How to Model, Evaluate and Generate
Interaction Techniques?

Caroline Appert
LRI & INRIA Futurs
Bat. 490, Université Paris-Sud
91405 Orsay, France
appert@Iri.fr

ABSTRACT

This article summarizes the process I have developed to
describe, evaluate and facilitate the creation of novel inter-
action techniques. First, it presents the CIS model for
describing interaction techniques and predicting their effec-
tiveness in real contexts of use. CIS shows that there is no
absolute best technique but that performance depends on
the context of use. The article then shows how to improve
a technique by optimizing subcomponents of its CIS struc-
ture. Finally it describes SwingStates, a toolkit designed to
help develop novel interaction techniques by exploring
different CIS structures.

ACM Classification: D.2.2 [Design tools and Techniques]:
User Interfaces; H.5.2 [Information Interfaces and Presenta-
tion]: User Interfaces — Graphical User Interfaces.

General terms: Design, Human Factors, Performance.
Keywords: Model, Evaluation, toolkit, context.

INTRODUCTION

Research in HCI has produced many novel interaction
techniques aimed at improving the usability of graphical
applications. Yet very few make it into industrial products.
This may be due to the difficulty of assessing the actual
value of a technique and the required efforts to implement
and test it quickly and efficiently. The goal of my Ph.D. is
to develop a framework to describe, evaluate and create
interaction techniques and facilitate their widespread use.

Commonly, measuring the effectiveness of an interaction
technique consists in conducting a controlled experiment
that compares several techniques on a given task. However,
designing such experiments requires a large amount of
work and provides results that are difficult to generalize due
to the specificity of the chosen task. What designers need is
a model that can describe interaction techniques and predict
their performance in different contexts of use before con-
ducting experiments. Such a model would ease the design
of experiments and increase the validity of their results by
helping researchers understand the effect of context on their
performance. I have developed the Complexity of Interac-
tion Sequences (CIS) model [2] to describe WIMP or post-

Copyright is held by the author.
UIST '06, October 15-18, 2006, Montreux, Switzerland.

WIMP interaction techniques and their contexts of use
through the notion of interaction sequences in order to
predict their performance in context.

Automatically generating interaction techniques can lead to
interesting compositions of existing widgets but is un-
likely to lead to very innovative techniques. The generative
approach I am exploring instead consists of providing
researchers and designers with tools to identify high-level
properties of the techniques they create and to quickly
prototype their ideas. CIS serves the first goal by exploring
new techniques according to different properties. Swing-
States [4] is a toolkit developed to serve the second goal.
Since programming graphical user interfaces is notoriously
difficult, developers stick to the existing set of standard
widgets provided by GUI toolkits. SwingStates is an ex-
tension to the existing, widely used Java Swing toolkit to
easily program non-standard interaction techniques without
requiring to learn new development tools.

The rest of this article shows how to describe and evaluate
interaction techniques in context with the CIS model and
how to generate new interaction techniques. It concludes
with future work and open questions.

DESCRIBING INTERACTION TECHNIQUES

The Complexity of Interaction Sequences (CIS) model can
describe the structure of interaction techniques and address
context through the notion of an interaction sequence.

The level of description of CIS is intermediate between the
low level of input devices and the high level of user tasks.
An example of a low-level description is the taxonomy
introduced by Card et al [8] in which input devices are
described as translators from physical properties to logical
parameters of an application. An example of a high-level
description is the family of descriptive and predictive
GOMS models [13] based on task analysis. CMN-GOMS,
NGOMSL and CPM-GOMS describe a task as a hierarchy
of goals with operators as leaves. A goal can be reached by
a method, described as a sequence of sub-goals and opera-
tors. The Keystroke-Level Model (KLM) is the exception
in this family as it describes a task as a totally ordered
sequence of operators, i.e., low-level tasks. Unlike CIS, it
does not explicitly exhibit properties of the technique nor
the context of use.

CIS describes an interface as a set of objects that users can
manipulate. The state of the interface is defined by the set
of objects and the values of their attributes. A manipula-
tion is a creation, modification or deletion of objects. It is
described by a tuple of the form (command, attributes). The
interaction space is the set of manipulations available to

the user in a given interaction state. An interaction step is
a sequence of actions that progressively reduce the interac-
tion space to a single manipulation that it executes, leading
to a new state and therefore a new interaction space.

An interaction technique is a set of interaction steps. CIS
describes it with a directed graph, called the interaction
graph. Figure 1 shows the interaction graphs for two tech-
niques, a traditional fixed palette and a toolglass [7], in a
simple interface that can create rectangles, ellipses and
triangles of a predefined size. Nodes and edges of this
graph correspond to atomic motor and perceptual actions
such as pointing. We distinguish two types of actions,
acquisitions and validations, described by arcs and nodes
in the interaction graph:

* An acquisition (arc) identifies a subset of the current
interaction space; it is usually achieved by moving an
object, typically the cursor, over a tool, a work object
or a position. In the interaction graph, the arc is la-
beled by the object being moved and its target.

