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Abstract

A Theorem of Gao, Jackson and Seward, originally conjectured to be

false by Glasner and Uspenskij, asserts that every countable group admits

a 2-coloring. A direct consequence of this result is that every countable

group has a strongly aperiodic subshift on the alphabet {0, 1}. In this

article, we use Lovász local lemma to first give a new simple proof of

this result, and second to prove the existence of a G-effective strongly

aperiodic subshift for any finitely generated group G. We also study the

problem of realizing densities in groups as a way of generalizing Sturmian

sequences. This problem surprisingly turned out to be harder. We pro-

vide subshifts realizing any density only in the case of finitely generated

amenable groups.

Keywords: Symbolic dynamics, countable groups, amenable groups, Stur-
mian sequences, aperiodic subshift, free subflow.

Introduction

Symbolic dynamics is concerned with the study of subshifts on groups. Sub-
shifts are sets of colorings of a group G by some finite alphabet A that respect
local constraints given by forbidden patterns, or equivalently, subsets of AG

that are both closed for the product topology and shift-invariant. They can
be used to model dynamical systems [HM38, PY98], but can also be seen as
computational models [Hoc09]. Subshifts of finite type (SFT) – those which
can be defined by forbidding a finite set of patterns – constitute an inter-
esting class of subshifts since they are defined by local conditions, and can
model real-world phenomena. Classical symbolic dynamics has focused on
the one-dimensional case G = Z [HM38, LM95] and more recently G = Zd

with d ≥ 2 [Hoc09, PS14]. Subshifts on free groups have also been stud-
ied [Pia06, Pia08]. Very recent results tackle computational aspects of subshifts
on finitely generated groups [BS13, Coh14, ABS14, CP14, Jea15].
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In this article we tackle two general aspects of realizability which concern
subshifts in countable groups: The first one asks if it is possible to construct a
strongly aperiodic subshift, that is, one such that the stabilizer of every element
is the trivial subgroup. The second aspect is inspired by Sturmian words, by
the fact that the factors of length n carry a density of 1’s which converges to
the slope of the irrational rotation which generates the word. Here we ask if
it possible to construct a subshift over {0, 1} such that the density over some
sequence of shift invariant, finite subsets always converges to a fixed density
α ∈ [0, 1].

The existence of a countable group which does not admit a non-empty
strongly aperiodic subshift over the alphabet {0, 1} was asked in [GU09] and
subsequently answered negatively in [GJS09]. Nevertheless, their proof is very
technical. In this article we combine the asymmetric version of Lovász local
lemma [AS08] and compactness of the set of configurations to get a nice tool to
prove non-emptiness of subshifts defined by forbidden patterns. This technique,
which in some sense is the analogue of the probabilistic method in graph theory,
provides very short proofs of the existence of configurations in subshifts. We
use it to prove again in a very simple way the existence of a strongly aperiodic
subshift on any countable group. We also extend the previous result by show-
ing that in finitely generated groups it is also possible to construct non-empty
strongly aperiodic subshifts which satisfy the condition of being G-effective,
that is, that they can be defined as the complement of a recursively enumerable
union of cylinders by a Turing machine which has access to the word problem
of G. That is, we show:

Theorem 2.4. Every countable group G has a non-empty, strongly aperiodic
subshift on the alphabet {0, 1}.

Theorem 2.6. Every finitely generated group G has a non-empty G-effective
strongly aperiodic subshift.

A bi-infinite sequence of 0’s and 1’s is balanced if for every n ∈ N, every
factor of size n can have only two possible quantities of symbols 1. Most fa-
mous examples of balanced sequences are Sturmian sequences, which are both
balanced and aperiodic, or equivalently, codifications of irrational rotations in
the circle [Lot02, PF02]. One property of Sturmian sequences is the fact that
if one considers the density of ones that appears in a sequence of intervals of
length n then the limit converges to the slope α of the irrational rotation which
defines the sequence. In general groups a configuration such that the amount
of 1’s over any finite connected support of size n has at most two values is not
possible as the group’s geometry is too wild. Instead, we keep the property
of converging to a particular density and restrain the convergence to be over
Følner sequences. Formally, we show the following result for amenable groups.

Theorem 3.2. Let G be an amenable, infinite and finitely generated group and
α ∈ [0, 1]. There is a non-empty subshift Xα ⊂ {0, 1}

G such that for any x ∈ Xα

and Følner sequence (Fn)n∈N then dens(1, x, Fn)→ α.
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Thus, by replacing the sequence of intervals of Z for a general Følner sequence
we obtain that the densities still converge to a fixed value α. We study these
subshifts and show that they are weakly aperiodic if α /∈ Q. Some attempts
have been made to generalize Sturmian sequences to dimension 2 [BV00, Fer06].
Our example loses some of the properties of those constructions but instead uses
a two-symbol alphabet and is available on any infinite, finitely generated and
amenable group.

1 Preliminaries

Throughout this article the groups G considered will be either countable or
finitely generated; we denote their identity element 1G. When G is finitely
generated we associate a finite set S ⊂ G of generators and the undirected right
Cayley graph Γ(G,S) = (G, {{g, gs} | g ∈ G, s ∈ S}) so that (G, d) is a metric
space where d is the distance induced on G by Γ(G,S). We shall denote by
B(g, n) = {h ∈ G | d(g, h) ≤ n} the ball of size n centered in g ∈ G. In general
we denote BΓ(v, n) the ball of size n centered in v of an arbitrary graph Γ. We
also denote by WP(G) := {w ∈ (S ∪ S−1)∗ | w =G 1G} the set of words which
can be written using elements from S and their inverses which are equal to 1G
in the group G. If WP(G) is a decidable language we say that G has decidable
word problem. For more references see [MKS04].

