
Scale Detection for a priori Gesture Recognition

Caroline Appert1,2 Olivier Bau2,1

appert@lri.fr bau@lri.fr
1LRI - Univ. Paris-Sud & CNRS 2INRIA

Orsay, France Orsay, France

ABSTRACT
Gesture-based interfaces provide expert users with an effi-
cient form of interaction but they require a learning effort for
novice users. To address this problem, some on-line guid-
ing techniques display all available gestures in response to
partial input. However, partial input recognition algorithms
are scale dependent while most gesture recognizers support
scale independence (i.e., the same shape at different scales
actually invokes the same command). We propose an al-
gorithm for estimating the scale of any partial input in the
context of a gesture recognition system and illustrate how it
can be used to improve users’ experience with gesture-based
systems.

Author Keywords
Stroke, Recognition, Gesture, Scale

ACM Classification Keywords
H.5.2 Information interfaces and presentation (e.g., HCI):
Miscellaneous.

General Terms
Algorithms, Human Factors

INTRODUCTION
Gesture-based interfaces allow users to draw an arbitrary
shape to invoke a command, providing expert users with
a direct and efficient form of interaction. However, users
have to learn the available gestures and their associated com-
mands. This problem motivated research on online help sys-
tems improving users’ transition from novice to expert. For
example, Kurtenbach et al. [6] used crib-sheets showing the
gesture set displayed in response to users’ hesitation. More
recently, Bau and Mackay [3] proposed OctoPocus, a dy-
namic on-line guide. If the user pauses during gesture input,
the guide appears to show all possible gesture alternatives.
As opposed to crib-sheets, that consume a large amount of
screen space, the content of the guide is updated dynamically
as the input grows and contains only the subset of gestures
that match the partial input (Fig. 1-(a, b)).

ACM, 2010. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in CHI 2010 (April 10 – 15, 2010, Atlanta,
Georgia, USA) http://doi.acm.org/10.1145/1753326.1753456

Cut
Copy

Cut

(a) (b)

Copy

(d)(c)
PRESS &WAIT WAITPRESS & STROKESTROKE

Copy

Figure 1. (a-b) OctoPocus in novice mode (tracing copy causes cut to
get thinner). (c-d) OctoPocus in intermediate mode (cut disappeared,
and there is a scale mismatch for copy)

These techniques provide effective assistance to novice users
but their main limitation is their scale dependence: each tem-
plate gesture has a fixed size. As illustrated with OctoPocus
in Fig. 1, the template does not provide optimal guidance
when the user’s stroke does not match the template’s scale,
although the final gesture may be correctly recognized by a
scale independent algorithm. While non-optimal guidance
may be problematic in novice mode, such inconsistencies
are even more likely to happen in intermediate mode where
the user already started a gesture before invoking the online
help (Fig. 1-(c, d)). In this latter case, the probability of scale
mismatch between input and guiding paths is increased.

This scale independence problem motivates our main contri-
bution: an algorithm that detects the scale of any incomplete-
input relative to a gesture template. We first motivate the
need for scale independence by empirical observations. We
then detail the algorithm for scale recognition of incomplete
input and present an evaluation of its accuracy. We finish by
illustrating how our algorithm can improve users’ experience
with systems based on gesture recognition.

SCALE INDEPENDENCE
Long et al. have [7] investigated users’ perception of gesture
similarity. They presented sets of gestures to participants
and asked them to select the one that they perceived as the
most different. They tested whether scale was a discriminat-
ing feature for users by asking participants about gesture dif-
ferences within triads of spiral gestures displayed at different
scales. Results suggest that the gesture area was not signifi-
cantly contributing to similarity judgment. This preliminary
study, while very interesting, has some limitations. On one
hand, scale has been investigated as one feature among many
others, on a rather limited set of gestures. On the other hand,
we are interested in the differences in scale of gestures drawn
from memory, which is different than the visual perception
of scale differences among three displayed shapes.

1

u01: (angle=4.4, length=7)
u02: (angle=3.2, length=5)
u03: (angle=2.9, length=14)
u04: (angle=2.3, length=18)
u05: (angle=1.9, length=18)
u06: (angle=1.4, length=14)
u07: (angle=1, length=20)
u08: (angle=0.4, length=30)
u09: (angle=6.2, length=15)
u10: (angle=5.8, length=14)
u11: (angle=5.4, length=23)

v01: (angle=5.3, length=118)
v02: (angle=3.8, length=63)
v03: (angle=3.1, length=8)
v04: (angle=1.5, length=21)

