen, W. O. & Bødker S. (2002). Interaction through 
Clusters of Artefacts. Proc. European Conference on 
Cognitive Ergonomics (ECCE’02). 

[4] Bier, E.A., Stone, M.C., Pier, K. & Buxton, W. (1993). 
Toolglass and Magic Lenses: the See-Through Interface. 
Proc. Siggraph, p. 73-80 

[5] Card, S.K., Robertson, G. & Mackinlay, J. A. (1991). 
Morphological Analysis of the Design Space of Input 
Devices. Proc. ACM Transactions on Information 
Systems, 9(2), p. 99-122 

[6] Dragicevic, P. & Fekete J. D. (2001). Input Device 
Selection and Interaction Configuration with ICON. Joint 
proc. HCI’01 and IHM’01. p. 543-558 

[7] Fitts, P. M. (1954). The Information Capacity of the 
Human Motor System in Controlling the Amplitude of 
Movement. Journal of Experimental Psychology, (47), 
p.381-391 

[8] Foley, J. D., Wallace, V. L. & Chan, P. (1984). The Human 
Factors of Computer Graphics Interaction Techniques. 
IEEE Computer Graphics & Applications. p.13-48 

[9] Green, T.R.G. (2000). Instructions and Descriptions: some 
cognitive aspects of programming and similar activities. 
Proc. ACM Working Conference on Advanced Visual 
Interfaces (AVI’00), p. 21-28 

[10] Hick, W. E. (1952). On the Rate of Gain of Information. 
Quarterly Journal of Experimental Psychology, (4), p. 11-
26 

[11] Jacob, R., Sibert, L., McFarlane, D. & Preston Mullen, M. 
(1988). Integrality and Separability of Input Devices. 
Proc. ACM Transactions on Computer-Human 
Interaction. 1(1). p. 3-26 

[12] John, B. E. & Kieras, D. E. (1996). The GOMS Family of 
User Interface Analysis Techniques: Comparison and 
Contrast. Proc. ACM Transactions on Computer-Human 
Interaction. (3), p. 320-351 

[13] John, B. E. & Kieras, D. E. (1996). Using GOMS for User 
Interface Design and Evaluation: Which Technique ? 
Proc. ACM Transactions on Computer-Human 
Interaction. 3(4), p. 287-319 

[14]  Kabbash, P., Buxton, B. & Sellen, A. (1994). Two-
handed Input in a Compound task. Proc. ACM Human 
Factors in Computing Systems (CHI’94), p. 417-423 

[15] Kurtenbach, G., & Buxton, W. (1993). The Limits Of 
Expert Performance Using Hierarchic Marking Menus. 
Proc. ACM INTERCHI '93. p. 482-487. 

 [16] Mackay, W.E. (2002). Which Interaction Technique 
Works When? Floating Palettes, Marking Menus and 
Toolglasses support different task strategies. Proc. ACM 
Working Conference on Advanced Visual Interfaces 
(AVI’02). p. 203-208 

 