We now give some basic definitions of symbolic dynamics. For a more com-
plete introduction the reader may refer to [LM95, CSC09, ABS14]. Let A be a
finite alphabet and G a countable group. The set AG = {x : G→ A} equipped
with the left group action σ : G×AG → AG defined by (σg(x))h = xg−1h is the
G-fullshift. The elements a ∈ A and x ∈ AG are called symbols and configura-
tions respectively. By taking the discrete topology onA we obtain that the set of
configurations AG is compact and metrizable. In the case of a countable group,
given an enumeration 1G = g0, g1, . . . of G, the topology is generated by the
metric d(x, y) = 2− inf({n∈N| xgn 6=ygn}). If E is a subset of AG, we denote by E
its topological closure. In the case of a finitely generated group another possi-
bility which is more practical is d(x, y) = 2− inf{|g| | g∈G: xg 6=yg}. This topology is
generated by a clopen basis given by the cylinders [a]g = {x ∈ AG|xg = a ∈ A}.
A support is a finite subset F ⊂ G. Given a support F , a pattern with support
F is an element p of AF , i.e. a finite configuration and we write supp(p) = F .
We also denote the cylinder generated by p centered in g as [p]g =

⋂

h∈F [ph]gh
One says that a pattern p ∈ AF appears in a configuration x ∈ AG if there
exists g ∈ G such that for any h ∈ F , xgh = ph, said otherwise, if there exists
g such that x ∈ [p]g. In this case we write p ⊏ x. We denote the set of finite
patterns over G as A∗

G :=
⋃

F⊂G,|F |<∞A
F .

Definition 1.1. A subset X of AG is a G-subshift if it is σ-invariant – σ(X) ⊂
X – and closed for the cylinder topology. Equivalently, X is a G-subshift if and
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only if there exists a set of forbidden patterns F ⊂ A∗
G that defines it.

X = XF :=
{

x ∈ AG | ∀p ∈ F , p 6⊏ x
}

=
⋂

p∈F ,g∈G

AG \ [p]g.

That is, a G-subshift is a shift-invariant subset of AG which can be written
as the complement of a union of cylinders. If the context is clear enough, we
will drop the G and simply refer to a subshift. A subshift X ⊆ AG is of finite
type – G-SFT for short – if there exists a finite set of forbidden patterns F such
that X = XF .

Consider a group which is generated by a finite set S. A pattern coding c
is a finite set of tuples c = (wi, ai)1≤i≤n where wi ∈ (S ∪ S−1)∗ and ai ∈ A.
We say that a pattern coding is consistent if for every pair of tuples such that
wi =G wj (wi and wj represent the same element under G) then ai = aj . We
say a consistent pattern coding c codifies a pattern P if every wi represents an
element of supp(P ) and for every g ∈ supp(P ) there exists a tuple (wi, ai) ∈ c
such that g =G wi and Pg = ai.

Definition 1.2. For a finitely generated group G we say a subshift X ⊆ AG is
G-effective if there exists a Turing machine with oracle WP(G) which recognizes
a set of pattern codings such that the consistent ones codify a set of patterns F
such that X = XF . If the same property is valid without the oracle we say X is
Z-effective.

The concept of G-effectiveness is a generalization of effectiveness for Z-
subshifts where the set of forbidden patterns is a recognizable (recursively enu-
merable) set of words. It is also equivalent to a more natural definition of
recognizability where instead of using a Turing machine with oracle WP(G) it
uses a modified Turing machine – G-Machine – which has the group G as the
tape and moves on the tape by using the generators and their inverses. A
more throughout discussion of these concepts and their relations to the classical
definition of effectiveness can be found in [ABS14].

Let x ∈ AG be a configuration. The orbit of x is the set of configurations
orbσ(x) = {σg(x) | g ∈ G}, and the stabilizer of x is the set of group elements
stabσ(x) = { g ∈ G | σg(x) = x}. In the context of subshifts, the stabilizer is a
normal subgroup of G.

Definition 1.3. A G-subshift X ⊆ AG is weakly aperiodic if for every config-
uration x ∈ X, |orbσ(x)| = ∞. A G-subshift X ⊆ AG is strongly aperiodic if
for every configuration x ∈ X, stabσ(x) = {1G}.

For infinite groups the weak concept of aperiodicity is relevant and implied
by strong aperiodicity.

2 Non-empty strongly aperiodic subshifts

In this section we construct non-empty strongly aperiodic subshifts on any
countable group. The question of the existence of an infinite countable group
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G that does not admit a non-empty strongly aperiodic subshift over the al-
phabet {0, 1} was asked in [GU09] and subsequently answered in the negative
in [GJS09]. The proof presented in the latter article is a technical construction.
In this section we present a short proof based on Lovász local lemma [AS08].
We give a second proof – inspired by the use of local lemma in [AGHR02] –
which is quite easy to visualize and gives a G-effective subshift, but this proof
uses a large alphabet and only works in finitely generated groups.

We begin by introducing the asymmetric version of the local lemma. We then
extract a corollary to show how it can be used in order to produce configurations
in subshifts by using the compactness of the set of configurations and then we
proceed to the construction of the strongly aperiodic subshifts.

2.1 Lovász local lemma

Lemma 2.1. [Asymmetric Lovász local lemma] Let A := {A1, A2, . . . , An}
be a finite collection of measurable sets in a probability space (X,µ,B). For
A ∈ A , let Γ(A) be the subset of A such that A is independent of the collection
A \ ({A} ∪ Γ(A)). Suppose there exists a function x : A → (0, 1) such that:

∀A ∈ A : µ(A) ≤ x(A)
∏

B∈Γ(A)

(1− x(B))

then the probability of avoiding all events in A is positive, in particular:

µ

(

X \
n
⋃

i=1

Ai

)

≥
∏

A∈A

(1− x(A)) > 0.

The sets A1, A2, . . . , An can be seen as bad events that we want to avoid. In
the context of the present article where A is a finite alphabet and G a countable
group, we will choose the probability space to beX = AG with µ any probability
measure on AG. Suppose X is a subshift defined by a set of forbidden patterns
F =

⋃

n≥1 Fn where Fn ⊂ ASn is a finite set of patterns with a finite support Sn.