u01
u02

u03
u04
u05
u06

u07 u08 u09
u10
u11

v01

v02 v03

v04

length(u01+u02) = 13 = 0.81 * length(a01)
length(u03) = 14 = 0.62 * length(a02)
length(u04) = 18 = 0.76 * length(a03)
length(u05) = 18 = 1.07 * length(a04)
length(u06) = 14 = 0.56 * length(a05)
length(u07) = 20 = 0.78 * length(a06)
length(u08) = 30 = 1.15 * length(a08)
length(u09) = 15 = 0.60 * length(a09)
length(u10) = 14 = 0.42 * length(a10)

length(v01) = 118 = 1.45 * length(b01)
length(v02+v03) = 71 = 1.37 * length(a02)

estimated scale = (1.45 + 1.37) / 2
 = 1.41 of template a)

estimated scale = (0.81 + 0.62 + 0.76 + 1.07 + 0.56 + 0.78 + 1.15 + 0.60 + 0.42) / 9
 = 0.75 of template b)

a01: (angle=3.2, length=16)
a02: (angle=2.8, length=23)
a03: (angle=2.2, length=24)
a04: (angle=1.6, length=17)
a05: (angle=1.3, length=25)
a06: (angle=0.7, length=26)
a07: (angle=0.3, length=26)
a08: (angle=6.1, length=25)
a09: (angle=5.7, length=34)
a10: (angle=5.2, length=33)
a11: (angle=4.7, length=32)
a12: (angle=4.2, length=35)
a13: (angle=3.6, length=10)
a14: (angle=4.5, length=58)
a15: (angle=4.7, length=37)

b01: (angle=5.5, length=81)
b02: (angle=3.1, length=52)
b03: (angle=0.8, length=79)

a01
a02

a03

a04
a05

a06 a07
a08

a09

a10

a11

a12
a13

a14

a15

b01

b02

b03

TEMPLATES

SIR

SIR

a)

b)

SIR

SIR

comparison with a)

comparison with b)

INCOMPLETE GESTURE v INCOMPLETE GESTURE u

Figure 2. Scale estimation of two incomplete gestures based on our algorithm

0

10000

20000

gesture class

Mean(area in pixels2)
Std Dev(area in pixels2)

Figure 3. Mean and standard deviation for 6 participants on 16 strokes.

As a further investigation of gesture scale variations for com-
mand strokes, we took a closer look at the stroke area on the
data from an experiment conducted in [1]. In this experi-
ment, the shape stimulus is presented in the center of the
screen, always at the same scale, and disappears as soon as
the participant starts drawing. Each of the 6 participants saw
11 blocks of 16 different stroke stimuli (see x-axis on Fig.
3). Fig. 3 reports the mean area and the standard deviation
for each stroke stimulus over all collected answers to that
stimulus. We observe a substantial standard deviation for
most of the stimuli, showing that recognition mechanisms
for command strokes should be robust to scale variations.

Many gesture recognition algorithms allow the recognition
of gestures independently from their scale, such as the $1
recognizer [11]. Rubine’s recognizer [10] can also be made
scale independent if the training examples inhibit the proper
features. Similarly, we are interested in adding control over
scale independence to incomplete-input recognition.

INCOMPLETE INPUT SCALE ESTIMATION
We now present the algorithm that estimates the scale of an
incomplete gesture. We were inspired by the “turning angles
representation” algorithm used in image analysis [8]. It rep-
resents a shape as a vector of turning angles. The shape is

sampled at a given number of equally spaced points to obtain
a series of subsegments. Each subsegment can then be rep-
resented by the turning angle it forms with a reference axis,
e.g., the x-axis. The distance between two shapes is simply
computed as the distance between the two vectors of turning
angles.

When considering partial input recognition, users provide
only a prefix of the final gesture, making the sampling in
equally spaced points irrelevant for comparing an input to a
template. Thus, we use a modified version of this algorithm
in Step 1 of our own algorithm as described below. Given
an input stroke v and a set of templates { a, b, c, ... }, the
three steps of our algorithms illustrated on Fig. 2 are:

Step 1: Compute a scale independent representation (SIR)
for input v and all templates a, b, c, ... A SIR can be seen
as a coarse turning angle representation: it aggregates the
subsegments that do not significantly vary in the angle they
form with the x-axis (i.e., the difference is less than π

8). The
SIR is thus a series of segments defined by their length (i.e.,
the sum of aggregated lengths) and their angle (i.e., the mean
of aggregated angles).
Step 2: SIRs are convenient to look for the prefix that mat-
ches v in each template by simply comparing the succes-
sive segments. Two segments are similar if their difference
in terms of angle is lower than TOLERANCE=π4 . If a seg-
ment vi from v is not similar to the corresponding segment
in a template, vi is recorded as non matching. When the
non matching length of consecutive input segments exceeds
10% of the length of v, the compared template is discarded.
However a non matching part smaller than that threshold is
considered as a noisy part of the last input segment (e.g., v03
on Fig. 2) or the first input segment when this portion is the
beginning of the gesture (e.g., u01 on Fig. 2). Note that
this tolerance to noise is applied only on the input side and
not on the template side to avoid ignoring angle changes on
small portions that are explicitly part of a template (e.g., a