* A validation (node) confirms the subset identified by
an acquisition, which becomes the current interaction
space; it is usually achieved by clicking a button or
typing a key. In the interaction graph, each node (ex-
cept for the root) is a validation, labelled by the ele-
ment(s) of the manipulation it instantiates and the du-
ration of the physical action.

Fixed Palette
shortcut-condition

7

FP.on == tri [FP.on == rect| FP.on ==ell

Cursor Cursor Cursor

FP_tri FP_rect FP_ell

Create_Triangle reate_Rectangle|

Create_Ellipse
| FPon:=ell |
totiek Lot Letie
Cursor Cursor Cursor
pos pos / pos side effect
teick
Toolglass
parallel actions
TG_tri Cursor
q M
pos Cursor TG_ell pos
* pos. pos. *
Iq pos pos
: N
Crea(e_;l'nangle Crea!e_Rleclangle Create_rEIIipse
pos pos pos

t
click teick Lot

Figure 1: The CIS description of a fixed palette (top)
and a toolglass (bottom).

Interaction graphs exhibit some high-level properties of
interaction techniques that can be used to compare them
qualitatively such as:

* Order and Parallelism: An interaction technique im-
poses a sequential and/or parallel organisation of its
component actions, visualised by the structure of the
interaction graph and the use of the parallel construct.
For example, a toolglass is highly parallel while a pal-
ette is highly sequential.

* Persistence: Interaction techniques may have side
effects such as setting attributes of tool objects. These
side effects may affect how the interaction technique is
used the next time, as described by the shortcut-
conditions. For example, the tool selected when using
a traditional palette is persistent, so, for example, cre-
ating two rectangles in a row only requires selecting
the rectangle tool once.

How can we capture the context of use using this formal-
ism? Mackay [14] conducted an experiment showing that
users organize their interactions according to their cognitive
context. For instance, in a copy context, users tend to
create objects of the same type in sequence while in a prob-
lem solving context, they create objects according to their
thought process. With CIS, we can operationalize such a
context of use by interaction sequences, i.e. a sequence of
manipulations, and evaluate the technique with respect to
these sequences.

EVALUATING INTERACTION TECHNIQUES

In order to measure the efficiency of an interaction tech-
nique, we introduce a measure of complexity, inspired by
the measure of complexity used in evaluating algorithms.
We define a problem to be solved as a state to be reached
using an interaction sequence. The size of the problem is
the length of the sequence. The actions are the acquisition
and validation actions used in an interaction sequence that
solves the problem, i.e., which activate manipulations in
the sequence. The complexity of an interaction technique for
the given sequence measures the cost of the actions relative
to the size of the problem when using this technique. As
with algorithms, we can explore the best- and worst-case
complexities, i.e. the interaction sequences that solve
equivalent problems with the lowest and highest values.

CIS constructs the sequence graph that describes the over-
all interface by merging together the roots of all the interac-
tion graphs and adding return arcs from each leaf to the
new root. Any path starting and ending at the root of the
sequence graph instantiates an interaction sequence (such
paths will typically go through the root multiple times).
CIS computes the path P that activates the manipulations
of the sequence Seq and evaluates the action and time com-
plexity. Time complexity is computed by summing the
time taken by each non-return arc and node in P. When a
shortcut-condition is true, the corresponding arc and end
node are not counted.

The CIS predictive power stands on labeling actions by
well-known predictive motor and perceptual laws. The time
taken by an arc is the sum of the time taken to choose that
arc at the parent node and the time taken to traverse the art,
typically using a pointing action. The former is estimated
by the predefined time of the physical action, e.g. a click,
and Hick's law [10], which models the choice selection
time: klog,(1+ n) for n arcs; the latter is estimated by Fitts’

law [9], which models the pointing time: b10g2(1+2)
w

for a target of size W at distance D. The time taken by a
node is the constant time that labels the node. When the
shortcut-condition of an arc is true, the times of the arc and
its end node are ignored. When two series of actions are

parallel, the complexity of the whole is approximated by
the maximum of the complexities of each branch.

In order to test the validity of CIS predictions, we ran a
controlled experiment [2] comparing different techniques on
different sequences. The sequences we used corresponded to
the two cognitive contexts identified by Mackay [14]: copy
and problem solving. We compared two techniques from
the original experiment, the standard tool palette and the
toolglass, and added a third one, the bimanual palette. The
latter was implemented in the CPN2000 interface [6] and
combines the persistence property of the standard palette
and the parallelism of the toolglass. It uses two hands and
two cursors: the non-dominant hand selects tools in the
palette with the first cursor while the dominant hand selects
objects in the work area with the second cursor.