We will consider the bad events An,g =
⋃

p∈Fn
[p]g =

{

x ∈ AG : x|gSn
∈ Fn

}

,
that is to say one of the forbidden patterns p ∈ Fn appears in position g.
Subshifts might be defined by an infinite amount of forbidden patterns while
the lemma only holds for a finite collection of bad events. Nevertheless the
compactness of AG allows us to use the lemma anyway, as explained in what
follows.

Lemma 2.2. Let G a countable group and X ⊂ AG a subshift defined by the
set of forbidden patterns F =

⋃

n≥1 Fn, where Fn ⊂ ASn . Suppose that there
exists a function x : N×G→ (0, 1) such that:

∀n ∈ N, g ∈ G, µ(An,g) ≤ x(n, g)
∏

gSn∩hSk 6=∅
(k,h) 6=(n,g)

(1− x(k, h)), (∗)

where µ is any probability measure on AG and An,g =
{

x ∈ AG : x|gSn
∈ Fn

}

.
Then the subshift X is non-empty.
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Proof. Consider an enumeration (gn)n∈N of G. For every n ∈ N, we apply
Lemma 2.1 to construct a configuration xn ∈ AG that satisfies the following
property: for every forbidden pattern p ∈ Fk such that k ≤ n and every element
g such that gSk ⊆ {g1, . . . , gn}, we have (xn)|gSk

6= p – in other terms, the
configuration xn avoids all the forbidden patterns in

⋃

k≤n Fk on the finite set
{g1, . . . , gn} ⊂ G. Indeed, in order to show the existence of xn we only need
that for every k ≤ n and g ∈ G such that gSk ⊆ {g1, . . . , gn},

µ(Ak,g) ≤ x(k, g)
∏

gSk∩hSk′ 6=∅
hSk′⊆{g1,...,gn}
(k′,h) 6=(k,g),k≤n

(1 − x(k′, h))

which is a relaxation of condition (∗) by the fact that 0 ≤ x(k′, h) ≤ 1. The
local lemma holds since the set {g1, . . . , gn} is finite and we only consider a finite
number of forbidden patterns, consequently we only consider a finite number of
bad events Ak,g.

By compactness, we can extract from this sequence of configurations (xn)n∈N

a subsequence (xφ(n))n∈N converging to some x ∈ AG. Then x does not contain
any forbidden pattern p ∈ F . Suppose it were the case, that is to say, there
exists some g ∈ G and m ≥ 1 such that p ∈ Fm and x|gSm

= p. Since there
exists also an n ≥ 1 such that gSm ⊂ {g1, . . . , gn}, by definition of the metric
there exists some N ≥ max{m,n} sufficiently big which with this property
that appears in the subsequence (φ(n))n∈N. Then xN contains the forbidden
pattern p somewhere in (xN )|{g1,...,gN}. This contradicts the construction of the
sequence (xn)n∈N, thus x avoids all forbidden patterns and the subshift XF is
non-empty.

2.2 A non-empty strongly aperiodic subshift over {0, 1} in
any countable group.

Consider a configuration x ∈ {0, 1}G. We say that x has the distinct neighbor-
hood property – in [GJS09] they call x a 2-coloring – if for every h ∈ G \ {1G}
there exists a finite subset T ⊂ G such that:

∀g ∈ G : x|ghT 6= x|gT .

Proposition 2.3. If a configuration x ∈ {0, 1}G has the distinct neighborhood
property, then the G-subshift X := orbσ(x) is strongly aperiodic.

Proof. Let y ∈ X . By definition there exists a sequence (gi)i∈N such that σgi(x)
converges to y in the product topology. Suppose there is h 6= 1G such that
σh(y) = y, then by continuity of the shift action under the product topology
we have that σhgi(x) → σh(y) = y. Since x has the distinct neighborhood
property, there exists a finite subset T of G – associated to h−1 – such that
∀g ∈ G : x|gh−1T 6= x|gT . By definition of convergence in the metric, there
exists n ∈ N such that T ⊂ {g0, g1, . . . , gn} and m ∈ N satisfying:
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σhgm(x)|{g0,g1,...,gn} = y|{g0,g1,...,gn} = σgm(x)|{g0,g1,...,gn}

Therefore σhgm(x)|T = σgm(x)|T which implies that x|g−1
m h−1T = x|g−1

m T , a
contradiction.

Theorem 2.4. Every countable group G has a non-empty, strongly aperiodic
subshift on the alphabet {0, 1}.

Proof. The case where G is finite is trivial, as the G-SFT given by

X := {x ∈ {0, 1}G | |x−1(1)| = 1}

is strongly aperiodic. Indeed, let x ∈ X and g ∈ G be the only element such that
xg = 1. Let h ∈ stabσ(x) then σh(x) = x which implies that xh−1g = xg = 1
and thus h = 1G. For the rest of the proof we suppose that G is infinite.

Let (si)i∈N be an enumeration of G such that s0 = 1G. Choose (Ti)i∈N a
sequence of finite subsets of G such that for every i ∈ N, Ti ∩ siTi = ∅ and
|Ti| = C · i, where C is a constant to be defined later. These sets always exist
as G is infinite.

Consider the uniform Bernoulli probability µ in {0, 1}G and the collection of
sets A := {An,g}n≥1,g∈G given by An,g = {x ∈ {0, 1}G | x|gTn

= x|gsnTn
}. Note

that each set is a union of cylinders and that the existence of a configuration x̃
in the intersection of the complement of these sets allows us to conclude the
theorem by producing a configuration with the distinct neighborhood property.
Our strategy is to apply Lemma 2.2 to ensure its existence.

As the intersection snTn ∩ Tn is empty we have that µ(An,g) = 2−|Tn| =
2−Cn. Consider one set An,g. The number of sets Am,g′ for a fixed m ∈ N

which are not independent from An,g is at most 4C2nm – observe that An,g is
independent from Am,g′ if and only if (gTn ∪ gsnTn) does not intersect (g

′Tm ∪

g′smTm). We also define x(An,g) := 2−
Cn
2 . Therefore, in order to conclude we

must prove that:

2−Cn ≤ 2−
Cn
2

∞
∏

m=1

(1− 2−
Cm
2 )4C

2nm.