2

0

100

200

300

400

number of gestures right class not identified
right class identified

input = 25% of the final gesture
input = 50% of the final gesture
input = 75% of the final gesture

actual scale
scale estimated

0

1

2

(a) (b)
Figure 4. (a) Number of incomplete gestures with correct or incorrect class identification. (b) Ratio between estimated and actual scales by gesture
class × input length.

curly brace stroke). Our algorithm thus considers templates
as perfect strokes1.
Step 3: Once the matching prefix (if any) is identified for
each template, the scale ratio between the input and a match-
ing prefix is computed as the mean of the ratios between
lengths of matching pairs of segments.

EVALUATION
To assess the accuracy of our algorithm, we tested it on a
set of incomplete gestures we generated from the data we
already used for Fig. 3. We used each gesture at three dif-
ferent stages of incompleteness (25%, 50% and 75% of the
total gesture length) and recorded the set of candidate classes
our algorithm output to check if this set contained the right
gesture class. This was not the case for only 187 incomplete
gestures among 6318, which corresponds to a low recogni-
tion error rate of∼ 3%. Fig. 4-a shows that recognition fails
mostly for the spiral gesture which is very difficult to draw
and thus exhibits too high a variability.

For recognized gestures, we computed the ratio between the
size of the bounding box of the gesture as completed by
our algorithm and the size of the bounding box of the ac-
tual user’s complete input, which should ideally be equal to
1 (i.e., perfect accuracy). Figure 4-b shows that this ratio
was ∼ 1-1.5 in most of the cases (the mean is 1.34 with a
standard deviation of 0.53). The estimation is less accurate
when only 25% of the total gesture is input, especially for
gestures where the first 25% is a straight segment. This is
not surprising since the scale estimation provided by our al-
gorithm ignores the last segment in the SIR. Indeed, it is im-
possible to know if this last segment is complete or not and
taking it into account would introduce too much uncertainty
in the scale estimation. Thus, until the SIR of an incomplete
gesture contains only one segment, our algorithms simply
outputs the template scale.

APPLICATIONS
Visual supports
The partial-input scale estimation algorithm described in the
previous section can be applied to improve existing guiding
1To facilitate template input, our program can load a set of files
that contain the perfect templates as SVG polylines that can eas-
ily be produced with a graphical editor such as GIMP or Adobe
Illustrator.

(a) (b) (c) (d)

Figure 5. Scale detection for a visually coherent guide

techniques which can be invoked at any time while gestur-
ing, such as the crib-sheets of the Tivoli system [6] or Oc-
toPocus [3]. First, it allows to identify candidate gesture
classes, resulting in less screen space consumption thanks to
smaller crib-sheets. Second, the visual support they provide
can be made more coherent by adapting the template scales
to the scale of the current partial input. For example, Fig. 5
illustrates how OctoPocus can be improved: for each match-
ing template, the missing part is rescaled using the proper
ratio identified by our algorithm before being concatenated
(Fig. 5-(a-b)).

Informal user feedback on the augmented OctoPocus prom-
pted us to implement a scale computation policy that de-
pends on the stroke’s nature. On the one hand, dynamic
scale adjustment at each input point is required for the guide
to remain coherent when the user cuts corners in polyline
sections as on Fig. 5-(c-d). On the other hand, computing
the scale at each point for curves results in too much visual
distraction. Actually a curved part such as the beginning of
the question mark on Fig. 2 contains many small segments
in its SIR so the scale estimation varies frequently (each time
a new segment is detected) on the partial input. For an op-
timal user experience, we suggest to first update the guide
at its invocation and then update it only when the segment
lengths in the SIR exceed an acceptable length.

Motor support
Our algorithm is reliable enough to draw a set of reason-
able predictions of user input. We can thus take advantage
of it to add a magnetic mechanism to facilitate stroke in-
put from a motor perspective. To that end, we “dig ditches”
along the most probable template trajectories in motor space

3

(a) mouse real input (b) most plausible template (c) displayed gesture trace

Figure 6. (a) Mouse raw input (b) Template (c) Actual gesture trace.

D: estimated distance between mouse input and template trajectory
d: distance actually used

D

P: mouse input

C: closest point to P
on the template trajectory

template trajectory

d

D
ditch width

2

ditch width
2

(a) (b)

tangent to C

Figure 7. (a) Distance estimation between mouse input and the ideal
stroke trajectory - (b) Function linking mouse distance, D, to distance
actually used in gesture trace, d.

in the spirit of kinematic templates [4]. The width and depth
of each ditch are proportional to the template’s plausibility
given the current partial input: the more probable a template,
the larger and the deeper its ditch. To provide a smooth and
continuous behavior, ditch depth is maximal in the center
and progressively decreases towards the boundaries. The
users have more control than with a binary snapping mech-
anism, enabling them to deviate from the most probable tra-
jectory to draw another gesture.