The results revealed that although CIS underestimates the
execution times, it predicts the pattern correctly, i.e. the
relationship between interaction sequence and the efficiency
of a technique. The results also confirmed the results re-
ported by Mackay. This supports the fact that CIS can be
used as an evaluation tool at least in the preliminary phases
of designing a new technique or interface.

OPTIMIZING THE COMPONENTS OF A GRAPH
Starting from an interaction graph, i.e. the structure of the
interaction technique, designers can improve it by optimiz-
ing the arcs and nodes actions. For example, replacing a
clicking interaction with a crossing one [1] reduces the time
of a node (clicking takes 200 ms while crossing does not
take any extra time). Similarly, in order to reduce the time
of an arc, we introduced a novel pointing interaction tech-
nique, the OrthoZoom Scroller [3].

The OrthoZoom Scroller is a continuous multi-scale point-
ing technique requiring only a mouse. It extends a tradi-
tional scrollbar into a 1D multi-scale navigation technique.
It behaves like a traditional scrollbar when the mouse is
moved within the bounds of the scrollbar. When dragging
the mouse outside the bounds of the slider, it continuously
changes the granularity/zoom of the slider. The granularity
decreases as the mouse cursor gets farther away from the
scrollbar bounds. In other words, moving the mouse along
the scrollbar orientation performs a pan whereas moving it
orthogonally performs a zoom.

We conducted a controlled experiment showing that the
OrthoZoom Scroller follows Fitts’ law and is about twice
as fast as Speed Dependant Automatic Zooming (SDAZ)
[12] to perform pointing tasks with an index of difficulty
in the 10-30 bits range. Until then, SDAZ was the fastest
mouse-based multi-scale scrolling technique with continu-
ous control that outperformed standard scrolling interfaces.

For lack of a standard, the various multi-scale navigation
techniques that have been reported in the literature recently
are difficult to compare. In order to help designers assess-
ing the effectiveness of different pointing techniques, we
are currently developing an experimental platform [9] dedi-
cated to the comparative evaluation of multi-scale naviga-
tion techniques using Fitts’ methodology.

GENERATING NEW INTERACTION TECHNIQUES
Creating novel interaction techniques often requires a more
radical approach than optimizing an existing one, resulting

in a different structure of the CIS graph. In order to facili-
tate the prototyping and testing of novel techniques and
their integration into real applications, we developed
SwingStates [4], a library that adds state machines and a
canvas widget to the Java Swing user interface toolkit.
SwingStates tightly integrates state machines, the Java
language and the Swing toolkit. We chose to extend this
widely used tooliit instead of creating a new onw in order
to facilitate its adoption. Since many developers are famil-
iar with Java/Swing, SwingStates capitalizes this knowl-
edge and brings novel interaction techniques closer to real
applications.

Unlike traditional approaches, which use callbacks or lis-
teners to define interaction, state machines provide a power-
ful control structure that localizes all of the interaction code
in one place. Figure 2 illustrates how SwingStates takes
advantage of Java’s inner classes, providing programmers
with a natural syntax and making it easy to follow and
debug the resulting code. It reduces the potential for an
explosion of states by allowing multiple state machines to
work together.
PressOnShape() / dragged = getShape()
e

- I

Release()

Drag() /
Move(dragged)

1 StateMachine sm = new StateMachine("DnD") {
2 SMShape dragged = null;

3 public State start = new State() {

4 Transition dragOn =

5 new PressOnShape(BUTTON1, "drag") {
© public void action() {

7 dragged = getShape(Q);

8 }

9 3

10 1

11 public State drag = new State() {

12 Transition drag = new Drag(BUTTON1, "drag") {

13 public void action() {

14 move(dragged) ;

15 }

16 b

17 Transition dragOff =

18 new Release(BUTTON1, "start™) { } ;
19 1

20 };

Figure 2: The graphical representation and the
SwingStates’ code of a simple state machine for
dragging objects. (State=circle; transition=arrow,
events in roman font and actions in italics).

The SwingStates canvas manages a display list of shapes,
including simple and arbitrary paths, text strings, images,
etc. Each shape has a geometric transform that combines
translation, scaling and rotation. Shapes may have a parent
shape, with transformations relative to the parent, and a
clipping shape. Shapes can be tagged to group them and
state machines can be attached to a canvas, to individual
shapes, and even to tags. Several state machines can be
active at once, running in parallel.

SwingStates allows developers to easily implement post-
WIMP techniques. SwingStates can be used to change the
behavior of standard Swing widgets, e.g., to customize
buttons so that crossing rather than clicking activates them.
Figure 3 shows two other examples of modified Swing
widgets: an entry field to enter a numeric value using a
joystick-like interaction and a pie menu to change the
background color of other widgets.