Using the fact that 1− x ≥ 2−2x if x ≤ 1/2 we obtain the following bound:

2−
Cn
2

∞
∏

m=1

(1− 2−
Cm
2 )4C

2nm ≥ 2−
Cn
2

∞
∏

m=1

2−8C2nm2−
Cm
2

= 2−
Cn
2 2−8C2

∑∞
m=1

nm2−
Cm
2
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Therefore, it suffices to prove that:

2−
Cn
2 ≤ 2−8C2

∑∞
m=1

nm2−
Cm
2

⇐⇒ 1 ≥ 16C

∞
∑

m=1

m2−
Cm
2

⇐⇒ 1 ≥ 16C
2

C
2

(2
C
2 − 1)2

The previous inequality holds true for C ≥ 17. Therefore choosing C = 17
completes the proof by application of Lemma 2.2.

2.3 A graph-oriented construction and some computational

properties

In this subsection we present another construction of a non-empty strongly
aperiodic subshift. This construction is not as general as the previous one, as it
only holds for finitely generated groups, and the size of the alphabet is rather
large. Nevertheless, it can be defined by a natural property which allows us to
use it in computability constructions with ease.

Let Γ = (V,E) be a simple graph, consider a finite alphabet A and a coloring
x ∈ AV of the vertices of Γ. We say x contains a vertex-square path if there exists
an odd length path p = v1 . . . v2n such that xvi = xvi+n

for every 1 ≤ i ≤ n. If
the coloring x does not contain any vertex-square path then we say it is a square-
free vertex coloring. Next we show a proposition which is a slight modification
of a proof which can be found in [AGHR02].

Proposition 2.5. Let G be a group which is generated by the finite set S.
Then there exists a square-free vertex coloring of the undirected right Cayley
graph Γ(G,S) with 219|S|2 colors.

Proof. Consider a finite alphabet A and let X = AΓ(G,S) be the set of all vertex
colorings of the Cayley graph Γ(G,S). We define µ as the uniform Bernoulli
probability, that is, for a ∈ A and g ∈ G then

µ({x ∈ X | xg = a}) =
1

|A|
.

Consider P as the set of all odd length paths in Γ(G,S). For p ∈ P let Ap

be the set of colorings of Γ(G,S) such that p is a square under that coloring and
note that if p is of length 2n−1 then µ(Ap) = |A|−n if there exists a path of said
length. Consider An = {Ap | p has length 2n − 1} and A = {Ap | p ∈ P} =
⋃

n≥1An. In order to apply Lemma 2.2, we define x(Ap) := (8|S|2)−n for Ap ∈
An. The lemma holds if for every A ∈ A then µ(A) ≤ x(A)

∏

B∈Γ(A)(1−x(B)).
Replacing both sides yields the necessary condition:
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∀n ≥ 1 : |A|−n ≤ (8|S|2)−n
∏

j≥1

(1− (8|S|2)−j)|Γ(Ap)∩Aj |.

|Γ(Ap)∩Aj | corresponds to the amount of paths of length 2j−1 which share a
vertex with p. If p has length 2n−1 this can be bounded by 4nj(2|S|)2j. Indeed,
there are at most (2|S|)2j paths of length 2j − 1 starting from a vertex v. Each
of these paths can intersect a given vertex of p in 2j positions and there are 2n
vertices in p. Therefore by using that and the fact that 1−x ≥ 2−2x if x ≤ 1/2,
the requirement to use the lemma can be restrained further so that the following
is required to conclude:

|A|−n ≤ (8|S|2)−n
∏

j≥1

2−8nj(8|S|2)−j(4|S|2)j = (8|S|2)−n
∏

j≥1

2−8nj2−j

Equivalently:

|A| ≥ 8|S|228
∑

j≥1
j2−j

≥ 219|S|2

Which is satisfied by hypothesis, therefore, there exists a coloring of the
graph such that no path of odd length is a square under that coloring.

Theorem 2.6. Every finitely generated group G has a non-empty G-effective
strongly aperiodic subshift.

Proof. Let S be a set of generators of G and A an alphabet such that |A| ≥
219|S|2. Consider the set of forbidden patterns F defined as follows: Take P the
set of all finite paths of odd length of Γ(G,S). For every p ∈ P we define the
set of patterns Πp as those with support p and such that they are vertex-square
paths. Let F =

⋃

p∈P Πp and let X = XF be the G-effective subshift – vertex-
square paths can be recognized with a Turing machine with access to WP(G) –
defined by this set of forbidden patterns. By Proposition 2.5 this subshift is
non-empty. We claim it is strongly aperiodic.

Let x ∈ X and g ∈ stabσ(x). We are going to show that if g 6= 1G then
x contains a vertex-square path. Consider an expression of g as an element
of (S ∪ S−1)∗ such it can be factorized as g =G uwv with u =G v−1. This
can always be done by choosing u = v = ε and w a product of generators
producing g. Amongst all those possible representations choose one such that
|w| is minimal. Clearly |w| = 0 implies that g = 1G, so we suppose |w| > 0. Let
w = w1 . . . wn and consider the odd length walk π = v0v1 . . . v2n−1 defined by:

vi =











1G if i = 0

w1 . . . wi if i ∈ {1, . . . , n}

ww1 . . . wi−n if i ∈ {n+ 1, . . . , 2n− 1}

9



We claim that π is a path. Indeed, by definition w can not be reduced and
thus there are no repeated vertices in v0v1 . . . vn nor in vn+1 . . . v2n−1. Therefore
if there is a repeated vertex then it appears once in both parts. Suppose that it
happens, thus we can consider two factorizations w = ab and w = cd such that
a =G abc. We obtain that b = c−1. Obviously |c| = |b|, if not, w can be written
as abcc−1 =G ac−1 or b−1bcd =G b−1d which contradicts the minimality of |w|.
Without loss of generality, we can replace c by the word obtained by reversing
the order and inversing the letters of b. Moreover, |c| > 0 and thus |b| > 0 which
means that w is written as follows:

w = a1 . . . akb1 . . . bl = b−1
l . . . b−1

1 d1 . . . dk

Therefore we can factorize b−1
l and bl from both sides obtaining a smaller

word w′ in the representation of g. This contradiction show that indeed π
is a path. To conclude, we have that g =G uwu−1 and since g ∈ stabσ(x)
which is normal in G, so does h the group element represented by the word
w and therefore h−1 ∈ stabσ(x). This means that xvj = xhvj = xvj+n

for all
j ∈ {0, . . . , n − 1}, yielding a square-vertex path. Therefore |w| = 0 and thus
g = uv = 1G.