Each time our algorithm receives a new mouse input P , it
computes its distance D to the current template candidates
to determine the template which is the most probable at P .
If P is out of any ditch, it is added to the current prefix with-
out any treatment. If P is inside the ditch, we turn P , distant
from D to the template, into P ′, distant from d < D, so as
to simulate the ditch resistance. Fig. 7-(a) shows the com-
putation of D and Fig. 7-(b) the function mapping D to d.

Fig. 6 shows an interesting side effect of magnetism: the
stroke gets beautified as it is drawn. Not only does this in-
form the user that he can draw more quickly since the trace
looks good, but it also provides a pleasant aesthetic experi-
ence. To our knowledge real-time beautification of arbitrary
strokes has never been proposed before. Diagram beautifi-
cation [9] or the SST toolkit [1] provide beautification by
turning the stroke into its ideal template only after the stroke
is fully drawn. Interactive beautification [5] provides a more
real-time experience: it beautifies simple segments as soon
as they are entered thanks to inferred geometric constraints
based on other already existing segments. It is more power-
ful in the sense that it supports drawings composed of several
strokes, but it is not able to handle an arbitrary shape made of
a single stroke. In the same spirit, the prototype presented in
[2] continuously morphs gesture input into ideal shapes but
the algorithmic approach for the recognition engine differs

from ours and only handles families of predefined shapes
(circles, axis-aligned boxes, and line segments) and, as Arvo
and Novins point out, expanding the repertoire of shapes is
more complicated than with our approach because it “in-
volves more than simply adding additional classes to the rec-
ognizer” [2].

CONCLUSION
We have presented an algorithm for detecting the scale of
incomplete gesture input and showed how to apply it to im-
prove users’ experience with gesture-based interfaces by pro-
viding better visual and motor support. We now plan to ex-
tend it so it can handle non uniform scaling (i.e., provide a “x
scale” and a “y scale”) to implement a fully functional draw-
ing editor able to handle a large number of shape families,
e.g., from simple ellipses to different kinds of arrows.

REFERENCES
1. C. Appert and S. Zhai. Using strokes as command

shortcuts: cognitive benefits and toolkit support. In
Proc. CHI ’09, 2289–2298, New York, NY, USA, 2009.
ACM.

2. J. Arvo and K. Novins. Fluid sketches: continuous
recognition and morphing of simple hand-drawn
shapes. In Proc. UIST ’00, 73–80, New York, NY,
USA, 2000. ACM.

3. O. Bau and W. E. Mackay. Octopocus: a dynamic guide
for learning gesture-based command sets. In Proc.
UIST ’08, 37–46, New York, NY, USA, 2008. ACM.

4. R. Fung, E. Lank, M. Terry, and C. Latulipe. Kinematic
templates: end-user tools for content-relative cursor
manipulations. In Proc. UIST ’08, 47–56, New York,
NY, USA, 2008. ACM.

5. T. Igarashi, S. Matsuoka, S. Kawachiya, and H. Tanaka.
Interactive beautification: a technique for rapid
geometric design. In Proc. UIST ’97, 105–114, New
York, NY, USA, 1997. ACM.

6. G. Kurtenbach and T. Moran. Contextual animation of
gestural commands. Eurographics Computer Graphics
Forum, 13(5):305–314, 1994.

7. A. C. Long, Jr., J. A. Landay, L. A. Rowe, and
J. Michiels. Visual similarity of pen gestures. In Proc.
CHI ’00, 360–367, New York, NY, USA, 2000. ACM.

8. W. Niblack and J. Yin. A pseudo-distance measure for
2d shapes based on turning angle. Image Processing,
International Conference on, 3:3352, 1995.

9. T. Pavlidis and C. J. Van Wyk. An automatic beautifier
for drawings and illustrations. SIGGRAPH Comput.
Graph., 19(3):225–234, 1985.

10. D. Rubine. Specifying gestures by example.
SIGGRAPH Comput. Graph., 25(4):329–337, 1991.

11. J. O. Wobbrock, A. D. Wilson, and Y. Li. Gestures
without libraries, toolkits or training: a $1 recognizer
for user interface prototypes. In Proc. UIST ’07,
159–168, New York, NY, USA, 2007. ACM.

4

	Introduction
	Scale Independence
	Incomplete input scale estimation
	Evaluation
	Applications
	Visual supports
	Motor support

	Conclusion
	REFERENCES