We used an earlier version of SwingStates’ Canvas [5] in a
Master’s level computer science course where students
implemented a wide variety of interaction techniques, in-
cluding toolglasses, magnetic guidelines and side views.
Unlike our attempts in previous years with other toolkits,
all students completed their projects with little or no help,
demonstrating the power and simplicity of SwingStates to
implement advanced interactions.

—— “textfield|
(button)

S

| checkbox

Figure 3: A joystick text entry (top) and a pie menu
(bottom) that changes the color of other arbitrary
Swing widgets: button, checkbox, text field.

FUTURE WORK AND DISCUSSION

This article has presented the current state of my Ph.D.,
whose goal is to provide a framework for describing, evalu-
ating and creating interaction techniques. I introduced CIS,
a model that describes the structure of interaction tech-
niques and predicts their relative performance for different
interaction sequence, and I presented how to generate new
interaction techniques by optimizing the components of
existing ones as well as by creating new ones with the
SwingStates extension to Java/Swing.

I am currently working on a stronger validation of the effect
of context on performance, by studying different navigation
techniques in different context of use, e.g. when the user
knows the location of the target he wants to reach as op-
posed to when he is looking for a target. I am also working
on bridging the gap between CIS and SwingStates so that
the CIS model can be derived from the SwingStates code
by adding some metadata to it. This allows comparing
predictions with ‘live’ results to improve CIS.

I am looking forward to the UIST Doctoral Consortium for
presenting this work and gathering feedback. I am particu-
larly interested in discussing ways to validate the various
components of my work. Also, while CIS is a model dedi-
cated to graphical interaction, it would be interesting to
study how a similar approach could apply to other interac-
tion styles such as tangible interfaces and Ubicomp.

REFERENCES

1.

10

1

[

12

13.

14.

Accot, J. and Zhai, S. 2002. More than dotting the i's -
foundations for crossing-based interfaces. In Proc. Confer-
ence on Human Factors in Computing Systems. CHI'02.
pages 73-80.

Appert, C., Beaudouin-Lafon, M. and Mackay, W.E. (2004).
Context matters: Evaluating interaction techniques with
the CIS model. In Proc. People and Computers. HCI'04.
pages 279-295

Appert, C. and Fekete, J.D. (2006). OrthoZoom Scroller: 1D
Multi-Scale Navigation. In Proc. ACM Conference on Hu-
man Factors in Computing Systems. CHI'06. pages 21-30.

. Appert, C. and Beaudouin-Lafon, M. SwingStates: Adding

State Machines to the Swing Toolkit. Accepted to ACM
Symposium on User Interface Software and Technology.
UIST'06. 4 pages.

. Appert, C. and Beaudouin-Lafon, M. (2006) SMCanvas :

augmenter la boite a outils Java Swing pour prototyper des
techniques d'interaction avancées. In Proc. conférence
francophone sur l'Interaction Homme-Machine. THM’06.
pages 99-106.

. Beaudouin-Lafon, M. & Lassen, H.M. (2000). CPN2000: A

Post-WIMP Graphical Application. In Proc. ACM Sympo-
sium on User Interface Software and Technology .
UIST’00. pages 181-190

Bier, E.A., Stone, M.C., Pier, K. & Buxton, W. (1993). Tool-
glass and Magic Lenses: the See-Through Interface. In
Proc. ACM Siggraph, pages 73-80.

. Card, S.K., Robertson, G. & Mackinlay, J. A. (1991). Mor-

phological Analysis of the Design Space of Input Devices.
In Proc. ACM Transactions on Information Systems, 9(2),
pages 99-122.

. Fitts, P. M. The information capacity of the human motor

system in controlling the amplitude of movement. Journal
of Experimental Psychology, 47:381-391, 1954.

.Y. Guiard, J.D. Fekete, Y. Du, C. Appert, M. Beaudouin-

Lafon and O. Chapuis. (2006). Shakespeare’s Complete
Works as a Benchmark for Evaluating Multiscale Docu-
ment-Navigation Techniques. In Workshop BELIV’06.
AVTI'06, 6 pages.

.Hick, W.E. (1952). On the Rate of Gain of Information.

Quarterly Journal of Experimental Psychology, 4, pages
11-26.

Jgarashi, T. and Hinckley, K. (2000). Speed-dependent

automatic zooming for browsing large documents. /n Proc.
ACM symposium on User interface software and technol-
ogy. UIST’00, pages 139-148

John, B. E. & Kieras, D. E. (1996). The GOMS Family of
User Interface Analysis Techniques: Comparison and Con-
trast. Proc. ACM Transactions on Computer-Human Inter-
action. 3(4), pages 320-351.

Mackay, W.E. (2002). Which Interaction Technique Works
When? Floating Palettes, Marking Menus and Toolglasses
support different task strategies. Proc. ACM Conference on
Advanced Visual Interfaces. AVI’02. pages 203-208.