Theorem 2.6 provides a non-empty strongly aperiodic G-effective subshift.
Recently Jeandel [Jea15] has shown that for recursively presented groups, if the
group admits a Z-effective strongly aperiodic subshift then its word problem
is decidable. Our result actually shows that every group with decidable word
problem admits a non-empty strongly aperiodic Z-effective subshift. Here we
show this result and we give another proof of Jeandel’s result in our own fashion.

Lemma 2.7. Let G be a finitely generated group and X ⊂ AG a non-empty
strongly aperiodic subshift. There exists a function f : N → N such that for
every x ∈ X then g ∈ B(1G, n) \ {1G} =⇒ x|B(1G,f(n)) 6= x|B(g,f(n)).

Proof. Suppose f does not exist, thus there exists n ∈ N and a sequence
(xj , gj)j∈N ⊂ X×B(1G, n)\{1G} such that xj |B(1G,j) = xj |B(gj ,j). As B(1G, n)
is finite there exists ḡ 6= 1G which appears infinitely often in (gj)j∈N. Consider
the subsequence (xk)k∈N,gk=ḡ and from there extract a converging subsequence
(xkα

) → x̄ ∈ X . We claim that ḡ−1 ∈ stabσ(x̄). By definition of convergence,
for every m ∈ N there exists Nα ≥ m such that x̄|B(1G,m+n) = (xNα

)|B(1G,m+n)

and thus

x̄|B(1G,m) = (xNα
)|B(1G,m) = (xNα

)|B(ḡ,m) = x̄|B(ḡ,m)

So for every m ∈ N we have x̄|B(1G,m) = x̄|B(ḡ,m) and therefore ∀g ∈ G :
x̄g = x̄ḡg. Which yields a contradiction as X is strongly aperiodic.

Theorem 2.8. Let G be a recursively presented and finitely generated group.
There exists a non-empty strongly aperiodic Z-effective subshift if and only if
WP(G) is decidable.

10



Proof. Results from [ABS14] imply that every G-effective subshift is Z-effective
when WP(G) is decidable. Therefore Theorem 2.6 yields the desired construction.
Conversely, suppose there is a non-empty Z-effective subshiftX which is strongly
aperiodic. As G is recursively presented then WP(G) is recognizable. Let T be a
Turing machine which accepts every inconsistent pattern coding and a maximal
set of consistent pattern codings which generates F such that X = XF . The
existence of such a machine in the case of a recursively presented group is given
in [ABS14].

Let w ∈ (S ∪ S−1)∗. We present an algorithm which accepts if and only
if w 6=G 1G. Consider the ball of size n in the free monoid over the alphabet
(S∪S−1)∗, that is Λn = {u ∈ (S∪S−1)∗||u| ≤ n} and consider the set Λn∪wΛn.
For each one of these sets we construct the set Πn of all pattern codings c such
that for u ∈ Λn then (u, a) ∈ c if and only if (wu, a) ∈ c. That is, we force the
ball of size n around the empty word ǫ and w to be the same. Consider the
algorithm which iteratively runs T on every pattern coding of Π1,Π2, . . .Πj up
to j steps and then does j ← j + 1 and which accepts w if and only if every
pattern coding in a particular Πi is accepted by T . If w =G 1G the algorithm can
never accept as it would mean no patterns are constructible around 1G and thus
X = ∅. Conversely, if w 6=G 1G then using the function f given by Lemma 2.7
we get that for every x ∈ X if w 6=G 1G then x|B(1G,f(|w|)) 6= x|B(w,f(|w|)) thus
every pattern in Πf(|w|) is either inconsistent or represents a forbidden pattern,
and therefore T must accept every pattern of Πf(|w|).

One may ask if it is possible to construct non-empty strongly aperiodic
subshifts which satisfy stronger constrains, such a being of finite type, sofic or
Z-effective. The previous result shows that our construction is in this sense
optimal for recursively presented groups with undecidable word problem.

3 Realization of densities

We begin this section by introducing a useful concept for metric spaces which
allows us to construct hierarchical structures in groups, then we give a short in-
troduction to amenable groups before proving the main theorem of this section.

Definition 3.1. Let (X, d) be a metric space. We say F ⊂ X is r-covering if
for each x ∈ X there is y ∈ F such that d(x, y) ≤ r. We say F is s-separating
if for each x 6= y ∈ F then d(x, y) > s.

Lemma 3.1. Let (X, d) be a countable metric space and r ∈ N. There exists a
set Fr which is r-separating and r-covering.

Proof. Suppose we have a r-separating set F which is not r-covering. Then the
set K := {g ∈ G | d(F, g) > r} is not empty and F can be extended by an
element of K. Thus any maximal r-separating set is also r-covering.

The existence of a maximal r-separating set for the case of a countable metric
space is given by the compactness of {0, 1}X as each finite subset F ⊂ X can

11



Figure 1: In green, an example of 2-covering and 2-separating set in PSL(2,Z) ∼=
Z/2Z ∗ Z/3Z. Green vertices are at distance at least 3 from each other, and
every vertex is at distance at most 2 from a green vertex.

be seen as its characteristic function in {0, 1}X. In the general case the same
result also stands by Zorn’s Lemma.

