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This research project investigates interplay between computer science and mathematics. It deals
with symbolic dynamics on groups, using tools and results in group theory as well as computability
theory. For computer scientists, mathematical notions based on group theory provide a new and
deeper understanding of subshifts as computational model; likewise, this computer science approach
offers an innovative point of view on groups that will interest mathematicians, for instance by
providing new invariants. It thus perfectly illustrates how mathematics and theoretical computer
science can benefit from each other.

Symbolic dynamics is the study of subshifts, i.e. sets of colourings of a group G by a finite
alphabet A that respect local constraints given by forbidden patterns. Given a set of forbidden
patterns F , the subshift XF it defines is the set of configurations x ∈ AGthat avoids all patterns
from F . This combinatorial definition has a dynamical equivalent. The set of configurations AG ,
endowed with the product topology, is a compact space on which we define the shift transformations:
for every g ∈ G, the shift σg translates a configuration x ∈ AG through σg(x)h = xg−1·h for every
h ∈ G. In this framework, subshifts are exactly subsets of AG that are both shift-invariant and
closed for the product topology. Subshifts can fruitfully be seen as a computational model, as well
as a discrete model for dynamical systems. Subshifts of finite type (SFT) constitute an interesting
class of subshifts since they are described by a finite amount of information, and can model real-
world phenomena. Classical symbolic dynamics, originally defined in the highly influential article by
Morse and Hedlund [5] in order to study the discretization of dynamical systems, has historically
focused on the one-dimensional case G = Z [8] and was later generalized to higher dimensions
G = Zd with d ≥ 2 []. But increasing the dimension has a strong impact on the decidability
and combinatorial properties of SFTs. Even the simplest question one could ask about SFTs –
decide whether a finite set of forbidden patterns defines a non-empty subshift or not, known as
the Domino problem – is decidable in dimension 1 but undecidable when the dimension increases.
This problem is strongly linked to the existence of periodic configurations in SFT: again whereas
every one-dimensional non-empty SFT admits a periodic configuration, there are two-dimensional
non-empty SFTs that dot not contain any periodic configuration. Similarly, the entropy of an SFT
– roughly speaking a measure of the growth rate of allowed patterns of size n – is easily computable
in 1D but becomes non-computable in higher dimensions. These problems are only three examples
among many others that reflect the existence of a gap between 1D and higher dimensions. Moreover,
several results obtained on finitely generated groups as alternative structures to Z and Zd show us
that understanding where undecidability and complexity generally come from is a non-trivial and
fertile question.

The objective of this project is to explore computational and combinatorial aspects of symbolic
dynamics on finitely generated groups. This new point of view has two advantages: first, it unifies
previous examples and will lead to results not specific to one group. Second, it defines a worthwhile
computational model, relatively unexplored until now: subshifts on groups. For computer scientists,
mathematical notions based on group theory provide a new and deeper understanding of subshifts as
computational model. On the other hand, this computer science approach offers an innovative point
of view on groups that will interest mathematicians, for instance by providing new invariants. We
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strive to identify which dynamical, combinatorial or geometric properties are the most significant
in different results for particular groups, thus allowing to generalize them to larger classes of
groups. To do so we will borrow, improve and generalize techniques from various domains, such as
geometric group theory, computability theory, discrete probability theory, combinatorics on words,
linear algebra and algebraic geometry, and statistical mechanics.

We first describe different methods we intend to work with. To start with, the following tools
and techniques have been chosen both for their innovative aspect and their potential to generate
new results:

1. Understanding how the geometry of the group controls the computability properties of the
subshifts defined on this group, that is to say identifying geometric properties of groups
that are relevant for problems tackled in this project. A particular attention will be paid to
Gromov-hyperbolic groups, since their algorithmic properties are well-understood.

2. Encoding computational models inside SFTs, such as modular machines that have been used
to simplify proofs of various unsolvability results in group theory.

3. Understanding the links between different techniques to prove non-emptiness of non-SFT
subshifts: lower bound method in 1D by Kolpakov [7], entropy compression [9, 10, 4] and
different variants of Lovász local lemma [1].

4. Exploiting the representation of 2D configurations as multivariate formal power series over
integers [6]: express dynamical or computational properties of SFTs with this formalism, and
prove results using tools from linear algebra and algebraic geometry.

5. Generalizing techniques from statistical mechanics – corner transfer matrix method or recent
improvements [2] – to compute or give sharp bounds on the entropy of the appropriate class
of 2D SFTs.

6. Implementing computer aided proofs: some methods mentioned above – Kolpakov lower
bounds method, or the transfer matrix method – are highly computational. Other methods
may also take benefit from computed assisted case analysis, like recent generalizations of
entropy compression [3].

We aim to tackle three difficult questions: first, characterizing finitely generated groups with
decidable Domino problem; second, understanding which groups admit aperiodic SFTs ; third,
defining powerful tools to compute the entropy of 2D subshifts.
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Édition 2016 Proposition détaillée
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