A group G is called amenable if there exists a left-invariant finitely additive
probability measure µ : P(G) → [0, 1] on G. The amenability of a group has
many equivalent definitions – many of which can be found in [CSC09]. From a
combinatorial point of view the Følner condition states that a group is amenable
if and only if it admits a Følner net, that is, a net Fα of non-empty finite subsets
of G such that ∀g ∈ G:

lim
α

|gFα△Fα|

|Fα|
= 0.

Let Int(F,K) := {g ∈ F |∀k ∈ K, gk ∈ F} be the interior of F with respect
to K and ∂KF := F \ Int(F,K) the boundary of F with respect to K. In the
case of countable groups the net can be just taken to be a sequence and thus
amenability can be shown to be equivalent to the fact for every finite K ⊂ G

we have limn→∞
|∂KFn|
|Fn|

= 0. That is to say, for any finite set K the boundaries

of the sets Fn with respect to K grow slower than themselves.

Definition 3.2. Let F ⊂ G be a finite subset of a group and x ∈ {0, 1}G be a
configuration. We define the density of 1 in F and x as:

dens(1, x|F ) = dens(1, F, x) =
|{g ∈ F | xg = 1}|

|F |
.

12



Similarly if P ∈ AF is a pattern with support F , we denote by dens(1, P )

the ratio
|{g∈F |Pg=1}|

|F | .

In a way that resembles the previous section, we could say a configuration
x ∈ {0, 1}G has density α ∈ [0, 1] for some sequence of subsets (Tn)n∈N if for
each g ∈ G we have that dens(1, gTn, x) → α. Nevertheless, contrary to the
preceding section, Lovász local lemma cannot directly be applied to prove the
existence of configurations. If we define the forbidden sets to be An,g = {x ∈
{0, 1}G | |dens(1, gTn, x)| < αδn} we obtain that the measure of this set can
be bounded by above using the Chernoff bounds by 2 exp(δ2nα|Tn|/3). For any
function which bounds these values by above, and after some elimination of
exponents, we obtain that the left hand side of the inequality required by the
local lemma depends on δn while the right hand side is constant.

Nevertheless, if we add the condition that the group is amenable, not only
we are able to obtain such a result as asked in the previous paragraph, moreover,
we can ask that the density over every Følner sequence converges to the same
fixed α.

Theorem 3.2. Let G be an amenable, infinite and finitely generated group and
α ∈ [0, 1]. There is a non-empty subshift Xα ⊂ {0, 1}G such that for any x ∈ Xα

and Følner sequence (Fn)n∈N then dens(1, Fn, x)→ α.

Proof. If α is 0 or 1 the result is trivial. Let α ∈ (0, 1), and define Kn :=
B(1G, 5

n) and consider the subshift Xα given by the set of forbidden patterns
F such that for P ∈ {0, 1}F (where F ⊂ G, |F | <∞) belongs to F if and only
if the following condition is not satisfied:

2n|∂Kn
F | < |F | =⇒ |dens(1, P )− α| ≤

1

n

In other words, we forbid a pattern P with support F if the ratio
|∂KnF |

|F | is

sufficiently small and the density of ones in P is further than 1
n
from α.

Consider a Følner sequence (Fn)n∈N and let m ∈ N and x ∈ Xα. As

limn→∞
|∂KmFn|

|Fn|
= 0 there exists N ∈ N such that

∀n ≥ N
|∂Km

Fn|

|Fn|
<

1

2m

Therefore, for every n ≥ N we get that |dens(1, x|Fn
)− α| ≤ 1

m
. As m can

be made arbitrarily big we obtain that limn→∞ dens(1, Fn, x) = α.

We only need to show that Xα 6= ∅. Our strategy will be to inductively con-
struct an infinite covering forest of G, and then put a Sturmian word along an
enumeration of the leaves of each of its trees. The configuration x ∈ {0, 1}G ob-
tained by this process will belong to Xα. The following objects – that are
formally described below – will be used to formalize this idea: a sequence
(An)n∈N ⊂ 2G of subsets of G, a sequence (pn)n∈N : G → An of functions
and a sequence (Γn)n∈N of graphs on vertex sets (An)n∈N respectively. They
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are defined by the following recurrences, with base cases A0 = G, p0 = id and
Γ0 = Γ(G,S) where S is a finite set of generators of G:

1. The set An+1 is chosen as a 2-separating and 2-covering subset of An for
the distance induced by Γn. In particular, the sets (An)n∈N are nested.

2. Suppose pn : G → An is already defined, we first define pn+1 on An and
then extend it to G. Consider an element g ∈ An. Since An+1 2-covers
An in Γn, there are only three possible cases.

• g ∈ An+1: in this case we set pn+1(g) = g.

• dΓn
(g,An+1) = 1: there exists a unique h ∈ An+1 that satisfies

dΓn
(g, h) = 1 – uniqueness comes from the fact that An+1 is 2-

separating – and we set pn+1(g) = h.

• dΓn
(g,An+1) = 2: we arbitrarily choose one h ∈ An+1 that realizes

dΓn
(g, h) = 2 and set pn+1(g) = h.

For g′ ∈ G \An we finally extend this function by pn+1 := pn+1 ◦ pn.

3. For g ∈ An define the n-cluster of g by Cn(g) := {h ∈ G | pn(h) = g}. The
element g ∈ An is called the center of the cluster Cn(g). The graph Γn+1

has vertex set An+1, and there is an edge in Γn+1 between two elements
g, h ∈ An+1 if and only if there exist g′ ∈ Cn(g) and h′ ∈ Cn(h) that are
neighbors in Γ(G,S).

The covering forest defined by the sequence (An, pn,Γn)n∈N is (V,E), where
the set of vertices V is the multiset

⊔

n∈N
An, and the edges are given by the

parent functions: (g, h) ∈ E if and only if g ∈ An, h ∈ An+1 and pn(g) = h. In
particular the successive applications of p1, . . . , pn to an element g ∈ G = A0

gives the path from the leaf labeled by g to its height n parent. The cluster Cn(g)
corresponds to the set of labels of descendants of the node labeled by g that
appears at height n in the covering forest. The cluster Cn+1(g) is obtained as the
union of the cluster Cn(g), all clusters Cn(h) for h ∈ An such that dΓn

(g, h) = 1
and clusters Cn(h′) for h′ ∈ An such that dΓn

(g, h′) = 2 for which the parent
function pn+1(h

′) has been chosen to be g (see Figure 2). Remark that every
cluster Cn(g) is connected in Γ as it is the finite union of adjacent connected
sets in Γ.

Note that definition 3 above is equivalent to what follows: for g, h ∈ An+1

then the edge (g, h) is in E(Γn+1) if and only if there exists a path g1 =
g, g2, . . . , gm = h from g to h in Γ(G,S) such that for every i ∈ {1, . . . ,m}
we have pn+1(gi) ∈ {g, h}.

Claim 3.1. Let g ∈ An, then B(g, n) ⊂ Cn(g) ⊂ B(g, 12 (5
n − 1)).

Proof. We prove the claim by induction. It stands true for n = 0.
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g

g

g

h

p1(h)

p2 ◦ p1(h)

C1(g) C2(g)

A0

p1

⊆

A1

p2

⊆

A2

...

...

...

Figure 2: A covering forest of G. In the left section of the image the edge
structure is emphasized by writing explicitly the parent functions. In the right
section we remark the cluster structure for g ∈ A2.

• Consider Cn(g). By induction hypothesis, B(g, n− 1) ⊂ Cn−1(g) ⊂ Cn(g).
Let h ∈ B(g, n) \ B(g, n − 1). Either h ∈ Cn−1(g) and we are done, or
h ∈ Cn−1(g

′) for some g′ ∈ An−1. Then necessarily dΓn−1
(g, g′) = 1, since

hs ∈ B(g, n − 1) ⊂ Cn−1(g) for some s ∈ S ∪ S−1. Finally as An is a
2-separating subset of the vertices of Γn−1 we get that Cn−1(g

′) ⊂ Cn(g)
thus h ∈ Cn(g). We conclude that B(g, n) ⊂ Cn(g). Note that the same
argument proves that Cn(g′) · (S ∪ S−1) ⊂ Cn+1(g

′) for every n ∈ N and
g′ ∈ An+1.

• Suppose inductively that for every g ∈ An−1 the inclusion Cn−1(g) ⊂
B(g, 1

2 (5
n−1− 1)) holds. Fix one g ∈ An and consider an element h in the

cluster Cn(g). We show that dG(h, g) ≤
1
2 (5

n − 1) by constructing a path
of length at most 1

2 (5
n−1) from h to g. By definition of the cluster Cn(g),

we know that the element h′ ∈ An−1 such that h ∈ Cn−1(h
′) satisfies

dΓn−1
(g, h′) ≤ 2. In the sequel we will only consider the case where this

distance is exactly 2 as it is the worst case. Thus we assume that there
exists a path h′ → h′′ → g of length 2 between this h′ and g in Γn−1. By
definition of the graph Γn−1, this implies the existence of k′ ∈ Cn−1(h

′)
and k′′ ∈ Cn−1(h

′′) that are neighbors in Γ(G,S) and ℓ′′ ∈ Cn−1(h
′′) and

ℓ ∈ Cn−1(g) that are neighbors in Γ(G,S). Putting everything together,
we can build the following path in Γ(G,S) (see Figure 3):

h→ · · · → h′ → · · · → k′ → k′′ → · · · → h′′ → · · · → ℓ′′ → ℓ→ · · · → g.

Since they all link an element of a cluster of level n − 1 to the center of
this cluster, the induction hypothesis implies that we can choose the five
subpaths h → · · · → h′, h′ → . . . k′, k′′ → · · · → h′′, h′′ → · · · → ℓ′′

and ℓ→ · · · → g of length at most 1
2 (5

n−1 − 1). Thus the total length of
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h

h′

Cn−1(h
′)

k′ k′′

h′′

Cn−1(h
′′)

ℓ′′ ℓ
g

Cn−1(g)

Figure 3: A path from an element h of Cn(g) to g which inductively proves the
inclusion Cn(g) ⊂ B(g, 1

2 (5
n − 1)).

the path is at most 5 · 12 (5
n−1 − 1) + 2 ≤ 1

2 (5
n − 1). Therefore Cn(g) ⊂

B(g, 1
2 (5

n − 1)).

Let x ∈ {0, 1}G be a configuration such that for every n ∈ N and g ∈ An

⌊α|Cn(g)|⌋ ≤ |{h ∈ Cn(g) | xh = 1}| ≤ ⌊α|Cn(g)|⌋+ 1. (1)

Claim 3.2. There exists a configuration x that satisfies condition (1).

Proof. Consider the covering forest given by some sequence (An, pn,Γn)n∈N as
specified above. For every component C of this forest, take φC a convex enu-
meration of its leaves: if g and g′ are two leaves of C with the same parent
of height n for some n ∈ N – i.e. pn(g) = pn(g

′) – then the preimage h of
every integer between φC(g) and φC(g

′) satisfies that pn(h) = pn(g). Such an
enumeration always exists.

Let (wk)k∈N be a Sturmian word of slope α. We can build a configuration
x by putting the Sturmian sequence (wk)k∈N along the convex enumeration
chosen for every component of the forest. Since Sturmian words are balanced,
we deduce that the configuration x satisfies condition (1).

Claim 3.3. If a configuration x ∈ {0, 1}G satisfies condition (1), then x belongs
to Xα.

Proof. Let x be such a configuration and take some n ∈ N. Let F be a set
such that 2n|∂Kn

F | < |F | – remember that Kn is B(1G, 5
n) – and consider

the pattern P := x|F . Let V := Int(F,B(1G,
1
2 (5

n − 1))) ∩ An and R =
F \

⋃

v∈V Cn(v). As
⋃

v∈V Cn(v) ⊂
⋃

v∈V vB(1G,
1
2 (5

n − 1)) ⊂ F we get that:
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1

|F |

∑

v∈V

(⌊α|Cn(v)|⌋) ≤ dens(1, P ) ≤
1

|F |

∑

v∈V

(⌊α|Cn(v)|⌋ + 1) +
|R|

|F |
.

Before working on those inequalities we remark two facts:

1. R ⊂ ∂Kn
F . Therefore |R|

|F | <
1
2n .

2. |V | ≤ |F |
|B(1G,n)| .

Indeed, let r ∈ Int(F,Kn). That is, for all g ∈ Kn then rg ∈ F . As d(r, pn(r)) ≤
1
2 (5

n−1) then pn(r) ∈ Int(F,B(1G, 5
n− 1

2 (5
n−1))) ⊂ Int(F,B(1G,

1
2 (5

n−1)))
therefore pn(r) ∈ V . That means that r /∈ R, therefore R ⊂ F \ Int(F,Kn) =
∂Kn

F . The second remark is a consequence of Claim 3.1
From the left side we get:

dens(1, P ) ≥
1

|F |

∑

v∈V

(⌊α|Cn(v)|⌋)

≥
α

|F |

∑

v∈V

|Cn(v)| −
|V |

|F |

≥ α
|
⋃

v∈V Cn(v)|

|F |
−

|F |

|F ||B(1G, n)|

≥ α
|F \R|

|F |
−

1

|B(1G, n)|

≥ α(1 −
1

2n
)−

1

2n

≥ α−
1

n

While from the right side:

dens(1, P ) ≤
1

|F |

∑

v∈V

(⌊α|Cn(v)|⌋ + 1) +
|R|

|F |

≤
α

|F |

∑

v∈V

(|Cn(v)|) +
|V |

|F |
+

1

2n

≤ α
|
⋃

v∈V Cn(v)|

|F |
+

|F |

|F ||B(1G, n)|
+

1

2n

≤ α+
1

n
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Putting together Claims 3.2, 3.1 and 3.3, we obtain that Xα 6= ∅ which
completes the proof of Theorem 3.2.

Remark. In the case where α is a computable number, the subshift Xα given
in the previous proof is G-effective.

Sturmian sequences are classical examples of aperiodic sequences [PF02].
As Xα shares this uniform density property which makes it similar to Sturmian
sequences, it is a natural question to ask what can be said about the aperiodicity
of the subshift Xα defined above.

Proposition 3.3. Let α ∈ [0, 1] \Q. Then Xα is weakly aperiodic.

Proof. Suppose there exist a configuration x ∈ Xα and an integer n ∈ N such
that |Orbσ(x)| = n. Let D := {gi}1≤i≤n ⊂ G such that each σgi (x) represents a
different element ofOrbσ(x), with g1 = 1G. Consider also α

′ = dens(1, x|D) ∈ Q

and N = max1≤i≤n d(1G, gi).
Let m ∈ N such that 2

m
< |α − α′| and 5m > N

2 . Recall that Km :=
B(1G, 5

m) and consider a finite subset F ⊂ G such that 2m|∂Km
F | < |F |

– by amenability of G such a subset always exists. As x ∈ Xα we get that
|dens(1, x|F )−α| < 1

m
. Let V = Int(F,B(1G, N))∩ stabσ(x) and R = F \V D.

Note that by definition ofN , V D =
⋃

v∈V vD ⊂ F and that as each v ∈ stabσ(x)
then dens(1, x|VD) = dens(1, x|D) = α′. We obtain:

dens(1, x|D)
|V D|

|F |
≤ dens(1, x|F ) ≤ dens(1, x|D)

|V D|

|F |
+
|R|

|F |

Let g ∈ Int(F,Km). Since the configuration x is supposed to have finite orbit
{x, σg2(x), . . . , σgn(x)}, there exists l ∈ {1, . . . , n} such that σg−1 (x) = σgl(x).

Therefore g−1
l g−1 ∈ stabσ(x) which is a subgroup, thus ggl ∈ stabσ(x). As

d(g, ggl) ≤ N and ggl ∈ V then we conclude that Int(F,Km) ⊂ V D (because
we have chosen g1 = 1G) and therefore R ⊂ ∂Km

F .
Similarly to the previous proof, we bound each side using this relation, ob-

taining:

α′ |V D|

|F |
≤ dens(1, x|F ) ≤α

′ |V D|

|F |
+
|R|

|F |

α′ |F \R|

|F |
≤ dens(1, x|F ) ≤ α′ +

|∂Km
F |

|F |

α′(1−
1

2m
) ≤ dens(1, x|F ) ≤ α′ +

1

2m

α′ −
1

2m
≤ dens(1, x|F ) ≤ α′ +

1

2m

Therefore |dens(1, x|F )−α′| < 1
m

and |dens(1, x|F )−α| < 1
m

which implies
that |α− α′| < 2

m
contradicting the definition of m.
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In the case of Z2, the subshift Xα defined in the proof of Theorem 3.2 is
not strongly aperiodic, since it contains the following configurations with non-
trivial stabilizer: take a bi-infinite Sturmian word and repeat it vertically so
that a configuration x ∈ {0, 1}Z

2

is defined. Then x ∈ Xα since no forbidden
pattern defining Xα appears in x. Thus Proposition 3.3 is in some sense the
best we can do for this particular construction.

The statement of Theorem 3.2 itself requires amenability for the group G
since we want the density to converge to α for every Følner sequence. But even
if we relax this property and ask for density converging to some α ∈ [0; 1] only
for the sequence (Bn)n∈N of balls of radius n with respect to some fixed set of
generators, our construction does not provide a proof for non-amenable groups.
For free groups, this can achieved by constructing a regular covering tree and
putting a Sturmian sequence on every level of this tree. The following question
remains open to our knowledge.

Question. Let G be an infinite finitely generated group and α ∈ [0, 1]. Does
there exist a subshift Yα ⊂ {0, 1}

G that satisfies the following property: for every
configuration y ∈ Yα and for every sequence (gn)n∈N of elements in G, one has
dens(1, B(gn, n), y)→ α ?
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